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Abstract. Many differential geometric properties of submanifolds of a Kaehler manifold are looked
into via canonical structure tensors P and F on the submanifold. For instance, a CR-submanifold of a
Kaehler manifold is a CR-product (i.e. locally a Riemannian product of a holomorphic and a totally real
submanifold) if and only if the canonical tensor P is parallel on the submanifold. Since, warped product
manifolds are generalized version of Riemannian product of manifolds, in this article, we consider the
covariant derivatives of the structure tensors on a hemi-slant submanifold of a Kaehler manifold. Our
investigations have led us to characterize hemi-slant warped product submanifolds.

1. Introduction

To construct a class of manifolds of negative sectional curvatures, R. L. Bishop and B. O’Neill [4]
generalized the notion of product metric by homothetically warping the product metric of a product
manifold on to the fibers. These manifolds appear in differential geometric studies in a natural way.
Moreover, they provide an excellent setting to model space-time near black holes or bodies with high
gravitational fields. For instance, the Schwarzschild space-time model is a warped product manifold.
This makes the study of warped product manifolds more significant geometrically as well. Bishop and
O’Neill [4] obtained some intrinsic geometric properties of these manifolds. The study of warped product
manifolds with extrinsic geometric point of view was initiated by B.-Y. Chen [10–12] when he investigated
CR-submanifolds of a Kaehler manifold as warped products. Later, warped products were explored in other
ambient spaces as well. For instance, F. R. Al-Solamy et. al [1], B. Sahin [22], V. A. Khan et.al [17, 18], V.
Bonanzinga and K. Matsumoto [5], S. Uddin et. al [24] explored the existence of various warped products
in Kaehler, nearly Kaehler and locally conformal Kaehler (l.c.K.) manifolds and studied the geometric
properties of the existent warped product submanifolds.

To explore the submanifolds of an almost Hermitian manifold, many of the extrinsic geometric features
of the submanifold are looked into via the shape operator or the structure tensor fields P and F (defined
in Section 2). For example, the characterizations of CR-products in Kaehler and nearly Kaehler manifolds
(cf. [8, 16]). Moreover, along the years, there has been interests to find an analogous of classical deRahm’s
theorem to warped products. In the present note, we have considered hemi-slant (also named as pseudo-
slant or anti-slant) submanifolds of a Kaehler manifold and have sought some characterizations under
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which the submanifolds would become warped products. More explicitly, we have worked out formulae
for ∇̄P and ∇̄F under which a hemi-slant-submanifold of a Kaehler manifold reduces to a warped product
submanifold. To achieve the objective, we fix up the basic terminology and notations in Section 2, then
obtain some initial results and relevant differential geometric properties of hemi-slant submanifolds of a
Kaehler manifold in Section 3. These results are used in obtaining the said characterizations in Section 4.
The obtained results extend and generalize many existing results in almost Hermitian setting.

2. Preliminaries

Let (M̄, J, 1) be an almost Hermitian manifold with an almost complex structure J and Hermitian metric
1. That is, the (1,1) tensor field J satisfies the following relations.

J2 = −I, 1(JU, JV) = 1(U,V) (1)

for any vector fields U,V on M̄, where I denotes the identity transformation.
Let M be an n-dimensional Riemannian manifold isometrically immersed into an almost Hermitian

manifold M̄ with tangent bundle TM and the normal bundle T⊥M. Following B.-Y. Chen’s notation in [9],
for any x ∈M and any U ∈ TxM, we put

JU = PU + FU, PU ∈ TxM and FU ∈ T⊥x M, (2)

thus defining endomorphism P : TxM −→ TxM and a normal valued linear map F : TxM −→ T⊥x M. The (1,1)
tensor field and the normal valued 1-form on M determined by P and F will be denoted by the same letters.
Similarly, for ξ ∈ T⊥M, we put

tξ = tan(Jξ) and fξ = nor(Jξ). (3)

Let ∇̄ be the Levi-Civita connection on the ambient manifold M̄ and ∇, the induced Riemannian
connection on the submanifold M. The two connections are related by means of Gauss-Weingarten formulas
as:

∇̄UV = ∇UV + h(U,V) (4)

and

∇̄Uξ = −AξU + ∇⊥Uξ (5)

for U,V ∈ TM and ξ ∈ T⊥M; where h is the second fundamental form, Aξ, the shape operator (associated
with the normal vector field ξ) of the immersion of M into M̄ and ∇⊥ is the connection in the normal bundle
T⊥M. Aξ and h are related by

1(AξU,V) = 1(h(U,V), ξ),

where 1 denotes the Riemannian metric on M̄ as well as the one induced on M.
The covariant derivatives of the tensor fields P, F, t and f are defined as:

(∇̄UP)V = ∇UPV − P∇UV, (6)

(∇̄UF)V = ∇⊥UFV − F∇UV, (7)

(∇̄Ut)ξ = ∇Utξ − t∇⊥Uξ, (8)

(∇̄U f )ξ = ∇⊥U fξ − f∇⊥Uξ, (9)

for U,V ∈ TM.
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For a submanifold M of an almost Hermitian manifold M̄, the action of the almost complex structure J
on the tangent bundle TM gives rise to various distributions on M. For instance,

A distribution D on a submanifold M of an almost Hermitian manifold M̄ is called a holomorphic (or
complex) distribution if JD ⊆ D.

A distribution D on M is called totally real (or Lagrangian) distribution if JD ⊆ T⊥M.
A. Bejancu [3] introduced the notion of CR-submanifolds of an almost Hermitian manifold to provide a

single setting to study holomorphic and totally real distributions. More specifically, a CR-submanifold of an
almost Hermitian manifold is endowed with a pair of orthogonal complementary distributions D and D⊥

such that D is holomorphic and D⊥ is totally real. The notion of holomorphic and totally real distributions
were further generalized when B.-Y. Chen [9] introduced the idea of slant immersions.

Let D be a distribution on a submanifold M of an almost Hermitian manifold (M̄, J, 1). For any x ∈ M
and any non-zero vector X ∈ Dx, if the angle θ(X) ∈ [0, π/2] between JX and the vector space Dx does not
depend on the choice of x ∈ M and X ∈ Dx, D is said to be a slant distribution on M. The constant angle θ is
called the Wirtinger angle of D in M [9].

Usually, a slant distribution with Wirtinger angle θ is denoted by Dθ. A submanifold M is called a slant
submanifold if the tangent bundle TM is slant. Holomorphic and totally real submanifolds are special cases
of slant submanifolds with Wirtinger angle 0 and π/2 respectively. A slant submanifold is called proper
slant if it is neither holomorphic nor totally real.

If M is a slant submanifold of an almost Hermitian manifold M̄ with Wirtinger angle θ then we have

P2 = −(cos2θ)I. (10)

This gives

1(PU,PV) = cos2θ 1(U,V) (11)

and

1(FU,FV) = sin2θ 1(U,V), (12)

for U,V tangent to M [9].
A Hermitian metric 1 on a complex manifold (M̄, J) is called a Kaehler metric if the fundamental 2-form

Ω defined as Ω(U,V) = 1(JU,V) is closed. A complex manifold with a Kaehler metric is called a Kaehler
manifold. If ∇̄ is the Levi-Civita connection of 1 then (M̄, J, 1, ∇̄) is Kaehler if and only if ∇̄J = 0.

On a submanifold M of a Kaehler manifold M̄, by using equations (2)-(7), it is easy to deduce that

(∇̄UP)V = AFVU + th(U,V), (13)

(∇̄UF)V = f h(U,V) − h(U,PV). (14)

A proper slant submanifold is said to be Kaehlerian slant if the (1,1) tensor field P is parallel that is ∇̄P = 0.
A Kaehlerian slant submanifold of an almost Hermitian manifold is a Kaehler manifold with respect to
the induced metric and the almost complex structure J0 = (sec θ)P, where θ is the Wirtinger angle. B.-Y.
Chen [9] established the following characterization for submanifolds of an almost Hermitian manifold with
∇̄P = 0.

Theorem 2.1. Let M be a submanifold of an almost Hermitian manifold M̄. Then ∇̄P = 0 if and only if M is locally a
Riemannian product M1 ×M2 × ......×Mk, where each Mi is either a Kaehler submanifold, a totally real submanifold
or a Kaehlerian slant submanifold.

In particular, we have

Corollary 2.2. Let M be an irreducible submanifold of an almost Hermitian manifold M̄. If M is neither holomorphic
nor totally real in M̄, then M is Kaehlerian slant if and only if P is parallel, i.e. ∇̄P = 0.
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N. Papaghiuc [21] introduced semi-slant submanifolds of an almost Hermitian manifold as a generalized
version of a CR-submanifold. He formulated the definition as:

A submanifold M of an almost Hermitian manifold is said to be a semi-slant submanifold if it is endowed
with a pair of orthogonal complementary distributions D and Dθ on M such that D is holomorphic and Dθ

is slant.
Thus a CR-submanifold is a special case of a semi-slant submanifold with θ = π/2.
J. L. Cabrerizo et al.[6] defined bi-slant submanifolds of an almost contact metric manifold as the subman-

ifold admitting two orthogonal distributions Dθ1 and Dθ2 such that TM = Dθ1 ⊕Dθ2⊕ < ξ >, where Dθi is a
slant distribution with Wirtinger angle θi(i = 1, 2) and < ξ > is the one dimensional distribution spanned by
the structure vector field ξ. One of the interesting classes of bi-slant submanifolds is the class of anti-slant
(or pseudo-slant) submanifolds. In fact, if one of the θi’s is equal to π/2 then a bi-slant submanifold reduces
to an anti-slant submanifold.

A. Carriazo [7] extended the notion of anti-slant submanifolds to the Kaehlerian settings as:
A submanifold M of an almost Hermitian manifold M̄ is said to be a hemi-slant submanifold if there exist

two orthogonal complementary distributions Dθ and D⊥ such that Dθ is slant with Wirtinger angle θ and
D⊥ is totally real.

For θ = 0, a hemi-slant submanifold reduces to a CR-submanifold. A hemi-slant submanifold is proper
if θ , 0, π/2.

Since our aim is to study hemi-slant submanifolds which are warped product submanifolds in an almost
Hermitian manifold, we recall in the following paragraphs the notion of warped product manifolds and
some intrinsic geometric properties of these manifolds.

Let (M1, 11) and (M2, 12) be two Riemannian manifolds with Riemannian metrics 11 and 12 respectively
and f be a positive differentiable function on M1. Then the warped product M1× f M2 is the manifold M1×M2
endowed with Riemannian metric 1 defined as

1 = π∗1(11) + ( f ◦ π1)2π∗2(12) (15)

where πi(i = 1, 2) are the projection maps of M onto Mi(i = 1, 2). The function f , in this case is known as the
warping function. If the warping function f is constant, then the warped product is simply a Riemannian
product, known as a trivial warped product. Given vector fields U1 on M1 and U2 on M2, we may obtain their
horizontal lifts Ũ1, Û2 such that dπ1Ũ1 = U1 and dπ2Û2 = U2, nevertheless we identify Ũ1, Û2 by the same
symbols U1, U2 respectively.

On a warped product manifold M = M1× f M2, some of the relevant formulae revealing some geometric
aspects are as follows:

∇U1 U2 = ∇U2 U1 = (U1ln f )U2 (16)

and

nor(∇U2 V2) = −1(U2,V2)∇ln f (17)

for any U1 ∈ TM1 and U2,V2 ∈ TM2, where nor(∇U2 V2) denotes the component of ∇U2 V2 in TM1 and ∇ f is
the gradient of f defined as

1(∇ f ,U) = U f (18)

for any U ∈ TM.
As an immediate consequence of the above formulae, we have

Proposition 2.3. [4] On a warped product manifold M = M1 × f M2,
(i) M1 is totally geodesic in M,
(ii) M2 is totally umbilical in M.

A warped product manifold isometrically immersed into a Riemannian manifold is known as warped
product submanifold.
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3. Hemi-slant submanifolds of a Kaehler manifold

B. Sahin [23] initiated to seek some differential geometric properties of hemi-slant submanifolds of
a Kaehler manifold and constructed various examples of these submanifolds. In his investigations, he
worked out integrability conditions of the two distributions on the submanifold and studied mixed totally
geodesic hemi-slant warped product submanifolds of a Kaehler manifold. Our aim in the present note is to
study hemi-slant submanifolds of Kaehler manifolds and seek conditions in terms of the structure tensors
P and F under which the underlying submanifold reduces to a warped product submanifold. To achieve
the objective, we first fix up the basic notations and obtain some relevant differential geometric properties
of a hemi-slant submanifold of a Kaehler manifold.

Throughout, we denote by M, a proper hemi-slant submanifold of a Kaehler manifold (M̄, J, 1, ∇̄). That
is M is assumed to admit a slant distribution Dθ such that its orthogonal complementary distribution D⊥ is
totally real. That is,

TM = Dθ
⊕D⊥.

Let B and C be the canonical projections of TM onto Dθ and D⊥ respectively. That is, for any U ∈ TM, we
have

U = BU + CU, (19)

where BU ∈ Dθ and CU ∈ D⊥. It is straightforward to see that

PU = PBU, PCU = 0; FU = FBU + JCU.

Thus, for any U ∈ TM, PU ∈ Dθ and the normal bundle T⊥M admits the following orthogonal direct
decomposition

T⊥M = FDθ
⊕ JD⊥ ⊕ ν,

where ν is the orthogonal complement of FDθ
⊕ JD⊥ in T⊥M and it is easy to notice that ν is an invariant

normal sub bundle of T⊥M under J. Further, as Dθ and D⊥ are assumed to be orthogonal complementary
distributions, FDθ and JD⊥ are orthogonal in T⊥M.

A hemi-slant submanifold of a Kaehler manifold is mixed totally geodesic if the second fundamental form
h satisfies

h(X,Z) = 0

for each X ∈ Dθ and Z ∈ D⊥.
The totally real distribution D⊥ and the slant distribution Dθ are integrable in view of the following

results.

Proposition 3.1. [23] Let M be a hemi-slant submanifold of a Kaehler manifold M̄. Then the totally real distribution
D⊥ is involutive on M.

Proposition 3.2. [23] The slant distribution Dθ on a hemi-slant submanifold of a Kaehler manifold is involutive if
and only if

t[h(X,PY) − h(PX,Y) + ∇⊥XFY − ∇⊥Y FX]

lies in Dθ for all X,Y ∈ Dθ.

Let ΩM be the restriction of the fundamental 2-form Ω on a submanifold M of a Kaehler manifold M̄.
Then Ker(ΩM) is the set of all vector fields Z on M such that ΩM(Z,U) = 0, for each U ∈ TM. If Ker(ΩM)
has constant rank over M then it defines a totally real distribution on M with respect to the almost complex
structure J on M̄.

The integrability of the totally real distribution on an l.c.K. manifold (and therefore on a Kaehler
manifold) also follows from the following theorem.
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Theorem 3.3. [20] If Ω is a differential p-form on a differentiable manifold M such that dΩ = Ω ∧ α where α is a
pfaffian form, then the distribution generated by set of sections of Ker(Ω) is completely integrable.

Now, for X,Y ∈ Dθ and Z ∈ D⊥, by using (13) and (6), we obtain

1(∇XPY,Z) = 1(h(X,Z),FY) − 1(h(X,Y),FZ),

and hence, it is deduced that

Proposition 3.4. On a hemi-slant submanifold of a Kaehler manifold, the slant distribution Dθ is parallel if and only
if

1(h(X,Z),FY) = 1(h(X,Y),FZ)

for each X,Y ∈ Dθ and Z ∈ D⊥.

Also, from (2), (4) and (5), we have

1(h(Z,W),FX) = 1(h(Z,X), JW) − 1(∇ZW,PX) (20)

Now, if M⊥ be a leaf of D⊥ in M and h′ be the second fundamental form of the immersion of M⊥ into
M, then by (4),

1(∇ZW,PX) = 1(h′(Z,W),PX). (21)

The above equations lead to the following result.

Proposition 3.5. Let M be hemi-slant submanifold of a Kaehler manifold M̄. Then the leaves of the totally real
distribution D⊥ are totally umbilical in M if and only if

1(h(Z,W),FX) = 1(h(Z,X), JW) − 1(Z,W)1(µ,PX),

for each X ∈ Dθ and Z,W ∈ D⊥, where µ is the mean curvature vector of M⊥ in M.

4. Hemi-slant warped product submanifolds

The realization of the fact that warped product manifolds provide a natural frame work for time
dependent mechanical system and excellent setting to model space-time near black holes or bodies with
high gravitational fields gave impetus to the studies of warped product manifolds with extrinsic geometric
point of view [2, 13, 15]. B.-Y. Chen [10, 11] initiated the study by exploring CR-submanifolds of Kaehler
manifolds as warped product submanifolds. Since the existence of totally real and slant submanifolds of
a Kaehler manifold are ensured by virtue of Proposition 3.1 and 3.2, our aim in this section is to explore
conditions under which a hemi-slant submanifold of a Kaehler manifold reduces to a warped product
submanifold.

The following important result by S. Heipko [14] will be used later to obtain the desired characterizations
for hemi-slant submanifolds.

Theorem 4.1. [14] Let F be a vector sub bundle in the tangent bundle of a Riemannian manifold M and let F⊥ be
its normal bundle. Assume that the two distributions are both involutive and the integral manifold of F (resp.F⊥) are
extrinsic spheres (resp. totally geodesic). Then M is locally isometric to a warped product M1 × f M2. Moreover, if M
is simply connected and complete, there exists a global isometry of M with a warped product.

Let M̄ be a Kaehler manifold, Mθ and M⊥ be respectively slant and totally real submanifolds of M̄. Then
with these factors there are two possible warped product submanifolds namely (i) M = M⊥ × f Mθ and (ii)
M = Mθ× f M⊥. The non-trivial warped product submanifolds of type (i) do not exist in a Kaehler manifold
in view of the following theorem.
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Theorem 4.2. [23] Let M̄ be a Kaehler manifold. Then there exist no non-trivial warped product submanifolds
M = M⊥ × f Mθ of M̄ such that M⊥ is totally real submanifold and Mθ is a proper slant submanifold of M̄.

However, non-trivial warped product submanifolds of type (ii) do exist in a Kaehler manifold, called in
the sequel as hemi-slant warped product submanifolds. Some examples of these submanifolds are constructed
in [23].

On a hemi-slant warped product submanifold, using formula (16), we can write

∇XZ = ∇ZX = (Xln f )Z, (22)

for each X ∈ TMθ and Z ∈ TM⊥.

Lemma 4.3. Let M be a hemi-slant warped product submanifold of a Kaehler manifold M̄. Then

1(h(U,V), JZ) = 1(h(U,Z),FV) − (PVln f )1(CU,Z)

for each U,V ∈ TM and Z ∈ TM⊥.

Proof. Using Gauss-Weingarten formulas, (19) and the fact that M̄ is Kaehler, we may write

1(h(U,V), JZ) = −1(∇̄U JV,Z)
= −1(∇UPV,Z) + 1(AFVU,Z)
= −1(∇BUPV,Z) − 1(∇CUPV,Z) + 1(h(U,Z),FV)

The first term in the right hand side is zero by virtue of the fact that PV ∈ Dθ and Mθ is totally geodesic in
M. Further, on taking account of formula (22), the above equation takes the form

1(h(U,V), JZ) = 1(h(U,Z),FV) − (PVln f )1(CU,Z). (23)

The above lemma provides a generalization to Proposition 3.5 and to [23, Lemma 5.1].

Lemma 4.4. Let M be a hemi-slant warped product submanifold of a Kaehler manifold M̄. Then

(∇̄XP)V = 0,

for each X ∈ TMθ and V ∈ TM.

Proof. If ∇′ is the induced Riemannian connection on Mθ and h′ is the second fundamental form of the
immersion of Mθ into M, then by (4) and (6), we may write

(∇̄XP)Y = ∇′XPY + h′(X,PY) − P∇′XY − Ph′(X,Y)

for X,Y ∈ TMθ. Denoting ∇′XPY−P∇′XY by (∇XP)Y and taking account of the fact that Mθ is totally geodesic
in M, we deduce from the above equation that

(∇̄XP)Y = (∇XP)Y.

As Mθ is a slant submanifold of M̄, by Corollary 2.2, ∇XP = 0. Hence, the last equation reduces to

(∇̄XP)Y = 0. (24)

Now, in view of the fact that PZ = 0 for each Z ∈ TM⊥, by (6) and (22), we have

(∇̄XP)Z = 0. (25)

From (24) and (25), we obtain that

(∇̄XP)V = 0, (26)

for all V ∈ TM.
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In the next two theorems, we analyse hemi-slant submanifolds in a Kaehler manifold and the outcomes
are interesting characterizations of these submanifolds which reduces them to warped product submani-
folds.

Theorem 4.5. A hemi-slant submanifold M of a Kaehler manifold is a warped product submanifold if and only if
there exists a real valued function µ on M with Zµ = 0 for every Z ∈ D⊥ satisfying

(∇̄UP)V = 1(CU,CV)P∇µ + (PBVµ)CU (27)

for each U,V ∈ TM.

Proof. Let Mθ and M⊥ be respectively slant (with Wirtinger angle θ) and totally real submanifolds of a
Kaehler manifold M̄ such that the warped product M = Mθ × f M⊥ admits an isometric immersion in M̄.
Then for Z,W ∈ TM⊥ and X ∈ TMθ, using (6), (22) and the fact that M⊥ is totally real submanifold, we have

(∇̄ZP)X = (PXln f )Z. (28)

Again using (17) and (18), we get

1((∇̄ZP)W,X) = −(PXln f )1(Z,W).

The last equation gives

B((∇̄ZP)W) = 1(Z,W)P∇ln f . (29)

It is also easy to see that

C((∇̄ZP)W) = 0. (30)

Hence,

(∇̄ZP)W = 1(Z,W)P∇ln f . (31)

Combining (28) and (31), we have

(∇̄ZP)V = (PVln f )Z + 1(Z,V)P∇ln f . (32)

Now, from (26) and (32), we deduce (27), where µ = ln f .
Conversely, suppose that M is a hemi-slant submanifold of a Kaehler manifold M̄ satisfying (27). Then

for Z,W ∈ D⊥ and X ∈ Dθ, (27) gives

1((∇̄ZP)W,X) = 1(Z,W)1(P∇µ,X)

or

1(∇ZW,PX) = −1(Z,W)1(∇µ,PX).

If M⊥ is a leaf of D⊥ and h′′ is the second fundamental form of the immersion of M⊥ into M, then from the
above relation, it follows that

h′′(Z,W) = −1(Z,W)∇µ.

This means M⊥ is totally umbilical in M. Further, as Zµ = 0 for every Z ∈ D⊥, M⊥ is extrinsic sphere in M.
Now, for any X,Y ∈ Dθ, by (27), we find

(∇̄XP)Y = 0.

In view of (6), it yields

∇XPY = P∇XY ∈ Dθ.

This proves that Dθ is parallel. In other words, Dθ is involutive and its leaves are totally geodesic in M. If
Mθ denotes a leaf of Dθ then by virtue of Theorem 4.1, M is isometric to a warped product submanifold
Mθ × f M⊥. This proves the theorem completely.
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Let M be a hemi-slant submanifold of a Kaehler manifold satisfying (27) then for X ∈ Dθ and Z ∈ D⊥,
(∇̄XP)Z = 0 and (∇̄ZP)X = (PXµ)Z. Taking account of these observations in (13), we get,

AFZX = −th(X,Z) (33)

and

AFXZ = (PXµ)Z − th(X,Z). (34)

That gives

AFXZ − AFZX = (PXµ)Z. (35)

Hence, in terms of the shape operator of the immersion of M into M̄, we arrive at the following
characterization:

Corollary 4.6. A hemi-slant submanifold M of a Kaehler manifold is a hemi-slant warped product submanifold if
and only if there exists a smooth function µ on M such that

AFZPX − AFPXZ = cos2θ(Xµ)Z,

for each X ∈ Dθ and Z ∈ D⊥ satisfying Zµ = 0.

If the submanifold M is a mixed totally geodesic proper hemi-slant submanifold, then (33) and (34)
respectively reduce to

AJZX = 0 and AFPXZ = −cos2θ(Xµ)Z

for each X ∈ Dθ and Z ∈ D⊥.
The above relations were established by B. Sahin [23] as the necessary and sufficient condition for

mixed totally geodesic hemi-slant submanifold of a Kaehler manifold to be a hemi-slant warped product
submanifold.

If M is a CR-submanifold of a Kaehler manifold, then formula (35) yields the following characterization.

Corollary 4.7. A CR- submanifold M of a Kaehler manifold is a CR-warped product if and only if there exists a
smooth function µ on M satisfying Zµ = 0 such that

AJZX = −(JXµ)Z,

for each X ∈ D and Z ∈ D⊥.

The above characterization was proved by B.-Y.Chen in [10].

Theorem 4.8. Let M be a hemi-slant submanifold of a Kaehler manifold M̄. Then M is a hemi-slant warped product
if and only if for each U,V ∈ TM and W ∈ D⊥

1((∇̄UF)V, JW) = −(BVµ)cos2θ1(U,W) − 1(AFPVU,W) (36)

where µ is a C∞-function on M with Zµ = 0 for each Z ∈ D⊥.

Proof. Let M = Mθ × f M⊥ be a hemi-slant warped product submanifold of a Kaehler manifold M̄. Then for
any U,V ∈ TM and W ∈ TM⊥, by (14), we have

1((∇̄UF)V, JW) = −1(h(U,PV), JW).

On applying Lemma 4.3 on the right hand side, the above equation takes the form

1((∇̄UF)V, JW) = −1(h(U,W),FPV) + (P2BVln f )1(CU,W)

= −1(AFPVU,W) − cos2θ(BVln f )1(CU,W).
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This proves (36).
Conversely, suppose that M is a hemi-slant submanifold of a Kaehler manifold M̄ such that (36) holds

for a C∞-function µ on M with Zµ = 0 for each Z ∈ D⊥. Then for X,Y ∈ Dθ

1((∇̄XF)Y, JW) = −1(AFPYX,W).

Making use of formula (14), while taking account of the fact that 1( f h(X,Y), JW) = 0, the above equation
reduces to

1(h(X,PY), JW) = 1(h(X,W),FPY).

Therefore by Proposition 3.4, Dθ ia parallel. In other words, each leaf Mθ of Dθ is totally geodesic in M.
Now, by (36) for X ∈ Dθ and Z ∈ D⊥, we have

1((∇̄ZF)X, JW) = −(Xµ)cos2θ1(Z,W) − 1(h(Z,W),FPX). (37)

On making use of (14) and the fact that 1( f h(X,Z), JW) = 0, the left hand side of the above equation reduces
to −1(h(PX,Z), JW), whereas on using (4), (10) and the Kaehler condition, the second term in the right hand
side of (37) is written as:

1(h(Z,W),FPX) = −1(∇̄Z JW,PX) + cos2θ1(∇ZW,X)

= 1(h(PX,Z), JW) + cos2θ1(∇ZW,X).

Thus, (37) reduces to

1(∇ZW,X) = −(Xµ)1(Z,W).

Let M⊥ be a leaf of D⊥ and h′′, the second fundamental form of the immersion of M⊥ into M then on taking
account of (4) and (18), the above equation yields

h′′(Z,W) = −1(Z,W)∇µ

which shows that M⊥ is totally umbilical in M with −∇µ as the mean curvature vector. Further, as Zµ = 0
for all Z ∈ D⊥, −∇µ is parallel. This means M⊥ is an extrinsic sphere in M. Hence by Theorem 4.1, M is
locally a warped product submanifold Mθ × f M⊥ of M̄.

If M is a CR- submanifold (a special case of hemi-slant submanifolds) then θ = 0 and FPV = 0 for all
V ∈ TM, therefore (36) reduces to

1((∇̄UF)V, JW) = −(BVµ)1(U,W).

Hence, we may state:

Corollary 4.9. A CR- submanifold M of a Kaehler manifold is a CR-warped product if and only if there exists a
smooth function µ on M satisfying Zµ = 0 such that

1((∇̄UF)V, JW) = −(BVµ)1(U,W),

for each U,V ∈ TM and W ∈ D⊥.

The above characterization was proved in [19].
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