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Abstract. Stability of fixed points for a wider class of mappings is studied in a metric space. The results
obtained herein include a number of known results. An application to initial value problems is also
discussed.

1. Introduction and Preliminaries

The interrelationship between the convergence of a sequence of contraction mappings { fn} and their
fixed points {xn} on a metric space (M, d), known as the stability (resp. continuity) of fixed points, is
contained in a classical theorem of Bonsall [4, Theorem 1.5, p. 5]. This result (see also Sonneschein [15])
marks the beginning of the study on the stability of fixed points. Subsequently, Nadler, Jr. [9] and others
have addressed mainly the problem of replacing the completeness of the space M by the existence of fixed
points and various relaxations on the contraction constant and contractive conditions (cf. [1, 10–14], among
others). In 2006, Barbet and Nachi [3] (see also [2]) introduced new notions of convergence over a variable
domain in a metric space and discussed the stability of fixed points for contraction mappings. These
notions of convergence may be considered as weaker forms of their corresponding notions of pointwise
and uniform convergence which were extensively used earlier to ensure the stability of fixed points. The
results of Barbet and Nachi [3] have been further generalized in various settings by Mishra et al. [5–8].

On the other hand, a theorem of Suzuki [16] (see Theorem 1.1 below) is considered to be an interesting
generalization of the well-known Banach contraction principle. In this paper, we use the Suzuki contraction
combined with the new notions of convergence due to Barbet and Nachi [3] to study the stability of fixed
points over a variable domain. The results obtained herein thus present stability results for a much wider
class of mappings. An application to initial value problems is also discussed.
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Theorem 1.1. Let (M, d) be a complete metric space and f a mapping on M. Define a nondecreasing function
θ : [0, 1)→ ( 1

2 , 1] by

θ(r) =


1, if 0 ≤ r ≤ (

√
5 − 1)/2

(1 − r)r−2, if (
√

5 − 1)/2 ≤ r ≤ 2−
1
2

(1 + r)−1, if 2−
1
2 ≤ r < 1.

Assume that there exists r ∈ [0, 1) such that

θ(r)d(u, f u) ≤ d(u, v) implies d( f u, f v) ≤ r d(u, v) (1.1)

for all u, v ∈M. Then f has a unique fixed point z ∈M.

The mapping satisfying condition (1.1) is known as Suzuki contraction (see also [17]).

Remark 1.2. We note that unlike the Banach contraction, the Suzuki contraction need not be continuous and that
the contraction condition is required to hold only for certain points of the domain.

2. Barbet-Nachi Type Convergence

Now onwards, R denotes the set of real numbers,N the set of natural numbers, andN =N ∪ {∞}. The
following notions of convergence are due to Barbet and Nachi [3] and present generalizations of the well
known notions of pointwise and uniform convergence.

Let {Mn}n∈N be a family of nonempty subsets of a metric space (M, d) and { fn : Mn → M}n∈N be a family
of mappings. Then f∞ is called a (G)-limit of the sequence { fn}n∈N or, equivalently { fn}n∈N satisfies the
property (G), if the following condition holds:

(G) Gr( f∞) ⊂ lim inf Gr( fn): for every u ∈M∞, there exist a sequence {un} in
∏

n∈N
Mn such that:

lim
n→∞

d(un,u) = 0 and lim
n→∞

d( fnun, f∞u) = 0,

where Gr( f ) stands for the graph of f .

The mapping f∞ is called a (G−)-limit of the sequence { fn}n∈N or, equivalently { fn}n∈N satisfies the
property (G−) if the following condition holds:

(G−) Gr( f∞) ⊂ lim sup Gr( fn): for every u ∈ M∞, there exists a subsequence{un j } j∈N of {un} in
∏

n∈N
Mn such

that:

lim
j→∞

d(un j ,u) = 0 and lim
j→∞

d( fn j un j , f∞u) = 0.

Further, the mapping f∞ is called a (H)-limit of the sequence { fn}n∈N or, equivalently { fn}n∈N satisfies
the property (H) if the following condition holds:

(H) For each sequence {un} in
∏

n∈N
Mn, there exists a sequence {vn} in M∞ such that:

lim
n→∞

d(un, vn) = 0 and lim
n→∞

d( fnun, f∞vn) = 0.

Remark 2.1. The sequential form of limits as indicated in (G) and (G−) are obtained by using the definitions of
sequences of sets and the graph of a function.

Remark 2.2. Properties of these limits and the inter relationship between the above notions of convergence and the
well-known classical notions of pointwise and uniform convergences are discussed by Barbet and Nachi [3] and are
also captured briefly in Mishra and Pant [6].
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3. Stability results for (G) and (G−)-convergences

We begin with the following theorem which is our first stability result.

Theorem 3.1. Let {Mn}n∈N be a family of nonempty subsets of a metric space (M, d) and { fn : Mn → M}n∈N be a
family of mappings satisfying the property (G) such that for all n ∈ N, fn is a Suzuki contraction with the same
coefficient r ∈ [0, 1) i.e., fn satisfies (1.1) for all n ∈ N and r ∈ [0, 1). If for all n ∈ N, un is a fixed point of fn, then
the sequence {un}n∈N converges to u∞.

Proof. Let un be a fixed point of fn for each n ∈N. Since the property (G) holds and u∞ ∈M∞, there exists a
sequence {vn} in

∏
n∈N

Mn such that vn → u∞ and fnvn → f∞u∞. Therefore

d(un,u∞) = d( fnun, f∞u∞)
≤ d( fnun, fnvn) + d( fnvn, f∞u∞).

Since un is a fixed point of fn for each n ∈ N, θ(r)d(un, fnun) = 0 ≤ d(un, vn) for any r ∈ [0, 1). Now, by (1.1),
we get

d(un,u∞) ≤ rd(un, vn) + d( fnvn, f∞u∞)
≤ r[d(un,u∞) + d(vn,u∞)] + d( fnvn, f∞u∞).

Taking n→∞, we obtain

lim
n→∞

d(un,u∞) ≤ lim
n→∞

r [d(un,u∞) + d(vn,u∞)]

= lim
n→∞

rd(un,u∞).

Thus lim
n→∞

(1 − r)d(un,u∞) ≤ 0. Since r < 1, we get lim
n→∞

d(un,u∞) = 0.

The following result in [3, Theorem 2] directly follows from the above theorem.

Corollary 3.2. Let {Mn}n∈N be a family of nonempty subsets of a metric space (M, d) and { fn : Mn → M}n∈N be a
family of mappings satisfying the property (G) such that for all n ∈ N, fn is a contraction from Mn into M with the
same coefficient r ∈ [0, 1). If for all n ∈N, un is a fixed point of fn, then the sequence {un}n∈N converges to u∞.

Example 3.3. Let M = [1, 2] be endowed with the usual metric d(x, y) = |x − y|. Then (M, d) is a metric space. Let
{Mn = [1, 1+ 1

n ]} be a family of nonempty subsets of M for each n ∈N.Define a family of mappings { fn : Mn →M}n∈N
by

fnu = 1 +
1

1 + nu
for u ∈Mn.

It is easy to see that M∞ = {1}. Define f∞u = 1 for all u ∈M∞. Then there exist the sequence {un = 1 + 1
2n } in Mn for

n ∈N such that

lim
n→∞

d(un, 1) = 0 and lim
n→∞

d( fnun, f∞1) = 0.

Therefore f∞ is a G-limit of { fn}. Now, for each n ∈N and u, v ∈Mn

d( fnu, fnv) =
n|u − v|

(1 + nu)(1 + nv)

≤
n

(1 + n)(1 + n)
|u − v|

= r|u − v|
= rd(u, v),
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where r = n
(1+n)2 < 1 for each n ∈ N. Hence, fn is contraction for each n ∈ N. Also

n−1+
√

(n−1)2+8n
2n is a fixed point of

fn in Mn for each n ∈N. Finally,

lim
n→∞

n − 1 +
√

(n − 1)2 + 8n
2n

= 1.

Therefore the sequence of fixed points
{

n−1+
√

(n−1)2+8n
2n

}
n∈N

converges to 1 = f∞1, and all the conditions of Corollary

3.2 are satisfied.

When Mn = M for all n ∈N, M is complete and r ∈ (0, 1), then we get the following result of Bonsall [4,
Theorem 1.2, p. 5] as a consequence of Theorem 3.1.

Corollary 3.4. Let (M, d) be a complete metric space, and { fn : M → M} be a family of mappings such that for all
u, v ∈M and n ∈N,

θ(r)d(u, fn ≤ d(u, v) implies d( fnu, fnv) ≤ rd(u, v).

Suppose the sequence { fn}n∈N converges pointwise to f∞. Then for all n ∈ N, fn has a unique fixed point un and the
sequence {un}n∈N converges to u∞.

The following theorem proves the existence of a fixed point for a (G)-limit of a sequence of Suzuki contrac-
tions.

Theorem 3.5. Let {Mn}n∈N be a family of nonempty subsets of a metric space (M, d) and { fn : Mn → M}n∈N be a
family of mappings satisfying the property (G) such that for any n ∈ N, fn is a Suzuki contraction with the same
coefficient r ∈ [0, 1). Assume that for any n ∈N, un is a fixed point of fn. Then

f∞ admits a fixed point ⇔ {un} converges and lim
n→∞

un ∈M∞

⇔ {un} admits a subsequence converging to a point of M∞.

Proof. The necessary part follows from Theorem 3.1. To prove the sufficiency, let {un j } be a subsequence
of {un} such that lim

j→∞
un j = u∞ ∈ M∞. By the property (G), there exists a sequence {vn} in

∏
n∈N

Mn such that

vn → u∞ and fnvn → f∞u∞ as n→∞. For any j ∈N, we have

d(u∞, f∞u∞) ≤ d(u∞,un j ) + d( fn j un j , fn j vn j ) + d( fn j vn j , f∞u∞). (3.1)

Since for any r ∈ [0, 1), θ(r)d(un j , fn j un j ) ≤ d(un j , vn j ) for all n j, by (1.1)

d( fn j un j , fn j vn j ) ≤ rd(un j , vn j )

Now, from (3.1)

d(u∞, f∞u∞) ≤ d(u∞,un j ) + rd(un j , vn j ) + d( fn j vn j , f∞u∞)
≤ d(u∞,un j ) + r[d(un j ,u∞) + d(vn j ,u∞)] + d( fn j vn j , f∞u∞).

Now passing over to the limit as j→∞, we deduce that f∞u∞ = u∞.

Remark 3.6. Under the assumptions of Theorem 3.5, and if,

1. lim inf
n→∞

Mn ⊂ M∞ (i.e., the limit of any convergent sequence {zn} ∈
∏

n∈N
Mn is in M∞ ), then f∞ admits a fixed

point⇔ {un} converges.
2. lim sup

n→∞
Mn ⊂M∞ (i.e., the cluster point of any sequence {zn} ∈

∏
n∈N

Mn is in M∞), then f∞ admits a fixed point

⇔ {un} admits a convergent subsequence.
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Proposition 3.7. Let {Mn}n∈N be a family of nonempty subsets of a metric space (M, d) and { fn : Mn → M}n∈N be
a family of mappings satisfying the property (G) and such that, for any n ∈ N, fn is a Suzuki contraction with the
same coefficient r ∈ [0, 1). Then f∞ is a Suzuki contraction with the same coefficient r.

Proof. Given two points u and v in M∞, by the property (G), there exist two sequences {un} and {vn} in
∏

n∈N
Mn

converging respectively to u and v such that the sequences { fnun} and { fnvn} converge respectively to f∞u
and f∞v. Suppose for each n ∈N, fn is a Suzuki contraction with the same coefficient r ∈ [0, 1). Then

θ(r)d(u, f∞u) ≤ θ(r)[d(u,un) + d(un, fnun) + d( fnun, f∞u)]
≤ θ(r)[d(u,un) + d( fnun, f∞u)] + d(un, vn).

Since un → u, vn → v and fnun → f∞u as n→∞, we get

θ(r)d(u, f∞u) ≤ d(u, v).

Also,

d( f∞u, f∞v) ≤ d( f∞u, fnun) + d( fnun, fnvn) + d( fnvn, f∞v)
≤ d( f∞u, fnun) + rd(un, vn) + d( fnvn, f∞v).

Taking n→∞, we get d( f∞u, f∞v) ≤ rd(u, v) and the conclusion holds.

In the next result, a sufficient condition is given in order that the two notions of convergence become
equivalent.

Proposition 3.8. ([3, Proposition 4]). Let X be a subset of a metric space (M, d) and { fn : X → M}n∈N be a family
of mappings satisfying property (G) such that the sequence { fn}n∈N is equicontinuous on X. Then { fn}n∈N converges
pointwise to f∞.

The following result which presents an analogue of [3, Proposition 4] follows from Proposition 3.7.

Corollary 3.9. Let {Mn}n∈N be a family of nonempty subsets of a metric space (M, d) and { fn : Mn → M}n∈N be a
family of mappings satisfying property (G) such that, for any n ∈ N, fn is a contraction with the same coefficient
r ∈ [0, 1). Then f∞ is a contraction with the coefficient r.

Under a compactness assumption, the existence of a fixed point of the (G)- limit mapping can be obtained
from the existence of fixed points of the Suzuki contractions fn.

Theorem 3.10. Let {Mn}n∈N be a family of nonempty subsets of a metric space (M, d) and { fn : Mn → M}n∈N be a
family of mappings satisfying the property (G) and such that, for any n ∈N, fn is a Suzuki contraction with the same
coefficient r ∈ [0, 1). Assume that lim sup

n→∞
Mn ⊂ M∞ and

⋃
n∈N

Mn is relatively compact. If for any n ∈ N, fn admits

a fixed point un, then the (G)-limit mapping f∞ admits a fixed point u∞ and the sequence {un}n∈N converges to u∞.

Proof. Let un be the fixed point of fn for each n ∈ N. From the compactness condition, there exists a
convergent subsequence {un j } of {un}. Now, by Remark 3.6, f∞ admits a fixed point u∞ and by Theorem 3.5,
the sequence {un} converges to u∞.

As a consequence of Theorem 3.10 and Remark 2.1, we have the following result in [3, Theorem 7].

Corollary 3.11. Let {Mn}n∈N be a family of nonempty subsets of a metric space (M, d) and { fn : Mn → M}n∈N be a
family of mappings satisfying the property (G) such that for any n ∈ N, fn is a contraction with the same coefficient
r ∈ [0, 1). Assume that lim sup

n→∞
Mn ⊂ M∞ and

⋃
n∈N

Mn is relatively compact. If for any n ∈ N, fn admits a fixed

point un, then the (G)-limit mapping f∞ admits a fixed point.

Now we present a stability result for a sequence of mappings { fn} satisfying the property (G−).
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Theorem 3.12. Let {Mn}n∈N be a family of nonempty subsets of a metric space (M, d) and { fn : Mn → M}n∈N be a
family of Suzuki contraction mappings (with the same coefficient r ∈ [0, 1)) satisfying the property (G−). If for any
n ∈N, un is a fixed point of fn, then u∞ is a cluster point of the sequence {un}n∈N.

Proof. By the property (G−), there exists a sequence {vn} in
∏

n∈N
Mn which has a subsequence {vn j } such that

vn j → u∞ and fn j vn j → f∞u∞ as j→∞. We have

d(un j ,u∞) ≤ d( fn j un j , fn j vn j ) + d( fn j vn j , f∞u∞).

Since for any r ∈ [0, 1), θ(r)d(un j , fn j un j ) ≤ d(un j , vn j ) by (1.1), the above inequality reduces to

d(un j ,u∞) ≤ rd(un j , vn j ) + d( fn j vn j , f∞u∞)
≤ r[d(un j ,u∞) + d(vn j ,u∞)] + d( fn j vn j , f∞u∞)

=
1

1 − r
[rd(vn j ,u∞) + d( fn j vn j , f∞u∞)]

Thus {un j } converges to u∞, the fixed point of f∞.

The following result in [3, Theorem 8] follows from Theorem 3.12.

Corollary 3.13. Let {Mn}n∈N be a family of nonempty subsets of a metric space (M, d) and { fn : Mn → M}n∈N a
family of contraction mappings satisfying the property (G−). If for any n ∈ N, un is a fixed point of fn, then u∞ is a
cluster point of the sequence {un}n∈N.

4. Stability Results for (H)-Convergence

Now, we present another stability result using the (H)-convergence.

Theorem 4.1. Let {Mn}n∈N be a family of nonempty subsets of a metric space (M, d) and { fn : Mn → M}n∈N be a
family of mappings satisfying the property (H) such that f∞ is a Suzuki contraction. If for any n ∈ N, un is a fixed
point of fn, then the sequence {un}n∈N converges to u∞.

Proof. By property (H), there exists a sequence {vn} in M∞ such that d(un, vn)→ 0 and d( fnun, f∞vn)→ 0. We
have

d(un,u∞) ≤ d( fnun, f∞vn) + d( f∞vn, f∞u∞).

Since for any r ∈ [0, 1), θ(r)d(u∞, f∞u∞) ≤ d(vn,u∞) by (1.1), we have

d(un,u∞) ≤ d( fnun, f∞vn) + rd(vn,u∞)
≤ d( fnun, f∞vn) + r[d(vn,un) + d(un,u∞)]

=
1

1 − r
[d( fnun, f∞vn) + rd(vn,un)].

Thus lim
n→∞

d(un,u∞) = 0 and hence the conclusion follows.

The following result in [3, Theorem 11] follows directly from the above theorem.

Corollary 4.2. Let {Mn}n∈N be a family of nonempty subsets of a metric space (M, d) and { fn : Mn → M}n∈N be a
family of mappings satisfying the property (H) such that f∞ is a k -contraction. If for any n ∈ N, un is a fixed point
of fn then the sequence {un} converges to u∞.
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5. Applications

Inspired by S. B. Nadler, Jr. [9], we present an application of our results to an initial value problem.

Proposition 5.1. Let D be an open subset of R2, (a, b) ∈ D and K > 0 be real number. Assume that:

(a) { fi} is a sequence of real valued continuous functions defined on D such that | fi(x, y)| ≤ K for all (x, y) ∈ D with
a G-limit f , a continuous function on D.

(b) the set

C = {(x, y) : |x − a| ≤ p and |y − b| ≤ K|x − a|},

is a subset of D with p > 0.

(c) for every pair of real valued functions 1 and h

θ(kp)|1(x) − Ti1(x)| ≤ |1(x) − h(x)| implies | fi(x, 1(x)) − fi(x, h(x))| ≤ k|1(x) − h(x)|, (5.1)

where kp ∈ [0, 1) and Ti is defined by

Ti(1)x := b +

x∫
a

fi(t, 1(t))dt. (5.2)

Then the sequence {yi} converges uniformly on I = [a− p, a + p] to y0, where for each i ∈N, yi is the unique solution
on I of the initial value problem

y′(x) = fi(x, y(x)); y(a) = b.

Proof. Let M be the set of all real valued continuous functions on I with graph lying in C and with Lipschitz
constant ≤ K. Then M with the supremum metric d is a compact metric space. For each each 1 ∈M, define

T(1)x = b +

x∫
a

f (t, 1(t))dt, x ∈ I.

From (5.2) for each i ∈N

|Ti(1)x − Ti(h)x| ≤

x∫
a

| fi(t, 1(t)) − fi(t, h(t))|dt

≤ k

x∫
a

|1(t)) − h(t)|dt

≤ k sup
t∈[a,x]

|1(t) − h(t)|

x∫
a

dt

≤ kp sup
t∈[a,x]

|1(t) − h(t)|.

From the above inequality and (5.1), we get

θ(kp)d(1(x),Ti1(x)) ≤ d(1(x), h(x)) implies d(Ti(1)x,Ti(h)x) ≤ kpd(1(x), h(x)).
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Thus Ti is a Suzuki contraction on M for each i ∈ N. Now, Proposition 3.7 implies that T is also a Suzuki
contraction on M. For each 1 ∈ X, x ∈ I and i ∈N,

Ti(1)x − T(1)x =

x∫
a

[ fi(t, 1(t)) − f (t, 1(t))]dt.

Since f is the G-limit of fi, the sequence of integrands converges to zero and is uniformly bounded by 2K.
The Lebesgue bounded convergence theorem guarantees that the sequence of integrals on the R.H.S. goes
to 0 as i → ∞. Therefore T(1) is the G-limit of Ti(1) on I. Now by Proposition 3.8, G-limit is equivalent
to pointwise limit. It is easy to see that Ti(1) is uniformly continuous on I for each i ∈ N and hence the
sequence {Ti(1)} is equicontinuous on the compact set I. Therefore the sequence {Ti(1)} converges uniformly
to T(1) on I. Hence the sequence {Ti} converges pointwise to T on M. By Theorem 3.10 the sequence {yi}

where yi is the unique fixed point of Ti for each i ∈N, converges to the fixed point y0 of T. The result follows
since these fixed points are the unique solutions of the initial value problem.
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de Galdeano 33 (2006), 51–58.

[4] F. F. Bonsall, Lectures on Some Fixed Point Theorems of Functional Analysis, Tata Institute of Fundamental Research, Bombay
1962.

[5] S. N. Mishra, A. K. Kalinde, On certain stability results of Barbet and Nachi, Fixed Point Theory 12 (2011), no. 1, 137–144.
[6] S. N. Mishra, Rajendra Pant, Sequences of φ-contractions and stability of fixed points, Indian J. Math. 54 (2012), no. 2, 211–223.
[7] S. N. Mishra, S. L. Singh and Rajendra Pant, Some new results on stability of fixed points, Chaos Solitons Fractals 45 (2012), no.

7, 1012–1016.
[8] S. N. Mishra, S.L. Singh, S. Stofile, Stability of common fixed points in uniform spaces, Fixed Point Theory Appl. 2011, 2011:37, 8

pp. https://doi.org/10.1186/1687-1812-2011-37.
[9] S. B. Nadler, Jr., Sequences of contractions and fixed points, Pacific J. Math. 27 (1968), no. 3, 579–585.

[10] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), no. 1, 121–124.
[11] S. Reich, Kannan’s fixed point theorem, Boll. Un. Mat. Ital. (4)4 (1971), 1–11.
[12] S. L. Singh, A note on the convergence of a pair of sequences of mappings, Arch. Math. (Brno) 15 (1979), no. 1, 47–51.
[13] S. P. Singh, On a theorem of Sonnenshein, Bull. de l’Acadé mie Royale de Belgique 3 (1969), 413–414.
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