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Topologies on Normed Spaces Generated by Porosity

Stanistaw Kowalczyk?, Malgorzata Turowska®

?Pomeranian University in Stupsk, Kozietulskiego 6-7, 76-200 Stupsk, Poland

Abstract. In the present paper we study properties of porouscontinuous functions defined by J. Borsik and
J. Holos in 2014. We find maximal additive classes for different families of these functions. Furthermore,
we define new families of topologies generated by the notion of porosity, which are used to study maximal
multiplicative classes for porouscontinuous functions. Some relevant properties of defined topologies are
considered.

1. Introduction

Let N and R denote the set of all positive integers and the set of all real numbers, respectively. For
f:Y > Zand A C Y, by fia we mean the restriction of f to A. The symbol (X, || ||) always stands for a
normed space, cl A and int A denote a closure and an interior of A C X with respect to a topology generated
by the norm. The aim of our paper is to describe topologies on a normed space generated by the notion of
porosity and to study their connections with families of porouscontinuous functions.

The open ball in (X, || ||) with the center x € X and the radius R will be denoted by B(x, R). Similarly, by
S(x,R) and B(x, R) we will denote a sphere and a closed ball with the center x and the radius R.

First, we recall the definition of porosity. Let M C X, x € Xand R > 0. Then, according to [3, 9], we denote
the supremum of the set of all ¥ > 0 for which there exists z € X such that B(z,7) C B(x,R) \ M by y(x, R, M).
The number p(M, x) = 2limsupy_, . V(X’II;’M) is called the porosity of M at x. Obviously, p(M, x) = p(cl M, x)
for M C X and x € X. In a normed space one have p(M, x) < 2 and if x € M, then p(M, x) < 1.

We say that the set M is porous at x € X if p(M,x) > 0. The set M is called porous if M is porous at
each point x € M. We say that M is strongly porous at x if p(M, x) > 1 and M is called strongly porous if M
is strongly porous at each x € M. Obviously every strongly porous set is porous and every porous set is
nowhere dense. Moreover, none of reverse inclusions is true.

Remark 1.1. Let (X, || ||) be a normed space, A € M C X and x € X. Then p(M, x) < p(A, x). In particular, if
p(A,x) =0, then p(M, x) = 0.

In some applications we will use notions of porosities for subsets of IR. Due to L. Zajicek, J. Borsik and
J. Holos [1, 9] we give another definitions of porosities of subsets of the real line. For a set A C R and an
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interval I C R let A(A, I) denote the length of the largest open subinterval of I having an empty intersection
with A. Let x € R. Then, according to [1, 9], the right-porosity of the set A at x is defined as

(4, = tim sup ~ 2 XD
h—0+

7

the left-porosity of the set A at x is defined as
p (A, x) = limsup A4, &=k D) (xh— h, x))’
h—0*

and the porosity of A at x is defined as
p(A,x) = max{p~(A,x),p" (A x)}.
It is easy to see that for any A C R if x € A, then the both definitions of p(4, x) are equivalent.

Theorem 1.2. Let (X, || |[) be a normed space, xo € X and A C X be such that xo € cl(int A) \ int A. Then there exists
a sequence (B(Xy, n))nen Of pairwise disjoint closed balls such that | ;4 B(x,, 1) € A\ {xo}, im0 X, = X0 and

e . 2r
PO A, x0) = p(X\ | B 1), 30) = lim — o ool
n=1 " !

Proof. Fix R > 0. Since xg € cl(int A), we obtain y(xo, R, X \ A) > 0. For every ¢ € (0, y(xo, R, X \ A)) we can
find a closed ball E(y, n) such that n > y(xo,R, X \ A) — € and E(y, nNNX\A) =0ie. E(y, n) C A. Since
X ¢ int A, we have ||ly—x|| > 1. Take any 11 € (y(xo, R, X\ A)—¢,n). Thenn; > y(xo, R, X\A)—¢, B(y,m) CA
and xg ¢ E(y, n1). Therefore we can find by induction a sequence of closed balls (E(xn,rn))neN such that

Us1 B, ) € A\ {0}, limyseo X = X0 and p(X \ A, x0) = p(X \ U2y B(xn, 1), %0)- ~
Since inf{R > 0: B(xy, 1,) C B(xo,R)} = 4 + |lxy — Xoll, we obtain the equality p(X \ U, B(xy, ), %0) =

3 21y
limy e FatHlxo—xull” U

In [1] J. Borsik and J. Holos defined families of porouscontinuous functions f: R — R. Applying their
ideas we transfer this concept for real functions defined on a normed space.

Definition 1.3. Let (X, || ||) be a normed space, r € (0,1), f: X = R and x € X. The function f will be called:
e P,-continuous at x if there exists a set A C X such thatx € A, p(X\ A4, x) > r and f}4 is continuous at x;

e S,-continuous at x if for each ¢ > 0 there exists a set A C X such that x € A, p(X \ A,x) > r and

fA) C(f(x) — & f(x) +&);
o M,-continuous at x if there exists a set A C X such thatx € A, p(X\ A, x) > r and f}4 is continuous at x;

e N,-continuous at x if for each ¢ > 0 there exists a set A C X such that x € A, p(X \ A,x) > r and

fA) C (fx) =&, f(x) + &)

By P:(f), S:(f), M,(f) and N,(f) we denote the sets of points at which f is $,-continuous, S,-continuous,
M,;-continuous and N,-continuous, respectively.

Proposition 1.4. Let (X, || ||) be a normed space, f: X = R, xg € X and r € (0, 1). Then
1. xo € S(f) if and only if p(X \ {x: |f(x) — f(x0)| < €}, x0) > 7 for every & > 0;
2. x9 € Ni(f) if and only if p(X \ {x: |f(x) — f(x0)| < €}, x0) = 7 for every € > 0.

Proposition 1.5. Let (X, || ||) be a normed space, f: X = R, xg € X and r,11,12 € (0,1), ¥1 < ro. Then
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1. if xo € P.(f), then xo € S,(f);
2. if xo € S,(f), then xo € Ny(f);
3. if xo € My, (f), then xo € P, (f).

In [1] is proved that f is M,-continuous at x if and only if it is V,-continuous at x for functions defined
on R. Itis easily seen that this remains true for functions defined on a normed space. Some other properties
of porouscontinuous functions can be found in [5, 7].

If f is P,-continuous, S,-continuous, M,-continuous at every point of X for some r € (0, 1), then we say
that f is $,-continuous, S,-continuous, M,-continuous, respectively.

All of these functions are called porouscontinuous functions.

Obviously, if f is continuous in the norm || || at some x, then f is porouscontinuous (in each sense) at x.
Moreover, by C(f) we denote the sets of points at which f is continuous.

Following [1], we introduce for r € (0, 1) the following notations:

o My =N, ={f: Mi(f) = X};
o Pr={f:P(f) =X}
o S, =1{f: S(f) = XI.

Proposition 1.6. Let (X, || |I) be a normed space, x € X, R > 0and f: X — R. If fig, ) is continuous, then f is
porouscontinuous (in each considered sense) at every y € S(x, R).

Proof. Fix y € S(x,R). Take any 6 € (0,R) and & € (0, g). Then
B(y +L(x—y), h) C B(x,R) N B(y, 0).

Therefore p(X \ B(x, R), y) > 1. Since f 5, z, is continuous, f is porouscontinuous (in each considered sense)
aty. O

In the sequel we will consider X with several different topologies and f: X — R. Let 7 be a topology
on X (in particular 7 is a topology generated by the norm || ||). Then we will say that f is T-continuous at
x € Xifitis continuousatxas f: (X, 7) = (IR, Tn), where 7y is the natural topology on R. Thus 7-continuity
of f at x means that for each ¢ > 0 there exists T-open set U such that x € U and f(U) C (f(x) — ¢, f(x) + ).
We will say that f is T-continuous if it is 7-continuous at each point.

Denote C; = {f: X = R: fis t-continuous}, C = {f: X = R: fis 7}, — continuous}. Finally, for any
f: X—> Rlet Ny ={x e X: f(x) =0}

2. Maximal Additive Families for Porouscontinuous Functions

Itis easily seen that result of addition and multiplication of functions from discussed classes of functions,
in general, need not belong to these classes. Therefore we studied the following notion.

Definition 2.1. ([2]) Let ¥ be a family of real functions defined on a normed space (X, || [). A set Mi,(F) =
{7: X = R: Ve (f + g € F)} is called the maximal additive class for 7.

Remark 2.2. Let f: X — IR, f(x) = 0 for x € X, be a constant function. Clearly, if f € ¥, then M, (F) C F.
Lemma 2.3. Let (X, || ||) be a normed space, x, xy € X, x # xo and r € (0, ||x — xol|). Denote
A ={(B(y,c),R) : B(y,c) € (B(x,7) \ {x}) N B(xo, R)} .

Then
"

sup{%: (B(y,c),R) € ﬂ} = =l
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Proof. Denote K = sup {% : (B(y,¢),R) € ?(}. For each ball B(y, ¢), with ¢ < ||xg — ||, we obtain
inf{R > 0: B(y,c) € B(xo, R)} = |lxo — yll + c.

Moreover, for each (B(y,c),R) € Alet iy € {x +t2= 0t e (0, r)} be such that [y — x|| = |ly1 — xIl. Then

llxo—x[| *

(B(y1,0), lly1 — xoll + ¢) € Aand |ly1 — xoll < lly — xoll. Therefore

X

— 2C . xO_ .
K =sup {—”y i Y€ {x + t—llxo 0 te (O,r)},B(y,c) C B(x,7)\ {x}}.

Let us consider two cases.

1. Ifty € (O, %) and yp = x + toﬁ, then

sup {c > 0: B(yo,c) C B(x,r) \ {x}} = .

Hence,
2c 2t0
sup{ —— : B(yo,¢) € Bx, ") \ {x} } =——— =
p{||yo—x0||+0 (o) < B( )\”} o —xoll+fo
2ty 2ty r

= = < .
llxo —xll —to+to  llxo — x|l ~ [lx — xoll

2. Iftg € [%,r) and yp = x + toﬁ, then

sup {c > 0: B(yo,c) C B(x,r) \ {x}} =r—tg

and
2c 2(r — to)
—: B(yp,¢) C B(x, = =
S“p{||yo—xo||+c (o) < Blx ”\{x}} (=l —f) +7—fo
2(r—t) 25 r
<

Clxo —xll =7 +2(r—to) T llxo—xll—=r+25  lx — xoll”
because the function f(x) = =, where a > 0 is increasing on [0, o).

r _Xo—X 23 — r
llyo—xoll+5 ~ lxo—xlI*

On the other hand, if tp = 5 and yo = x + 5 then

2 |lxo—x]l”

Finally, K = L. O

[lx—xoll *
Theorem 2.4. Let (X, || ||) be a normed space, f: X — Rand xg € X. The following conditions are equivalent:
(1) f is continuous at xo;
(2) Vien)¥gem, (xo € Mi(f +9));
() JrecVgem, (xo € M(f +9));
(4) Yreo1)Yges, (xo € Si(f +9));
(5) re)Vyes, (X0 € Si(f +9));
(6) Vren)Ygep, (X0 € Pi(f +9));
(7) ArcyVger, (x0 € Pi(f + 7))
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Proof. Implications (2) = (3), (4) = (5) and (6) = (7) are obvious.

(1) = (2). Assume that f is continuous at xg. Letr € (0,1), g € M, and ¢ > 0. Then there exists
E c X such that xp € E, g(E) C (g(xo) - £,9(x) + %) and p(X \ E, xp) > r. On the other hand, we can find
0 > 0 such that [f(x) — f(xo)| < 5 for each x € B(xo,0). Let F = E N B(xo, ). Then |(f +9)x) - (f + g)(xo)‘ <
(f(x) - f(x0)| + |g(x) - g(x0)| < 5+ 5 = e forx € F. Moreover, p(X \ F,xo) > r. This means that xo € M,(f +g).

Proofs of implications (1) = (4) and (1) = (6) are very similar to the proof of (1) = (2) and we omit
them.

(3) = (1). Assume that there exists r € (0, 1) such that for each g € M, we have xy € M,(f + g). Suppose
that f is not continuous at xo. Then there exist ¢ > 0 and a sequence (x,).>1 convergent to xo such that
[f(xn) — f(x0)| = € for each n > 1. Denote R, = dro=xll for each n > 1. Clearly, for each n > 1 we have

2—
R, < |lxg — x| and B(x,,, R,) C B(xo, lIxo — xull + Ry), beéause if y € B(x,,, Ry,), then

llxo = yll < llxo = xull + [l = yll < llxo = Xull + Ry
Without loss of generality we may assume that balls B(x,, R,,) are pairwise disjoint. Moreover,

2rllxo—2
2R, ol par 2r
= = = =7
lxo — x,]l + Ry, ||x0_xn||+w 1+55  2-r+r

Therefore

p

X\ UE(x,,,Rn),xO] > 7. 1)

nx1
Define g: X — R letting

(x) = _f(XO)’ x & {xO} v Unzl E(xn/_Rn)/
[ —-fx)+¢e, xeX\ ({xo} U Ups1 B(men)).

Observe that g is continuous at x € (J,»1 B(x4, R,;) and g is M,-continuous at x € X'\ ({xo} U U1 E(xn,R,,)),

because X \ ({xo} U Ups1 E(x”,R,,)) is open. By (1) we conclude that g is M,-continuous at xo. Applying
Proposition 1.6, we obtain that g is M,-continuous at x € (J,»; S(xu, Ry). It follows that g € M,. On the
other hand,

(f +9)(x0) =0,

(f+g9x)=¢ for xeX\

{xo} U ) B, Rn)], (2)

n>1

|(f+9)(xn)| = |f(xn) —f(xo)| >¢ for n>1.

Take any Rg > 0. Let B(y, R) C B(xo, Ro) be any open ball disjoint from X \ {x: ((f +g)x) - (f + g)(x0)| < e}.
By (2), we obtain

B(y, R) © () (Bow, Ra) \ fxa)

n>1

Therefore there exists 1y such that B(y, R) C B(xy,, Ry,) \ {x4,}. By Lemma 2.3, we get

2R _ Ry rllxo—xull 7
Ro = o —xull  @=7nllxo —xull  2-7"
Therefore,
.
p(X\ fxz [(F +9)00) = (f + 9)x0)] < e}, x0) < 57— <.
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This means that xg ¢ M,(f + g), a contradiction.

(5) = (1) and (7) = (1). Assume that there exists r € (0, 1) such that for each g € S, (g € P,, respectively)
wehave xp € S;(f +9) (xo € P,(f +7), respectively). Choose r1 € (r, 1) such that 52~ < r. Suppose that f is not
continuous at xo. Then there exist ¢ > 0 and a sequence (x,),>1 convergent to xo such that |f(x,) — f(xo)| > €

for each n > 1. Denote R, = %;f"” for each n > 1. Clearly, R, < ||lxg — x,|| for each n > 1. We may assume

that balls E(x,,, R,,) are pairwise disjoint. Moreover, B(x,, R,) C B(xo, llxo — x4l + R,;) and

21 [|x0 =]l 2ry
2R, R = oy 2r
X0 — %all + Ry nowl 14 2—man 0T
0 n n o — xull + 21 211 1 1

for every n > 1. Therefore

X\ UE(xn,Rn),on > 7.

p

Define g: X — R letting

(x) = _f(XO)’ x & {xO} v Unzl E(xn/_Rn)/
[ —-fx)+¢e, xeX\ ({xo} U Ups1 B(men)).

Repeating arguments from the previous part of the proof we can show that g € $, and xg ¢ S,(f + g), which
is a contradiction. [

Corollary 2.5. For every r € (0, 1) we have

M,(M,) =C,
gRa('sr) =C,
M, (Pr) = C.

Remark 2.6. One can define in a natural way M;, Py and Sy-continuity. In [6] maximal additive class for
these families are described in terms of so called s and p topology defined by Kelar and Zajicek in [4, 8].

3. Maximal Multiplicative Families for Porouscontinuous Functions

In this section we will describe maximal multiplicative classes for S, and M,. It turns out that for this
purpose we must define new topologies on a normed space X generated by porosity.
First, recall the definition of maximal multiplicative class for a family of functions.

Definition 3.1. ([2]) Let ¥ be a family of real functions defined on a normed space (X, || ||). A set M,,(F) =
{g: X > R: Veer (f-g € F)}is called the maximal multiplicative class for 7.

Remark 3.2. Let f: X - R, f(x) = 1 for x € X, be a constant function. If f € ¥, then M,,,(F) C F.

Remark 3.3. Let (X, || ||) be anormed spaceand r € (0,1). If f: X — Ris continuousatxy € Xand g: X - R
is M,-continuous (S,-continuous) at xo, then f - g is M,-continuous (S,-continuous) at xo.

Example 3.4. Let (X, || [|) be a normed space. We construct f: X — R such that f is not continuous and
f €M, (M) N M, (Sr) N M, (Pr) for each v € (0, 1).

Fix y € X, |lyll = 1 and let Ox denote the zero of X. Then closed balls B (@y, %), n > 1, are pairwise
disjoint, lim, @ y =0x and

X\[]EL _sn_ Ox | = limsu 2(3;311)!—hmsu on =1 (3)
G Gt Y T P 7 Peons1

n—00 Al T B! n—00

p




S. Kowalczyk, M. Turowska / Filomat 33:1 (2019), 335-352 341

Define f: X — R by

Flx) = 0, x€{0x}U U1 B((sn)'y, (3n+1)')
1, x€ X\ (10x) U Uyt By 5y ) -

Fixr € (0,1) and g € M, (or g € S;, g € P,, respectively). If x ¢ {Ox} U U, S(@y, %), then f is
continuous at x and f - g is M,-continuous (or S;-continuous, $,-continuous, respectively) at x, because
X\ ({OX} U U1 S(@y,%)) is open. Take any xp € U, S<(3n),y, 3n+1),) Then (f - g)(x) = 0 for
x € {0x} U Ups1 B( oY Gy (3n +1 ) and f - g is M,-continuous (or S,-continuous, £,-continuous, respectively)
atxg € Uy»1 S <(3 oY G +1)1) by Proposition 1.6. Finally, by (3), f - g is M,-continuous (or S,-continuous,
P,-continuous, respectively) at Ox. Therefore f € M, (M,) N N, (Sy) NN, (Pr).

Theorem 3.5. Let (X, || ||) be a normed space, v € (0,1) and A C X. The family of sets U C X satisfying condition:

VieuVEex, px\Exyzr (P (XN ENU)UA],x) 27)

forms a topology. We will denote it by T,(A). Topology T(A) is stronger than the initial topology generated by the
norm.

Proof. Obviously, @ € 7,(A). For each x € X and for each E C X satisfying p(X \ E, x) > r we obtain
PX\NENX)UA]x)=p(X\(EUA),x) 2p(X\Ex)=>r

Thus X € 7(A).

Let U € 7:(A) and V € T7,(A). Fixx € UNV. Take E C X such that p(X \ E,x) > r. Then
p(X\[(ENU)UA]x) > r. Hence, p(X\[(ENUNV)UA],x) = p(X\[[((Em U)uA)mv]uA],x) > 7,
because V € 7,(A). Thus U NV € T,(A).

Let U; € 7,(A) for each t € T. Fix x € Ujer Us. There exists typ € T such that x € U;,. Take
E c X such that p(X \ E,x) > r. Then p(X\[(ENU;,)UA],x) = rand p(X\[(EN Uer Ur) UA],x) >
p(X\[(EN Uy) UAL%) > r. Thus User Us € TH(A).

Hence 7,(A) is a topology in X. The remaining part of the proof is obvious. [J

Theorem 3.6. Let (X, || ||) be a normed space, v € (0,1) and A C X. The family of sets U C X satisfying condition:

VxeuVEecx, px\Ex>r (P (X\N[(ENU)UA],x) > 1)

forms a topology. We will denote it by t,(A). Topology t,(A) is stronger than the initial topology generated by the
norm.

Proof. The proof is very similar to the proof of the previous theorem and we omitit. [

Lemma 3.7. Let (X, || ||) be a normed space, r € (0,1), xo € X and f: X — R. If f is not continuous at xo and
f(xo) # 0, then there exists g € P, such that xo € M,(f - g).

Proof. Fix r1 € (r,1) such that 5 ” < r. Assume that f(xp) # 0 and f is not continuous at xo. Then there

1f o)l )

exist € € (0 and a sequence (xn)n>1 convergent to xp such that |f(x,) — f(xo)l > € for each n > 1. Let

R, = M for each n > 1. Without loss of generality we may assume that balls B(x,, R,) are pairwise
disjoint. Clearly, for every n > 1 we have R, < |lxo — x,|| and B(x,,, R,) C B(xo, llxo — xxll + Ry), because if
y € B(x, Ry), then

llxo = yll < llxo = xull + llew = yll < llxo — xall + Ry
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Moreover,
2r1|lxg—%nll 2ry
2R, B E— parn 2r
X0 — xall + Ry Mol 1+ 2-n+n 20T
0~ Xn n|lxg = x| + e = 1+71
Therefore
pl X\ B(xu, Ry), xo} > T 4)
n>1

Define g: X — R letting

(x) _ 1/ X € {XO} U Unzl E(le/]{Vl)/
T9710, x € X\ (fx0) U Uyt B, Ro)).

Observe that g is continuous at x € X \ ({xo} U U,;»1 S(xn, Ry)) and g is P,-continuous at x € U1 S(x,, Ry),
by Proposition 1.6. By (4) we conclude that g is P,-continuous at x. It follows that g € P,.
On the other hand,
(f - 9(x0) = f(x0),

(f - 9)x)=0 for xeX\

ot u{_J E(xn,Rn>), (5)

n>1

|(f'!7)(xn) - (f‘!])(xo)| = |f(xn) —f(xo)| >¢ for n>1.

Take any Ry > 0. Let B(y, R) C B(xo, Ro) be any open ball disjoint from X \ {x: |(f “g)x) = (f - g)(x0)| < e}.
By (5), we obtain

B(y, R) @ ) (Bla, Ri) \ ).

n>1

Therefore there exists 1y such that B(y, R) C E(x,,o, Ryy) \ {x,}. By Lemma 2.3, we get

2R Riy __nlvo—xll  _ n
Ry = llxo = xuoll @ =r1)llxo —xpell  2-11
Therefore,
p(X\ x: [(F 9@ = (f- 0)| < e}, x0) < 52— <1
! - 2—1"1

This means xo ¢ M.(f-g). O

Theorem 3.8. Let (X, || ||) be a normed space, f: X — Rand r € (0,1). The following conditions are equivalent:
(1) f€Mu(M,);
(2) for every x € X, if f is not continuous at x, then f(x) = 0 and f is T,(Ny)-continuous at x.

Proof. Assume that condition (2) is fulfilled. Take g € M, and xq € X. If f is continuous at xo, then obviously
f - g is M,-continuous at xo. Assume that f is not continuous at xy. Then, by assumptions, f(xy) = 0 and
f is T,(Ny)-continuous at xo. Fix ¢ > 0. Since xg € M,(g), there exists E C {x € X: |g(x) — g(xo)| < 1} such
that xo € E, p(X \ E,xo) 2 r. By 7,(Ny)-continuity of f at xo, there is F € 7,(Ny) such that x, € F and

. lgro)l+1)e
[f(x) = f(xo)l < gy for each x € F. Therefore (f - g)(xo) = 0 and |(f - g)(x)| < (Igg(?o—);-l)

x € (ENF) U Ny. Moreover, p (X\ [(E NF)uU Nf] ,xo) > r. Thus f - g is M,-continuous at x¢. Since xp and g
were arbitrary, f € M,,(M,).

= ¢ for each



S. Kowalczyk, M. Turowska / Filomat 33:1 (2019), 335-352 343

Now assume that f € 9t,,(M,). Take any xy and assume that f is not continuous at xo. By Lemma 3.7,
f(x0) = 0. Aiming at a contradiction, suppose that f is not 7,(Ny)-continuous at xo. Then there exists
¢ > 0 such that F = {x € X: |f(x) - f(xo)| < €} does not contain any 7 (Ny)-neighborhood of xo. Hence
xo ¢ intr,(vy) F. In particulary, {xo} U intF ¢ 7;(Ny). Therefore we can find E C X such that p(X \ E,xp) > r

and p (X \ [(E NintF) U Nf] ,%o) < . Observe that if B(y,R)  (E N F) U Ny, then B(y,R) ¢ F and B(y,R)
(ENintF) U Ny, because Ny C F. Thus

p(X\[EnPUNy|,x) <.
Since f € M,,(M;), we have f € M,, xo € M,(f) and p(X \ F, x¢) > r. Suppose that x € int E. Then
p(X\[ENF)UNS],x0) = p(X\(FUNp),x0) = p(X\Exo) 27,

a contradiction. Thus xy ¢ intE. Since p(X \ E, xo) > r, we have xj € cl(int E). By Theorem 1.2, there exists
a sequence of pairwise disjoint closed balls (E(x,,, R”))n>1 such that lim, e X, = X0, U,»1 B(x,,Ry,) C E\ {xo}
and -

p(X\E,XO) =p

X\ | JBen, Ry, xo] >r. (6)

n>1

Put B = U2, B(xs, R,). Then cl B = BU {x} and
p(X\ [(B NF) uNf],xo) <r

Let X, = E(xo, %) \E(xo, ﬁ) for n > 1. For every n choose a discrete set A, C X, \ (Ny U B) such that
X \ Ny UB) C Ugey, Ba, ﬁ) and |ja; — a2 = ﬁ for ay,ar € Ay, a1 # ay (such a set exists by the Zorn
Lemma). Let A = J,2; A,. Then A is discrete, AN (NyUB) = 0 and cl A € A U {xo}. Define g: A — [0, )
by g(a) = VZ(—Z)l for a € A. Clearly, |(f - g)(x)| = 2¢ for x € A and g is continuous, because A is discrete.

Since A is a closed subset of X \ ({xo} U B), by the Tietze Theorem, we can find continuous extension,
7: X\ ({xo} U B) — [0, ), of g. Finally, define g: X — R letting

(x) = 1, x € {xg} UB,
T =150, xe X\ (fxo} UB).

By construction, g is continuous on an open set X \ ({xo} U [U,»1 S(xu,Ry)). By Proposition 1.6, g is M,-
continuous on |J,z S(xx, R,). By (6), we conclude that g is M,-continuous at xo. Hence g € M,.

Moreover, (f - g)(xo) = 0 and |(f - g)(x)| > ¢ for each x € A. We claim xy ¢ M,(f - g), which will be a
contradiction. We may assume that xj € cl(int {x: |(f - g)(x)| < €}). By Theorem 1.2, we can take a sequence
of pairwise disjoint open balls (B(y,,54))n>1 C B(xo, }1) \ {xo} disjoint from X \ {x: |[(f - g)(x)| < €} such that

limy e Y = %0 and p(X \ {x € X: |(f - 9)(®)| < €},%0) = limy—o0 ﬁ

fs, > 0. Hence, limy, o0 s = co.
Therefore, without loss of generality, we may assume that s, > 32|xp — ynll2 for every n > 1. Observe that
B(yu,81) C {x: |(f - 9)(x)| < &}. For every n > 1 we can find k, > 4 such that ||y, — xol| € (k”%, kln]. Assume
that B(yy,sn) ¢ BU Nf and take any z € B(yy,s,) \ (BU Ny). Then s, < [[y, — xoll < % and ||z — xo|| < é

By construction, there exists a € A; for some j > ’% -1> ’% - % = % such that ||z — 4| < ]lz < % Since

I(f - 9)(@)l > €, a & B(yn, Su). Thus

32

1 AV n— 2 n— 2l
G > o e ol

16
Iz = yull = llyn —all = lla = zIl > s, — Lz > Sp—
n
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because (k + 1)* < 2k* for k > 4. Hence B(Yy, su — 32ly» — xol*) € BUNf C EU Ny. Moreover, (f - g)(x) = f(x)
for x € B(yn, su — 32lly» — x0ll*) and

B(ynrsn - 32”]/71 - x0||2) C {x: |f(X)| < 5} = F

Therefore B(yy, s, — 32|ly» — %ol*) C (ENF)U Ny. Since n was chosen arbitrary, U1 B, 8u = 32|y, — x0lI?) C
(E N F) U Ny. Therefore,

2s
X\{xeX: () < e}, x0) = im ———2 <
PO (e & X3 1(F - 9 < e 20) = lim ot
2(s,, — 32|y, — xoll? = Xol?
< lim (s Iy — xoll*) 64|yn — xoll <
n=eo\|lxo = Yull + 8, = 32y — X0l [1x0 — yull + su
IIxo = yall

< p(X\[(E N F) U Nyl x0) + lim 64]lxo - ynllm -

=P(X\[(E0P)UNJ’]1XO) <r
a contradiction. This proves that f is 7,(Ny)-continuous at xo, which completes the proof. []

Theorem 3.9. Let (X, || ||) be a normed space, f: X — Rand r € (0,1). The following conditions are equivalent:
@ f € M(Sr);

(2) for every x € X, if f is not continuous at x, then f(x) = 0and f is 7,(Ny)-continuous at x.

Moreover, if f € M (P;), then for every x € X, if f is not continuous at x, then f(x) = 0 and f is t,(Ny)-continuous
at x.

Proof. Proof of the implication (2) = (1) is very similar to the analogous proof of the previous theorem and
we omit it.

Now assume that f € M,,(S,) (or f € M,,(P;), respectively). Take any xg and assume that f is not
continuous at xo. By Lemma 3.7, f(xo) = 0. Suppose that f is not 7,(Ny)-continuous at xo. Then there
exists ¢ > 0 such that the set F = {x € X: |f(x) — f(xo)| < ¢} does not contain any 7,(Ny)-neighborhood of
xg. Therefore xy ¢ int, vy F. In particulary, {xo} U intF ¢ 7,(Nf). Hence we can find E C X for which
p(X\ E,xo) > rand p(X\ [(ENintF) UN/|,x) < r. Observe that if B(y, R) C (E N F) UNy, then B(y,R) C F
and B(y,R) € (ENintF) U Ny. Thus

p(X\[EnPUNf|,x) <.

Since f € M,,(S;), we have f € S, xo € S;(f) and p(X \ F, xp) > r. Assume that xg € int E. Then

p(X\[(ENF)UNy|,x0) =p(X\ (FUNy),x0) = p(X\ Exo) > 7,

a contradiction. Thus xq ¢ int E. Since p(X \ E, xp) > r, we obtain xy € cl(int E). By Theorem 1.2, we can find

a sequence of pairwise disjoint closed balls E(xn,R,,) such that lim, . X, = Xo, E(xn,R,,) C E \ {xo} for
q P )

n>1
all n and

p(X\E,XO) :p

X\ | B, Ry, xo] >r. 7)

n>1

Put B = U2, B(xs, R,). Then cl B = B U {x} and

p(X\[BNPUN/],x) <.
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Let X, = E(xo, %) \E(xo, ﬁ) for n > 1. For every n choose a discrete set A, C X, \ (N U B) such that
X \ (Nf U B) C Ugeq, Ba, m) and |la; — ao|| > m for aj,ap € Ay, a1 # a. Let A = (J;; A,. Then A
is discrete, AN (NyUB) = 0 and clA € A U {xo}. Define g: A — [0, ) by g(a) = Ifz(_Z)I for a € A. Clearly,
I(f - g)(x)| = 2¢ for x € A and g is continuous, because A is discrete. Since A is a closed subset of X\ ({xo} UB),

by the Tietze Theorem, we can find continuous extension, g: X \ ({xo} U B) — [0, ), of g. Finally, define

g: X > Rby
(x) = 1, x € {xg} UB,
P75, xeX\ (Ixo) UB).

Applying similar arguments as in the proof of the previous theorem we can show that g € #, and p(X \
{x: 1(f - @) < €}, x0) = p(X\ [(ENF) UN¢], x0) < 1, a contradiction. This proves that f is 7,(N)-continuous
at xp, which completes the proof. [

Problem 3.10. Does M,,(P,) consist of functions f satisfying condition: for every x € X, if f is not continuous at
x, then f(x) = 0and f is ©,(Ny)-continuous at x?

Remark 3.11. In [6] maximal multiplicative class for M; and Sy are described.

4. Properties of Topologies

We describe some properties of topologies 7,(A) and 7,(A) for different r € (0, 1) and for different sets
A. By A? we denote the set of accumulation points of A in the topology generated by || |I.
The following two propositions follow directly from definitions of 7(A) and t,(A).

Proposition 4.1. Let (X, || ||) be a normed space, r € (0,1), xo € X, A c X. Ifxp ¢ A%, then foreach U c X we
obtain:

o xg € inty;(a) U if and only if xo € int U;
o xg € inty ) U if and only if xy € int U.

Proof. Since T € 7,(A), we obtain intU C inty;4) U for every U C X. Hence, if xy € intU, then x €
inty; (4) u.

Let xo ¢ int U for some U C X. Then we can find a sequence (x,),>1 convergent to x; such that x, ¢ U for
each n > 1. Since xy ¢ A9, we may assume that x,, ¢ A for n > 1. Denote R, = w for each nn > 1. Clearly,

for each n > 1 we have R, < ||xg — x,,|| and B(x,, R,;)) C B(x, |lxo — x|l + Ry,), because if y € B(xy, Ry,), then
lIxo = yll < llxo = xull + llxn — Yll < llxo — xnll + Ry

Without loss of generality we may assume that balls B(x,, R,,) are pairwise disjoint. Moreover,

2rllxo—xnl| 2r

2R, _ 2—-r __2-r 2r =7
llxo — xull + Ry, lIxo = x|l + w 1+55  2-r+r
Hence
Pl X\ U B(xn,R,,),xo] > 7.
n>1

Let F = U, B(xn, Ry).
Assume that xg € inty;(4) U and let E = inty (1) U. Then xo € E and E € 7,(A). Since p(X \ F,xp) > r, we
obtain p(X \ [(F N E) U A],xp) > r. But

p(X\[(FNE) U A] x0) = p(X\ (FN E), x0) < p(X\ (F\ {xy: 1 2 1}), X0),
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because x; ¢ A“.
Take any Rg > 0. Let B(y, R) C B(xo, Ro) be any open ball disjoint from X \ (F \ {x,,: n > 1}). Then there
exists 19 such that B(y, R) C B(x,,, Ry,) \ {xy,}. By Lemma 2.3, we get

2R _ Ry tllxo —xpll 7

Ro = Iho = Xuoll — 2= 1)llxo =2l 27

Therefore, p(X \ [(F N E) U A],x0) < 55 <, a contradiction, because E € 7,(A). This completes the proof of
the first property. The proof of the second one is analogous and we omit it. [J

Proposition 4.2. Let (X, || ||) be a normed space and r € (0,1). If Ay C Ay C X, then
o T1(A1) C TH(A2);
o 7,(A1) C 7,(Ap).

Theorem 4.3. Let (X, || ||) be a normed space, A,B c X and r € (0,1). Ide =0, then
* 7:(A)=T(AUB) =T(A\B);
e 7,(A)=1,(AUB) =1,(A\B),
o 7.(B) and t,(B) are the initial topology generated by the norm | ||.

Proof. It follows immediately from the fact that B is closed and discrete set. [J

Theorem 4.4. Let (X, || ||) be a normed space, A1,Ay, C Xandr € (0, 1). IfA‘li \Ag # 0, then T,(A1) ¢ T.(Az) and
Tr(Al) ¢ TY(AZ)'

Proof. Let xo € A‘i’ \ Ag. Then there exist a sequence (x,),>1 of elements of A; \ {xp} convergent to xy and
6 > 0 such that B(xg,0) N Ay C {xo} and x, € B(xo,0) for each n > 1. Put U = X\ U,;{x,}. Obviously,

U e 7,(A1). We shall show that U ¢ 7,(A;). Let R, = %(w + 7llxo — xnll) for n > 1. Observe that

—2 < R, < 71|lxo — x,|| for each n > 1. Taking, if it is necessary, a subsequence of (x,),>1 we may assume
that balls B(x,, R,,) are pairwise disjoint. Denote E = [ J;,_; B(xy, R;). Then

rlxo—xyll

oR L
X\ E, x¢) = limsup —————— > limsu — =7,
PO B o) = o o el 7 Ry = s e Tl + el
because for every a > 0 the function f(x) = 2 is increasing on [0, ). Moreover,
B(xo, 0) N[(ENU) U Az] € {xo} U(E\ {xy: n 2 1}) = {xo} U U (B(xn, Ri) \ {xn}) .
n=1

Let R € (0,0). Take any ball B(y,y) included in B(xp, R) and disjoint with X \ [(E N U) U A;]. Then
B(y,y) € Up=q (B(xy, Ry) \ {x,}). By Lemma 2.3 2 <« R foreach n > 1. Therefore

7 R = lxo—xall

R 1/ r
X\[(ENU)UA,],x) < li n___ = ) :
pOAIEN Y Al xo) < limsup =2y 2(2—r+r <7

It follows xg ¢ inty;(4,) U and U ¢ T,(A).
In a similar way we can can proof the second statement. [

Corollary 4.5. Let (X, || ||) be a normed space, r € (0,1), Ay C Ay C X and A3\ AY # 0. Then T,(A1) € TH(Az) and
7,(A1) C T,(A2).
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Example 4.6. Let X = R with the standard norm ||x|| = |x|, A1 = {% n> 1}, Ay = {—%: n> 1} andr € (0,1).
Then Af = Af = (0}, R\A2 € (T,(A2)N7:(A2))\(TH(A1)UT:(A1)) and R\A; € (TH(ADNT(A))\(T(A2) U (A2))
Theorem 4.7. Let (X, || ||) be a normed space, v € (0,1), A C X, xg € X. The following conditions are equivalent:

(1) {xo} € TH(A);

(2) pX\A,xp) =1
Proof. Assume that p(X \ A, xp) > r. Take any E C X such that p(X \ E, xo) > r. Then

p(X\[(E N xo}) U AL x0) 2 p(X \ 4,%0) > .

Thus {xo} € 7:(A).

Now assume that {xp} € 7,(A). By Proposition 4.1, we conclude that x; € A If xp € int(A U {xg}),
then the inequality p(X \ A, x0) = 1 > r is obvious. Suppose xo € int(A U {xp}). Put E = B(xo,1). Then
p(X\E, x9) =2>rand

r < p(X\[(EN{xo}) UA], x0) = p(X\ ({xo} U A), x0) = p(X\ A, x0),

which completes the proof. (The last equality follows from the fact that int A = int({xo} U A) and p(X\ ({xo} U
A), x0) = p(cl(X\ (fxo} U A)), x0) = p(X \ int({xo} U A), x0) = p(X \ int A, x0) = p(X\ A, x0).) O

In a similar way we can proof the following theorem.
Theorem 4.8. Let (X, || ||) be a normed space, v € (0,1), A C X, xg € X. The following conditions are equivalent:
(1) {xo} € T(A);
(2) p(X\ A, x0) >r.
Corollary 4.9. Let (X, || ||) be a normed space, v € (0,1), Ac X, U c X. Then
o intryUDIntUU{x € X: p(X\A,x)>r);
o int, yUDIntUU {x € X: p(X\A,x)>r}

Theorem 4.10. Let (X, || ||) be a normed space, 0 < rq < ry < 1. There exists A C X such that T,,(A) ¢ T+,(A) and
Tr (A) ¢ Tr, (A).

Proof. Put r = “32 and xp € X. Let (B(xy, Ry)),»; be a sequence of pairwise disjoint open balls such that
X0 ¢ U:lozl B(xann)/ P (X\ U:lozl B(xn/ Rn)l xO) =7, hmn—»oo Xn = X0 and
1i 1||x4+1 = xol| _
im ———— =
n=eo X, = X
Denote A = ;- B(xy,R,) and U = {xo} U A. By Theorem 4.7 and Theorem 4.8, U € T,,(A) N 7,,(A).

From (8) it follows that there exists sequence (B(y., a,)),; of pairwise disjoint open balls with properties:
limy; -0 Yn = Xo,

(8)

JBmanna=o

n=1

pIX\ U B(yn,an),xo] =1
n=1

Denote E = |, B(yn, @n). Then
pX\NENU)UA]L x0) =p(X\A,x0) =7 <12
This means that U ¢ 7,,(A) U 1,,(A). O
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Theorem 4.11. Let (X, || ||) be a normed space, 0 < ry < 1o < 1. There exists A C X suchthat T\ @ T+, (A) = T1,(A)
and Ty & 1r, (A) = 11, (A).

Proof. Fixxy € X and let (B(x4, Ry)),»1 be a sequence of pairwise disjoint open balls such that lim, .« x, = xo,
x0 ¢ Upoq B(xy, Ry) and p (X \ U~ B(x, Ry), x0) = 1. Denote A = |, B(xy, Ry). Then, from Corollary 4.9,
we obtain that

{xol UA € (T, (A) N T (AN \ T

and
{xo} UA € (1,,(A) N1, (A) \ T}y

Now, it is sufficient to show that for each U C X and for each x € U we have
X € int‘T,l(A) Usxe intT,z(A) u

and
X € int% (A) Uexe intT,Z(A) U

Take U C X and x € U. We will consider the following two cases.
e x¢{x}UlU E(xn,Rn). By Proposition 4.1 we get

X € intr];] (A) UesxeintU o xe int7;2(A) u

o x € {x} U, B(xy, R,). Then p(X \ A, x) = 1. Applying Theorem 4.7 and Theorem 4.8, we obtain that
(x) € T2, (A) N T1,(A) N T, (A) N 11, (A).
Finally, 75,(A) = 7,(A) and 7,,(A) = 1,,(4). O

Hereafter we will consider the case of X = R. We will need simple technical lemma from [7].

Lemma4.12. ([7]) Letxo <a<b<ca= L p=Landy = E2 Theny =a+p-ap=1-(1-a)1-p).
In particular, y < a + B.

Example 4.13. For each r € (0,1) there exist A,U C R such that U € 7,(A) N 7,(A) and U ¢ intU U
{xel: p(R\A,x)>r}.

Fixr € (0,1). Choose ¢ € (0, 1) satisfying condition (1 —cr) V1 — cr < 1—r. By induction, we can construct
two sequences (a,)n>1, (b)n>1 0f positive numbers, both tending to 0, such that

0<...<by<a,<b,<...,

bn — Ay _ an — bn+1

= =cr foreach n > 1.
b, an

Denote A = ;1 (by+1,a,). Then

p(R\ A,0) = p*(R\ A,0) = 1g§o"a—b+1 —cr<r.

For each nn > 1 we can choose ¢, € (a,, b,,) such that b% =2t Letr, = b w=t = 2=t Then, by Lemma 4.12,

(1-ry)*=1-rc,s0r, =1— V1 —rcforeachn > 1. In particular, r, = 7,41 for each n > 1. Let u,, = %,
Uy = % for each n > 2. By Lemma 4.12, we obtain equality

l-u,=1-cr)(1—ry)=1-17,
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for each n > 2. Thus u,, = v,, and u,, = u,1 for each n > 2. Moreover,

1—b

1- 2220 o (1 o) = (= en)(1 - 1)
ap-1
for each n > 2. Hence ,
l—u,=1-cn(l-r))=0Q—-cr)z<1-r,
so u, > r. Denote U = R\ J;_;{c,}. Obviously,
UgintUU{xelU: p(R\A,x)>r},

because O ¢ intUand 0 ¢ {x € U: p(R\ A, x) > 1}.

We shall show U € 7,(A) N 7,(A). From Corollary 4.9, we obtain U \ {0} C inty,4) U N int; 4) U. Take
E c R with property p(R \ E,0) > r (or p(R \ E,0) > r, respectively). We will consider the following two
cases.

Dp (R\E,0) =p(R\E,0). Then EN(—0c0,0) D [(EN U)U A] N (—00,0). Hence

pRA\ENU)UA]LO = p(R\E,O0). ©)

II) p*(R\ E,0) = p(R \ E,0). Then we can find a sequence of pairwise disjoint intervals ([ay, Bn])m>1

such that limy ey = 0,0 < ... < w1 < @ < B < ..o, [Am, Pl N (R\ E) = 0 for each m > 1 and
limy;;— 00 ﬁ"’ﬁ_% =p(R\ E,0) > r > cr. Without loss of generality we may assume tha

m>1and oy < ay. Fixm € N. If (ay, B) N Uszq{cn} = 0, then

(@m, ) N(R\[(ENU) U A]) =0.

Bin—Q,
t /"ﬁ& > ¢r for each

. . - byy—an .
So, assume that there exists 1y such that c,, € (am, fn). Since % > cr = Ob—ﬂo, we obtain (o, fm) ¢
m Ylo

(@ny, bny). Thus ay, € (am, Pm) OF by, € (Qm, Pm)-
Again, we have two possibilities. If a,, € (&, Bm), then (byy+1, cny) N(R\ [(ENU) UA]) =0 and

-b
L R
Cro
In the second case, where by, € (s, Bm), we have (cy,, an,—1) N (R\ [(E N U) U A]) =0 and
Bl 7m0y sy
ano—l

For every m > 1 define an interval (a;,, §;,) by
(am, .Bm) if (am/ﬁm) N U;o:1{cn} =0,

(a;/wﬁ;n) = (bno+1/ Cng) if Any, Cny € [am/,Bm]/
(Cnglano—l) lf bnolcno € [amrﬁm]-

Then (o}, 8,,) N(R\ [(ENU) UA]) =0 and
ﬁ;n - a;n . {ﬁm — Oy }
> min SUp .
B Bm !
By definition of ((&, B))m=1, we conclude that

p* (R\ [(ENU)UA],0) > min{p*(R\ E,0), ). (10)

Combining (9) and (10), we obtain

pRA\ENU)UA]O0 >r if pR\E,0) >,
pRANENU)UA]LOQD >r, if pR\E,0)>r.

Hence 0 € inty, 4y U N int, 4y U and finally U € 7,(A) N 7.(A).
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Theorem 4.14. Let r1 € (0,1). For each ry € (rl, 1-(1- rl)%) there exists A C R such that (T,,(A) N 7,,(A)) ¢
(Th(A) U 11, (A)).

Proof. Fixr; € (r1,1 -(1- rl)%). Take any R; € (r1,12). Thenr; <Ry < <1-(1 —rl)% <1-(1-r)V1—-R;.
Next, choose Ry, R3 > 0 such that R, € (rz, 1-(1-r)V1- Rl) and (1 - R3)*(1 — Ry) = (1 — Ry). Obviously,
Rz < R,. By induction, we can construct sequences (4,)uz1, (Un)n=1, (Cn)u>1 all tending to 0 and satisfying
conditions:

e 0<...<p <ay,<b,<c,<...,

Cn=bn _ Gn—=Cps1 _
b C, - a - R3/
n n

bu—a, _
[ ] bn = Rl

for each n > 1. Next, for each n > 1 we choose a point d, € (a,,b,) such that % = R,. Therefore by
Lemma 4.12, we obtain

(1 - @)0 = Ry) = (1= Ra)(1 = Ry) = (1 - Ro)*

Hence %51 = R, for each n > 1. Put A = U2, ((cs1, @) U (b, c)), U = R\ UsZy iy} and E = UL, (an, b).
Then

p(R\ E,0) = limsup bu = _ Ry > 1.

n—oo bn

Moreover,

o]

ENWUA=| (1, an) U@ dn) U@, b) U (b, )

n=1
Let (a, 8) € (0,a1) be any open interval disjoint from R \ [(E N U) U A]. Therefore we can find n such that
(@, B) C (Cugs1,any) Y @y, diy) U (diy, bny) U (b, €1y)- Now, we have the following three cases.

1. If (o, B) C (Cug1,ny) Y (g, Cry ), then

ﬁ -—a Cny — bn Any — Cng+1
< max{ 0 = 1 =R;.
ﬁ Mo

Ap,

2. If (o, B) C (any, dy,), then
B—a dy —ay
< .
ﬁ dﬂo

Moreover, by Lemma 4.12,
d, —a
(1—u)(1—R3): 1-R,.
dy,
Hence J L_R
ny — Ang — X2
= = +/1-R;.
d, 1-Rs !
Finally, = =1~ yT-R;and £* <1- vI=R;.
HO

3. Tf (a, ) C (dny, by,), then

1-

B—a - by, — dy,
‘B B b"o
and (1 - ”"Ubﬂ)a ~Rs) =1 - R,. Therefore - =1~ yT- R and &% <1- VI=Ry.
o Ky
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Since (a, ) was arbitrary,

p(R\ [(ENU) U A],0) < max {Rs, 1 - V1 -Ry}.

Obviously,1— VI—R; <1-(1-r)i <randR3 =1 - % <r.. Thus U ¢ 77,(A) U 1,,(A).

Now, we shall show that U € 7,,(A) N 1,,(A). Obviously, U \ {0} C int¢,2 wun in’cT,2 @ U. Let F C Rbe
such that p(R \ F,0) > r, (or p(R \ F,0) > 7, respectively).
If p(R\ F,0) = p(R\ E,0), then

p(R\ [(F N U) U A]0) > p~(R\ F,0). (11)

Therefore, assume that p* (R \ F,0) = p(R\ F,0). Then we can find a sequence of open intervals ((am, ﬁ’”))m>1
such that (@, fn) CF, 0 < ... < Bus1 < &m < Pm < ... for each m > 1, limyeo ay = 0 and p(R \ F,0) =
lim,,— e ﬁmﬁ;"m > 1, > Ry. Without loss of generality, we may assume that Lma”’ > R; for each m > 1 and

B
a1 < ay. Fixm € N. If (ay, Br) N Upoq{dn} = 0, then

(@m, Pm) V(RN [(FNU)UA]) = 0.

bno _uno

So, consider the case, where there exists 19 such thatd,, € (am, Bm)- Since ﬁ"ﬁ;‘x" > Ry = —;—*, we obtain
m 110

(a’«m/ﬁm) ¢ (aﬂgr bng)- Thus Any € (amzﬁm) or bng € (am, ,Bm)
o Ifa,, € (am, Bm), then (cug+1,dn,) N (R\ [(FNU) UA]) =0and

dno - Cﬂ0+l

=Ry > 15.
i 2 >12

o 1f by, € () Bu), then (dyy, ) N (R\ [(F N U) U A]) = 0 and
—d,,

Cn,
u =Ry > .

Cny

For every m > 1 define («a;,, B;,) by

(am; ﬁm) if (amz ﬁm) N Uzozl {dn} = (D/
(a;ﬂl ﬁ;ﬂ) = (C"()+1/ d”()) lf {a‘flo/ d?l[)} - (amr ﬁm)r
(duys ) if  {byy, dny} C (A, Prm)-

Therefore (a,, B,,) N R\ [(ENU) U A]) =0 and
B — @ . {ﬁm —Qm }
—— >min{——, Ry ;.
B B
By definition of ((&, B))m=1, we conclude
p* (R\ [(E N U) UAI,0) > min {p" (R \ E, 0), Ry} (12)
Combining (11) and (12), we obtain

p(RANENU)UA]LOQ) >ry, if p(R\E,0)>ry,
p(RA\ENU)UA]LOQ) =1, if p(R\E,O0)=r,.

Hence 0 € intr, ,, U Nint,, , U and finally U € 77,(4) N Try(a). O

Try(A)
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