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Abstract. We define here a pseudo B-Fredholm operator as an operator such that 0 is isolated in its essential
spectrum, then we prove that an operator T is pseudo- B-Fredholm if and only if T = R + F where R is a
Riesz operator and F is a B-Fredholm operator such that the commutator [R, F] is compact. Moreover, we
prove that 0 is a pole of the resolvent of an operator T in the Calkin algebra if and only if T = K + F, where
K is a power compact operator and F is a B-Fredholm operator, such that the commutator [K, F] is compact.
As an application, we characterize the mean convergence in the Calkin algebra.

1. Introduction

Let X be an infinite dimensional Banach space and let L(X) be the Banach algebra of bounded linear operators
acting on X. The Calkin algebra over X is the quotient algebra C(X) = B(X)/K(X), where K(X) is the closed
ideal of compact operators on X. For T ∈ L(X), let Ker(T) denote the null-space and R(T) the range of T. An
operator T ∈ L(X) is Fredholm if dimKer(T) < ∞ and codimR(T) < ∞. For T ∈ L(X) the Fredholm spectrum, is
defined by:

σF(T) = {λ ∈ C : T − λ is not a Fredholm operator}

Recall that the class of linear bounded B-Fredholm operators were defined in [5]. If F0(X) is the ideal of
finite rank operators in L(X) and π : L(X) −→ A is the canonical homomorphism, where A = L(X)/F0(X),
it is well known by the Atkinson’s theorem [3, Theorem 0.2.2, p.4], that T ∈ L(X) is a Fredholm operator if
and only if its projection π(T) in the algebra A is invertible. Similarly, the following result established an
Atkinson-type theorem for B-Fredholm operators.

Theorem 1.1. [7, Theorem 3.4] Let T ∈ L(X). Then T is a B-Fredholm operator if and only ifπ(T) is Drazin invertible
in the algebra L(X)/F0(X).

We conclude from the Atkinson’s theorem and the previous theorem, that invertibility in the algebra
A = L(X)/F0(X) give rises to Fredholm operators, while Drazin invertibility in this algebra give rises to
B-Fredholm operators.
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Recall that an element of a unital algebra A is called generalized Drazin invertible if 0 is not an accu-
mulation point of its spectrum. Then it is natural to ask what are the properties of those operators whose
image under the canonical homorphism π : L(X) −→ A is generalized Drazin invertible?

Such operators will be called pseudo B-Fredholm operators, and will be studied in the second section.
The scheme Fredholmness-Invertibility, B-Fredholmness- Drazin invertibility is completed naturally by the
couple pseudo-B-Fredholmness- Generalized Drazin invertibility.

In a recent works, among them [8], [20] and [22], several authors studied pseudo-B-Fredholm operators
as the direct sum of a Fredholm operator and a quasi-nilpotent operator. As will be seen, this definition
is a particular case of our new definition, and by an example we prove the class of pseudo-B-Fredholm
operators we study here contains strictly the class of operators studied by the authors cited above.

In the main results of the second section we prove that the set pBF(X) of pseudo-B-Fredholm operators
in L(X) is a regularity. Thus, by usual properties of regularities, this implies that the pseudo-B-Fredholm
spectrum σpBF(T) satisfies the spectral mapping theorem. Then we show that T ∈ L(X) is a pseudo-B-
Fredholm operator if and only if T = R + F where R is a Riesz operator, F is a B-Fredholm operator such that
the commutator [R,F] is compact or an inessential operator, and if and only if T is a compact perturbation
of a direct sum of a Fredholm operator and a Riesz operator.

In the third section, we will answer successively the following three questions. The first one is: given a
bounded linear operator T, when 0 is a pole of its resolvent in the Calkin algebra C(X)? We show that this
holds if and only if T = K + B, where B is a B-Fredholm operator and K is a power compact one, such that
the commutator [K, B] is compact. The second question is about the relation between the order of 0 as a
pole of the resolvent of Π(T) for a B-Fredholm operator T and the essential ascent ae(T) and the essential
descent de(T) of T, where Π : L(X) −→ L(X)/K(X) is the canonical homomorphism. We show that if 0 is
a pole of order n, then n ≤ ae(T) = de(T). Moreover we prove that n = ae(T) = de(T) if and only if R(Tn) is
closed. The third question is: if 0 is a pole of the resolvent of Π(T) of order n, when T is then a B-Fredholm
operator with n = ae(T) = de(T)? The answer is that this happens if and only if R(Tn) and R(Tn+1) are closed.
With the answer to those questions, we retrieve in particular some similar results established in the case of
Hilbert spaces in [4].

As an application, we characterize mean ergodic convergence in the Calkin algebra. Precisely, we show
that the sequence (Π(Mn(T)))n converges in the Calkin algebra if and only if ||Π(T)n

||

n → 0 as n→∞ and there
exists a power compact operator K such that ae(I−T +K) and de(I−T +K) are both finite and the commutator
[T, K] is compact, where Mn(T) = 1+T+T2+...Tn

n ,n ∈N and T ∈ L(X).
We define now some tools that will be needed later. For n ∈ N and T ∈ L(X), we set cn(T) =

dim R(Tn)/R(Tn+1) and c′n(T) = dim N(Tn+1)/N(Tn). From [15, Lemmas 3.1 and 3.2] it follows that cn(T) =
codim (R(T) + N(Tn)) and c′n(T) = dim(N(T) ∩ R(Tn)). Obviously, the sequences (cn(T))n and (c′n(T))n are
decreasing. The descent δ(T) and the ascent a(T) of T are defined by δ(T) = inf{n ∈ N : cn(T) = 0} = inf{n ∈
N : R(Tn) = R(Tn+1)} and a(T) = inf{n ∈ N : c′n(T) = 0} = inf{n ∈ N : N(Tn) = N(Tn+1)}. We set formally
inf ∅ = ∞.

The essential descent δe(T) and the essential ascent ae(T) of T are defined by δe(T) = inf{n ∈ N : cn(T) < ∞}
and ae(T) = inf{n ∈N : c′n(T) < ∞}.

Given a Banach algebra A and an element a of A, the left multiplication operator La : A→ A is defined
by La(x) = ax, for all x ∈ A. It is well known that the spectrum of a is equal to the spectrum of La. We are
particularly interested in the case when A is the Calkin algebra and a = Π(T) for T ∈ L(X).

The ascent and the descent of a Banach algebra element a ∈ A are defined respectively as the ascent and
the descent of the operator La.

Now we give the definition of operators of topological uniform descent, studied in [11].

Definition 1.2. Let T ∈ L(X) and let d ∈ N. Then T has a uniform descent for n ≥ d if R(T)+N(Tn) = R(T)+N(Td)
for all n ≥ d.

If in addition R(T) + N(Td) is closed, then T is said to have a topological uniform descent for n ≥ d.

The radical of a unital Banach algebra A is the set:

{d ∈ A : 1 − ad is invertible for all a ∈ A} = {d ∈ A : 1 − da is invertible for all a ∈ A}.
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The set of all operators A ∈ L(X) satisfying Π(A) ∈ Rad(C(X)), is the set of inessential operators, denoted
by I(X).

For more details about those definitions, we refer the reader to [1].

2. Pseudo-B-Fredholm operators

Definition 2.1. [17] Let A be an algebra over the field of complex numbers with a unit e. A non-empty subset R of
A is called a regularity if it satisfies the following conditions:

• If a ∈ A and n ≥ 1 is an integer, then a ∈ R if and only if an
∈ R,

• If a, b, c, d ∈ A are mutually commuting elements satisfying ac + bd = e, then ab ∈ R if and only if a, b ∈ R.

Recall also that an element a ∈ A is said to be Drazin invertible if there exists b ∈ A such that bab = b, ab =
ba and aba − a is a nilpotent element in A.

Definition 2.2. An element a of a Banach algebra A will be said to be generalized Drazin invertible if there exists
b ∈ A such that bab = b, ab = ba and aba − a is a quasinilpotent element in A.

Koliha [16] proved that a ∈ A is generalized Drazin invertible if and only if there exists ε > 0, such that
for all λ such that 0 <| λ |< ε, the element a − λe is invertible.

In the case of a general unital agebra, not necessarily a normed algebra, we adopt this characterization
as the definition of generalized Drazin invertibility in such algebra. This is in particular the case of the
algebra A = L(X)/F0(X).

Proposition 2.3. Let T ∈ L(X). Then π(T) is generalized Drazin invertible in the algebra A = L(X)/F0(X) if and
only if Π(T) is generalized Drazin invertible in the Calkin algebra C(X).

Proof. This is a direct consequence of the well known characterization of Fredholm operators.

Definition 2.4. Let T ∈ L(X). Then T is said to be a pseudo-B-Fredholm operator if π(T) is generalized Drazin
invertible in the algebra L(X)/F0(X).

If K ⊂ C, then acc K is the set of accumulation points of K.

Proposition 2.5. Let T ∈ L(X). Then T is a pseudo-B-Fredholm operator if and only if 0 < acc σF(T).

Proof. This is a direct consequence of the Definition 2.4, the characterisation of generalized Drazin invertible
operators and the characterization of Fredholm operators.

It is proved in [18] that the set of generalized Drazin invertible elements in a unital Banach algebra is a
regularity, from Proposition 2.3 we obtain immediately the following result.

Theorem 2.6. The set pBF(X) of pseudo-B-Fredholm operators in L(X) is a regularity.

Let σpBF(T) = {λ ∈ C | T − λI is not a pseudo-B-Fredholm operator } be the spectrum generated by the
regularity pBF(X), for T ∈ L(X), then we have the following spectral mapping theorem.

Theorem 2.7. If f an analytic function in a neighborhood of the usual spectrum σ(T) of an operator T in L(X),
which is non-constant on any connected component of σ(T), then f (σpBF(T)) = σpBF( f (T)).

Proof. This is a direct consequence of the properties of regularities.
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Remark 2.8. We say that an operator T ∈ L(X) is polynomially Riesz if there exists a non-zero complex
polynomial P(z) such that P(T) is a Riesz operator. Every polynomially Riesz operator in L(X) is a pseudo-B-
Fredholm operator. Indeed if T is polynomially Riesz, then P(T) is Riesz for a non-zero complex polynomial
P(z). As it is well known that the Fredholm spectrum satisfies the spectral mapping theorem, then we have
P(σF(T)) = σF(P(T)) = {0}. Hence σF(T) is finite because a polynomial has a finite set of roots. So it has no
accumulation points and from Proposition 2.5, T is pseudo-B-Fredholm.

For T ∈ L(X), we will say that a subspace M of X is T-invariant if T(M) ⊂ M. We define T|M : M → M
as T|M(x) = T(x), x ∈ M. If M and N are two closed T-invariant subspaces of X such that X = M ⊕ N, we
say that T is completely reduced by the pair (M,N) and it is denoted by (M,N) ∈ Red(T). In this case we write
T = T|M ⊕ T|N and say that T is a direct sum of T|M and T|N.

It is said that T ∈ L(X) admits a generalized Kato decomposition, abbreviated as GKD, if there exists
(M,N) ∈ Red(T) such that T|M is Kato and T|N is quasinilpotent. Recall that an operator T ∈ L(X) is Kato if
R(T) is closed and Ker(T) ⊂ R(Tn) for every n ∈N.

Definition 2.9. T ∈ L(X) is called a Riesz-Fredholm operator if there exists (M,N) ∈ Red(T) such that T|M is a Riesz
operator and T|N is a Fredholm operator.

It is known that the sum of a Fredholm operator and a Riesz operator whose commutator is compact
(or only an inessential operator) is again a Fredholm operator. In the following theorem we show that an
operator T ∈ L(X) is pseudo-B-Fredholm if and only it is the sum of a B-Fredholm operator and a Riesz
operator whose commutator is a compact (an inessential) operator.

Theorem 2.10. Let T ∈ L(X). Then the following properties are equivalent:

1. T is a pseudo-B-Fredholm operator.
2. T is a compact perturbation of a Riesz-Fredholm operator.
3. T = R + B where R is a Riesz operator, B is a B-Fredholm operator such that the commutator [R,B] is compact.
4. T = R + B where R is a Riesz operator, B is a B-Fredholm operator such that the commutator [R,B] is an

inessential operator.

Proof. 1)⇔ 2) Suppose that T is a pseudo-B-Fredholm operator. If T is Fredholm, then the statement 2 holds.
Further, suppose that T is not Fredholm, then 0 is an isolated point of σ(Π(T)). Let R ∈ C(X) be the spectral
idempotent of Π(T) corresponding to λ = 0, then R , 0, Π(T) and R commute, Π(T)R is quasinilpotent
and Π(T) + R is invertible according to [16, Theorem 3.1]. From [2, Lemma 1] we know that there exists an
idempotent P ∈ L(X) such that Π(P) = R. Therefore, Π(TP) is quasinilpotent and Π(T +P) is invertible. Since
Π(T) and Π(P) commutes, we have that Π(PTP) = Π(TP) and Π((I − P)T(I − P)) = Π(T(I − P)). It follows
that PTP is Riesz, TP = PTP + K1, T(I − P) = (I − P)T(I − P) + K2, where K1,K2 ∈ K(X), and so,

T = TP + T(I − P) = PTP + (I − P)T(I − P) + K,

where K = K1 + K2 ∈ K(X). We have that (R(P),R(I − P)) ∈ Red(PTP), (R(P),R(I − P)) ∈ Red((I − P)T(I − P)),

PTP = (PTP)|R(P) ⊕ (PTP)|R(I−P) = (PTP)|R(P) ⊕ 0

and

(I − P)T(I − P) = ((I − P)T(I − P))|R(P) ⊕ ((I − P)T(I − P))|R(I−P)

= 0 ⊕ ((I − P)T(I − P))|R(I−P).

Therefore,

T = (PTP)|R(P) ⊕ ((I − P)T(I − P))|R(I−P) + K. (1)
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It’s easily seen that (PTP)|R(P) is Riesz and further we prove that ((I −P)T(I −P))|R(I−P) is Fredholm. Since
Π(T + P) is invertible there exists S ∈ L(X) such that Π(S)Π(T + P) = Π(T + P)Π(S) = Π(I). As Π(P) and
Π(T + P) commute, then Π(P) and Π(S) commute and hence

(I − P)(T + P)(I − P)(I − P)S(I − P) = I − P + F1,

(I − P)S(I − P)(I − P)(T + P)(I − P) = I − P + F2,

where F1 and F2 are compact. As I − P is the identity on R(I − P), it follows that ((I − P)T(I − P))|R(I−P) =
((I−P)(T + P)(I−P))|R(I−P) is a Fredholm operator. According to (1), we see that T is a compact perturbation
of a Riesz-Fredholm operator.

Conversely let T = T1 ⊕ T2 + K where T1 is Riesz, T2 Fredholm and K ∈ K(X).
It’s clear that 0 is not an accumulation point of σF(T1 ⊕ T2) = σF(T) and according to Proposition 2.5, we

get that T is a pseudo-B-Fredholm operator.
1)⇒ 3) If T is a pseudo-B-Fedholm operator, then

T = (PTP)|R(P) ⊕ ((I − P)T(I − P))|R(I−P) + K
= [((PTP)|R(P) ⊕ 0) + K] + [0 ⊕ ((I − P)T(I − P))|R(I−P)],

where [((PTP)|R(P) ⊕ 0) + K] is a Riesz operator and from [5, Theorem 2.7], [0 ⊕ ((I − P)T(I − P))|R(I−P)] is a
B-Fredholm operator, here P is the same idempotent as in the previous part of the proof. It is clear that the
commutator of ((PTP)|R(P) ⊕ 0) + K and 0 ⊕ ((I − P)T(I − P))|R(I−P) is compact.

3)⇒ 4) It follows from the inclusion K(X) ⊂ I(X).
4) ⇒ 1) Let T = R + B, where R is a Riesz operator and B is a B-Fredholm operator with [R,B] is an

inessential operator. From [24, Theorem 10.1] it follows that

σF(T) = σF(B). (2)

Since B is B-Fredholm, according to [6, Remark A (iii)] there exists ε > 0, such that if 0 < |λ| < ε, we have
that B − λI is Fredholm which together with (2) gives that λ < σF(T). So 0 < acc σF(T) and thus T is a
pseudo-B-Fredholm operator by Proposition 2.5.

We mention that Boasso considered in [8, Theorem 5.1] isolated points of the spectrum of Π(T) for
T ∈ L(X) and he concluded the equivalence ((1)⇐⇒(2)) by studying generalized Drazin invertible elements
in the range of a Banach algebra homomorphism [8, Theorem 3.2], though our proof is more direct.

Corollary 2.11. Let H be a Hilbert space and T ∈ L(H). Then T is a pseudo-B-Fredholm operator if and only if
T = K + Q + B, where K is compact, Q quasi-nilpotent, B B-Fredholm, with K and [Q,B] compact operators.

Proof. In the case of a Hilbert space, using the West decomposition [21] for a Riesz operator R ∈ L(H) we
have R = K + Q with K compact and Q quasi-nilpotent. Thus, according to Theorem 2.10, T ∈ L(H) is a
pseudo-B-Fredholm operator if and only if T = K + Q + B, where Q quasi-nilpotent, B B-Fredholm, K and
[Q,B] compact operators.

Remark 2.12. In the recent works [8], [20] and [22], the authors studied pseudo-B-Fredholm operators as
the direct sum of a Fredholm operator and a quasi-nilpotent one. In [10, Theorem 3.4] it is proved that

T is the direct sum of a Fredholm operator and a quasi − nilpotent one
⇐⇒ (3)

T admits a GKD and 0 < acc σF(T).

However there exists operators which are pseudo-B-Fredholm operators in the sense of Definition 2.4, but
do not have a decomposition as the direct sum of a Fredholm operator and a quasi-nilpotent operator as
seen by the following example.
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Let T be a compact operator having infinite spectrum. Since Π(T) = 0, then T is a pseudo-B-Fredholm
operator in the sense of Definition 2.4. We prove that T cannot be written as the direct sum of a Fredholm
operator and a quasi-nilpotent one. Assume the contrary. We observe first that T is not quasinilpotent,
because it has non-zero spectrum. Also T is not Fredholm because is compact on the infinite dimensional
space X.

Assume that there exists a pair M,N of closed T − invariant subspaces of X such that T = T1 ⊕ T2 where
T1 = T|M is a quasi-nilpotent operator and T2 = T|N is a Fredholm operator. Since σ(T) = σ(T1) ∪ σ(T2), it
follows that σ(T2) is infinite. Therefore N is infinite-dimensional and hence σF(T2) , ∅. As T2 is Fredholm,
it follows that 0 < σF(T2). Then then there exists λ , 0 such that λ ∈ σF(T2). But σF(T) = σF(T1) ∪ σF(T2),
σF(T) = {0} and we get a contradiction.

Our example shows that the condition that T admits a GKD cannot be removed from the equivalence
(3), in the other words the condition 0 < acc σF(T) does not imply the condition that T admits a GKD.

3. Poles of the resolvent in the Calkin algebra

Theorem 3.1. Let T ∈ L(X). Then the following properties are equivalent:
1- 0 is a pole of the resolvent of Π(T) in the Calkin algebra.
2- T is the sum of a B-Fredholm operator B and a power compact operator K, such that the commutator [K, B] is

compact.
3- There exists a power compact operator K such that ae(T + K) and de(T + K) are both finite, such that the

commutator [K, T] is compact.

Proof. 1 ⇒ 2) Suppose that 0 is pole of the resolvent of Π(T) in the Calkin algebra. Let R ∈ C(X) be the
spectral idempotent of Π(T) corresponding to λ = 0. Then Π(T) and R commute, Π(T)R is nilpotent and
Π(T) + R is invertible. From [2, Lemma 1] it follows that there exists an idempotent P ∈ L(X) such that
Π(P) = R. Since Π(TP) = Π(PTP), it follows that PTP is a power compact operator. As in the proof of
Theorem 2.10, we get that there is K′ ∈ K(X) such that

T = (PTP)|R(P) ⊕ ((I − P)T(I − P))|R(I−P) + K′.

Set K = ((PTP)|R(P) ⊕ 0) + K′ = PTP + K′ and B = 0 ⊕ ((I − P)T(I − P))|R(I−P). Then K is clearly a power
compact operator, B is a B-Fredholm operator by [5, Theorem 2.7] and the commutator [K, B] is compact.

2) ⇒ 3) Assume that T is the sum of a B-Fredholm operator B and a power compact operator K′ such
that the commutator [K′, B] is compact. Let K = −K′, then B = T + K, and from [6, Theorem 3.1], ae(T + K)
and de(T + K) are both finite. Moreover, the commutator [K, T] is compact.

3) ⇒ 1) Assume that there exists a power compact operator K such that ae(T + K) and de(T + K) are
both finite and the commutator [K, T] is compact. Then from [6, Theorem 3.1], T + K is a B-Fredholm
operator. Hence Π(T + K) is Drazin invertible in the Calkin algebra. As the commutator [K, T] is compact,
then Π(T)Π(K) = Π(K)Π(T). Since K is power compact, then Π(K) is nilpotent. From [23, Theorem 3] we
know that Drazin invertibility is stable under nilpotent commuting perturbations. Thus it follows that
Π(T) = Π(T + K) −Π(K) is Drazin invertible in the Calkin algebra and 0 is pole of Π(T).

As a consequence, in the case of Hilbert spaces, we recover [4, Theorem 2.2].

Corollary 3.2. Let H be a Hilbert space and T ∈ L(H). The following properties are equivalent:
1- 0 is pole of the resolvent of Π(T) in the Calkin algebra.
2- There exist a compact operator K such that T + K is a B-Fredholm operator.
3-There exist a compact operator K such that ae(T + K) and de(T + K) are both finite.
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Proof. 1) ⇒ 2) As in the proof of Theorem 3.1, there exist an idempotent P ∈ L(H) and K ∈ K(H) such that
T = (PTP)|R(P) ⊕ ((I − P)T(I − P))|R(I−P) + K, where ((I − P)T(I − P))|R(I−P) is a Fredholm operator and PTP is a
power compact operator, which implies that (PTP)|R(P) is a power compact operator. From [13, Lemma 5],
there exists a nilpotent operator N1 and a compact operator K1 defined on R(P) such that (PTP)|R(P) = N1 +K1.
Hence

T = [N1 ⊕ ((I − P)T(I − P))|R(I−P)] + [(K1 ⊕ 0) + K],

(K1 ⊕ 0) + K is clearly a compact operator and by [5, Theorem 2.7] the operator N1 ⊕ ((I − P)T(I − P))|R(I−P) is
a B-Fredholm operator.

The proof of the other implications are similar to the corresponding implications in Theorem 3.1.

Recall that from [12, Theorem 5.3], if T ∈ L(X) has finite essential ascent ae(T) and finite essential descent
de(T), then they are equal. In the following result, for a B-Fredholm operator T, we compare the order of 0
as a pole of the resolvent of Π(T) and the common value of its essential ascent and its essential descent.

Theorem 3.3. Let T ∈ L(X) be a B-Fredholm operator. Then Π(T) is Drazin invertible in the Calkin algebra and if
n is the order of 0 as a pole of the resolvent of Π(T), then n ≤ ae(T) = de(T). Moreover n = ae(T) = de(T) if and only
if R(Tn) is closed

Proof. Let d = ae(T) = de(T) and assume that d < n. Then from [6, Theorem 3.1] R(Td) is closed and the
operator Td : R(Td)→ R(Td) is a Fredholm operator. Thus there exists a compact operator Kd in L(R(Td)), an
operator Rd in L(R(Td)) such that RdTd = Id + Kd, where Id is the identity of L(R(Td)). Thus Td

− RdTd+1 is a
compact operator.

Let V ∈ L(X) such that TnV is compact. Then

Tn−1V = (Td
− RdTd+1)Tn−d−1V + RdTnV

is a compact operator. Hence a(Π(T)) ≤ n − 1 < n and this is a contradiction. Thus n ≤ ae(T) = de(T).
If n = ae(T) = de(T), then from [6, Theorem 3.1], R(Tn) is closed. Conversely if R(Tn) is closed, let

d = ae(T) = de(T). Since Π(T) is Drazin invertible in the Calkin algebra, there exists S ∈ L(X), such that the
operators TS − ST,STS − S,TnST − Tn are all compact operators. Let K = STn+1

− Tn, then K is a compact
operator and Ker(T)∩R(Tn) ⊂ R(K).As Ker(T)∩R(Tn) is closed, then Ker(T)∩R(Tn) is finite dimensional. If
n < d, then n ≤ d− 1 and Ker(T)∩R(Td−1) ⊂ Ker(T)∩R(Tn).Hence Ker(T)∩R(Td−1) is finite dimensional and
consequently ae(T) ≤ d−1,which is a contradiction. Hence n ≥ d.As we know already that n ≤ ae(T) = de(T),
then n = ae(T) = de(T).

Remark 3.4. Without the hypothesis of the closedness of the range R(Tn), Theorem 3.3 may be false. For
example let K be a nilpotent compact operator with infinite dimensional range, then it is easily seen that the
order of 0 as a pole of Π(K) is equal to one, while K has a finite essential ascent and descent strictly greater
than 1, because the range R(K) of K is not closed.

In the following result, we give a sufficient condition which implies the equality of the order and the
common value of the essential ascent and descent. In the case of Hilbert spaces, this result was proved in
[4, proposition 3.3]. While in [4, proposition 3.3], the proof is based on Sadovskii essential enlargment of
an operator [19], our proof is based directly on the definition of the Drazin inverse.

Theorem 3.5. Let T ∈ L(X) be a B-Fredholm operator with finite essential ascent and finite essential descent equaling
d. If d = 0 or R(Td−1) is closed, then 0 is a pole of the resolvent of Π(T) of order d.

Proof. If d = 0 then T is a Fredholm operator. So Π(T) is invertible in the Calkin algebra and 0 is a pole of
the resolvent of Π(T) of order d.

Assume now that d > 0 and R(Td−1) is closed. Since T is a B-Fredholm operator, then Π(T) is Drazin
invertible in the Calkin algebra. Let n = a(Π(T)) = d(Π(T)).Then there exists S ∈ L(X) such that the operators
TS−ST,STS−S,TnST−Tn, are all compact operators. Let K = STn+1

−Tn, then K is a compact operator and
Ker(T) ∩ R(Tn) ⊂ R(K).
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We already know that n ≤ d. If n < d, then n ≤ d − 1 and Ker(T) ∩ R(Td−1) ⊂ Ker(T) ∩ R(Tn) ⊂ R(K). As
Ker(T) ∩ R(Td−1) is closed, then Ker(T) ∩ R(Td−1) is finite dimensional. Thus ae(T) ≤ d − 1. Contradiction.
Hence n = d.

Now we give necessary and sufficient conditions to lift a Drazin invertible element in the Calkin algebra
as a B-Fredholm operator. The sufficient condition in the case Hilbert spaces had been proved in [4, Theorem
3.2], where the proof is based also on Sadovskii essential enlargment of an operator [19], while we use here
properties of B-Fredholm operators.

Theorem 3.6. Let T ∈ L(X) such that Π(T) is Drazin invertible in the Calkin algebra and 0 is a pole of the resolvent
of Π(T) of order n. Then T is a B-Fredholm operator with ae(T) = de(T) = n if and only if R(Tn) and R(Tn+1) are
closed.

Proof. If T is a B-Fredholm operator with ae(T) = de(T) = n, then from [6, Theorem 3.1], R(Tn) and R(Tn+1)
are closed.

Conversely assume that R(Tn) and R(Tn+1) are closed. Since 0 is a pole of the resolvent of Π(T) of order
n, then there exists an operator S in L(X), such that TS − ST,STS − S,TnST − Tn are all compact operators.
Let K = STn+1

− Tn, then K is a compact operator. If y ∈ N(T) ∩ R(Tn), then y ∈ R(K). Since N(T) ∩ R(Tn) is
closed and K is compact, then N(T) ∩ R(Tn) is of finite dimension. Let Tn : R(Tn) → R(Tn) be the operator
induced by T. Then Tn is an upper semi-Fredholm operator and so, T is a semi-B-Fredholm operator. In
particular and from [11] it is an operator of topological uniform descent. Since 0 is a pole of the resolvent of
Π(T) of order n, if |λ| is small enough and λ , 0, then T−λI is a Fredholm operator. From [11, Theorem 4.7]
it follows that T has a finite essential ascent and finite essential descent. Thus T is a B-Fredholm operator
and ae(T) = de(T) ≤ n.As T is a B-Fredholm operator, then from Theorem 3.3, we have n ≤ ae(T) = de(T) and
so, ae(T) = de(T) = n.

Application
We give now an application of the previous results for the study of the mean convergence in the Calkin

algebra. For the uniform ergodic theorem, we refer the reader to [9, Theorem 1.5] and the references cited
there. Here, using Theorem 3.1, we obtain easily a general characterization of the convergence of the
sequence (Π(Mn(T))n in the Calkin algebra. Let us mention that by [14, Proposition 7], 0 is a pole of Π(T) if
and only if 0 is a pole of the left multiplication by Π(T) in the Calkin algebra.

Theorem 3.7. Let T ∈ L(X) and let Mn(T) = 1+T+T2+...Tn

n ,n ∈N∗. Then following conditions are equivalent:
1- The sequence (Π(Mn(T))n converges in the Calkin algebra.
2- ||Π(T)n

||

n → 0 as n→∞ and there exists a power compact operator K such that I−T +K is a B-Fredholm operator,
and the commutator [T, K] is compact.

3- ||Π(T)n
||

n → 0 as n→ ∞ and there exists a power compact operator K such that ae(I − T + K) and de(I − T + K)
are both finite and the commutator [T, K] is compact.

4- ||Π(T)n
||

n → 0 as n→∞ and 1 is a pole of the resolvent of Π(T).

Proof. 1) ⇒ 2) Assume that the sequence (Π(Mn(T))n converges in the Calkin algebra. Then from [9,
Theorem 1.5], it follows that ||Π(T)n

||

n → 0 as n→∞ and 0 is a pole of the resolvent of Π(I−T). From Theorem
3.1, there exists a power compact operator K such that I−T+K is a B-Fredholm operator and the commutator
[T, K] is compact.

2)⇒ 3) Assume ||Π(T)n
||

n → 0 as n→ ∞ and there exists a power compact operator K such that I − T + K
is a B-Fredholm operator. Then ae(I − T + K) and de(I − T + K) are both finite and the commutator [T, K] is
compact.
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3) ⇒ 4) Assume that ||Π(T)n
||

n → 0 as n → ∞ and there exists a power compact operator K such that
ae(I − T + K) and de(I − T + K) are both finite, and the commutator [T, K] is compact. Then from Theorem
3.1, 1 is a pole of the resolvent of Π(T).

4) ⇒ 1) Assume that ||Π(T)n
||

n → 0 as n → ∞ and 1 is a pole of the resolvent of Π(T). Using [9, Theorem
1.5], it follows that the sequence (Π(Mn(T))n converges in the Calkin algebra.

Note that from [9, Theorem 1.5], if T satisfies one of the conditions of Theorem 3.7, then 1 is a pole of
the resolvent of Π(T) of order less or equal to 1.

Remark 3.8. In the case of a Hilbert space, and from Corollary 3.2, the operator K of Theorem 3.7 can be
chosen to be compact.
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