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Abstract. We define a measure of noncompactness λ on the standard Hilbert C∗-module l2(A) over
a unital C∗-algebra, such that λ(E) = 0 if and only if E is A-precompact (i.e. it is ε-close to a finitely
generated projective submodule for any ε > 0) and derive its properties. Further, we consider the known,
Kuratowski, Hausdorff and Istrăţescu measure of noncompactnes on l2(A) regarded as a locally convex
space with respect to a suitable topology, and obtain their properties as well as some relationship between
them and introduced measure of noncompactness λ.

1. Introduction

Measures of noncompactness (MNCs in further) have been studied almost for a century. Roughly
speaking, a MNC is a function which assigns a real number to any bounded set in a given metric space, and
this real number can be regarded as a characteristic of the extent to which A is not totally bounded, (that
is relatively compact when completeness is supposed). There are many different MNCs on metric spaces,
among them the most cited are: Kuratowski, Hausdorff and Istrăţescu MNC. Their definitions is given by:

Definition 1.1. Let (M, d) be a metric space, and let A ⊆M be a bounded set.
a) The Kuratowski measure of noncompactness of A, denoted by α(A), is the infimum of all d > 0 such that A

admits a partitioning into finitely many subsets whose diameters are less than d ([8], see also [9]).
b) The Hausdorff measure of noncompactness of A, denoted by χ(A), is the infimum of all ε > 0 such that A

has a finite ε-mash in M. (If we require that this ε-mash belongs to A, we refer to inner Hausdorff measure of
noncompactness, denoted by χi(A).)

c) The Istrăţescu measure of noncompactness, denoted by I(A) , is the infimum of all d > 0 such that there is an
ε-discrete sequence in A, that is, a sequence xn ∈ A, such that d(xm, xn) ≥ ε for all m , n ([6]).

Although different in general, these three functions share some common properties, e.g. the following:

Proposition 1.2. Let (M, d) be a metric space, and let µ be any of functions α, χ, I defined above. Then µ has the
following properties:

(a) regularity: µ(A) = 0 iff A is relatively compact;
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(b) non-singularity: µ is equal to zero on any single-element set;

(c) monotonicity: µ(A) ≤ µ(B), whenever A ⊆ B;

(d) subadditivity: µ(A ∪ B) = max{µ(A), µ(B)}, for all A and B;

If, in addition, M is a normed space, i.e., M is a linear space and the metric d is defined via d(x, y) = ||x − y|| then
µ has additional properties:

(e) algebraic semi-additivity: µ(A + B) ≤ µ(A) + µ(B), for all A, B;

(f) semi-homogeneity: µ(tA) = |t|µ(A), for t ∈ C and all A ⊆M;

(g) invariance under translations: µ(x + A) = µ(A), for all A ⊆M and x ∈M;

(h) Lipschitz continuity: |µ(A) − µ(B)| ≤ LdH(A,B), where L is an absolute constant (Lα = 2, Lχ = 1, LI = 2) and
d(A,B) is the so called Hausdorff distance, that is dH(A,B) = max{supx∈A d(x,B), supy∈B d(y,A)};

(i) invariance to the transition to the closure and to the convex hull: µ(A) = µ(A) = µ(co A);

(j) The functions α, χ and I are equivalent to each other, that is,

χ(A) ≤ I(A) ≤ α(A) ≤ 2χ(A) for all bounded A. (1)

These properties are well known and their proofs can be found throughout literature, for instance in [16].
(Though, it should be mentioned that inner Hausdorff MNC does not satisfy the equality χi(co A) = χi(A),
see [1, page 9])

Some of the mentioned properties were singled out in order to establish the axiomatic definition of the
abstract notion of the MNC, and this was done in various different manners.

For more detailed exposition on MNCs on metric or normed spaces, the reader is referred to [1], [4] or
[17].

There is some extension of the MNC theory to the framework of uniform spaces which will be described
in Section 3. Among all uniform spaces, we are specially interested in the standard Hilbert module l2(A)
over a unital C∗-algebraA. It is defined by

l2(A) =
{
x = (ξ1, ξ2, . . . ) | ξ j ∈ A,

+∞∑
j=1

ξ∗jξ j converges in the norm topology
}
,

and it is equipped with theA-valued inner product

l2(A) × l2(A) 3 (x, y) 7→
+∞∑
j=1

ξ∗jη j ∈ A, x = (ξ1, ξ2, . . . ), y = (η1, η2, . . . ).

Since an arbitrary A-linear bounded operator on l2(A) does not need to have an adjoint, the natural
algebra of operators is Ba(l2(A)) - the algebra of allA-linear bounded operators on l2(A) having an adjoint.
It is known that Ba(l2(A)) is a C∗-algebra, as well.

Among all operators in Ba(l2(A)), those that belong to the linear span of the operators of the form
x 7→ Θy,z(x) = z

〈
y, x

〉
(y, z ∈ l2(A)) are called finite rank operators. The norm closure of finite rank operators

is known as the algebra of all ”compact” operators. The quotation marks are usually written in order to
emphasize the fact that ”compact” operators does not maps bounded sets into relatively compact sets, as
it is the case in the framework of Hilbert (and also Banach) spaces, though they share many properties of
proper compact operators on a Hilbert space, [12], [13].

(For general literature concerning Hilbert modules over C∗ algebras, including the standard Hilbert
module, the reader is referred to [10] or [14].)
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In our earlier work [7], we construct a locally convex topology τ on l2(A) such that T ∈ Ba(l2(A)) is
”compact” implies that its image of the unit ball is totally bounded with respect to τ. The converse is
obtained in the special caseA = B(H).

The aim of this note is to introduce a MNC on the standard Hilbert module l2(A) and to derive its
properties. In Section 2, we introduce the MNC λ such that for any bounded set E ⊆ l2(A) the equality
λ(E) = 0 holds if and only if E is precompact in the sense of [14, Proposition 2.6], which implies that the
corresponding MNC of a given operator T is equal to 0 if and only if T is ”compact”.

In Section 3 we list some known results on MNCs on uniform spaces and also derive some simple
generalizations.

In Section 4, we discuss generalizations of Kuratowski, Hausdorff and Istrăţescu measures of noncom-
pactness on l2(A) and obtain their relationship with MNC λ.

We use the following basic and also simple facts on Hilbert modules, that can be found throughout the
literature. To make proofs more easy we list and prove them.

(F1) Let z1 ⊥ z2. Then ||z1 + z2|| ≥ ||z1||.
Indeed, we have

〈z1 + z2, z1 + z2〉 = 〈z1, z1〉 + 〈z2, z2〉 ≥ 〈z1, z1〉 ,

in the order defined by the positive cone in A. Therefore

||z1 + z2||
2 = || 〈z1 + z2, z1 + z2〉 || ≥ || 〈z1, z1〉 || = ||z1||

2.

(F2) Let M be a projective finitely generated submodule of l2(A), and let x ∈ l2(A) be arbitrary. Then

d(x,M) = ||x − PMx||,

where PM is orthogonal projection onto M with null-space M⊥.
Indeed, by [14, Theorem 1.4.5] M is orthogonally complemented, l2(A) = M ⊕M⊥, and there is PM :

l2(A) → l2(A) such that P2
M = P∗M = PM, the range of PM is M and the kernel of PM is M⊥. Let y ∈ M be

arbitrary. Then
||x − y|| = ||(x − PMx) + (PMx − y)|| ≥ ||x − PMx||,

by (F1), because x − PMx ∈M⊥ and PMx − y ∈M.

2. Measure of noncompactness λ

Throughout this section, A will always denote a unital C∗-algebra, and its unit will be denoted by 1.
Also, l2(A) will denote the standard Hilbert C∗-module overA defined in the introduction.

In [14, Proposition 2.6]A-precompact sets were defined as those bounded sets E such that for all ε > 0
there is a free finitely generated module M � An such that

d(E,M) := sup
x∈E

d(x,M) = sup
x∈E

inf
y∈M

d(x, y) < ε.

We generalize this notion in the following way.

Definition 2.1. Let E ⊆ l2(A) be a bounded set. The measure of noncompactness of E, denoted by λ(E) is the greatest
lower bound of all η > 0 for which there is a free finitely generated module M ≤ l2(A) such that

d(E,M) := sup
x∈E

inf
y∈M

d(x, y) < η.

Proposition 2.2. The measure of noncompactness λ(E) can be computed as:

1. λ(E) = infM∈F supx∈E d(x,M), where F is the set of all free finitely generated modules;
2. λ(E) = limn→+∞ supx∈E ||x − Pnx|| = infn≥1 supx∈E ||x − Pnx||, where Pn : l2(A) → l2(A) is given by

Pn(x1, x2, . . . ) = (x1, x2, . . . , xn, 0, 0, . . . ).
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Proof. The equation (1) is obvious. The sequence I − Pn is decreasing. Hence limn→+∞ supx∈E ||x − Pnx|| =
infn≥1 supx∈E ||x − Pnx||. Since Pnl2(A) is a free finitely generated module, we have immediately

λ(E) ≤ inf
n≥1

sup
x∈E
||x − Pnx||.

To get the opposite inequality, let ε > 0. Then, there is a free finitely generated module M such that
d(x,M) < λ(E) + ε. Denote the projection on M by Q. By [14, Proposition 2.2.1.], ||Q− PnQ|| → 0 as n→ +∞.
Since PnQx ∈ Pnl2(A), we have by (F2)

||x − Pnx|| =d(x,Pnl2(A)) ≤ ||x − PnQx|| ≤
≤||x −Qx|| + ||Qx − PnQx|| ≤ λ(E) + ε + K||Q − PnQ||,

where ||x|| ≤ K for all x ∈ E (E is bounded). Thus

sup
x∈E
||x − Pnx|| ≤ λ(E) + ε + K||Q − PnQ|| → λ(E) + ε, as n→ +∞,

which finishes the proof.

Proposition 2.3. The measure of noncompactness λ has the following properties
1. if E ⊆ F then λ(E) ≤ λ(F);
2. λ(E ∩ F) ≤ min{λ(E), λ(F)};
3. λ(E ∪ F) ≤ max{λ(E), λ(F)};
4. λ(E + F) ≤ λ(E) + λ(F).
5. λ(Ea) ≤ λ(E)||a||, where a ∈ A. If, in addition, a is invertible, then also ||a−1

||
−1λ(E) ≤ λ(Ea). In particular,

when a is unitary then λ(Ea) = λ(E).
6. λ(co E) = λ(E), where co E = {

∑n
i=1 tixi | 0 ≤ ti ∈ R,

∑n
i=1 ti = 1, xi ∈ E} is the convex hull of E.

Proof. (1) It is obvious.
(2) This follows from (1).
(3) Let d = max{λ(E), λ(F)}. Then for all x ∈ E, as well as for all x ∈ F, we have ||x − Pnx|| ≤ d + ε, for all

ε > 0 and n large enough. Hence the result.
(4) Let z ∈ E + F. Then z = x + y for some x ∈ E, y ∈ F. We have

||z − Pnz|| ≤ ||x − Pnx|| + ||y − Pny|| ≤ λ(E) + ε + λ(F) + ε,

for n large enough.
(5) Any z ∈ Ea is of the form z = ya for some y ∈ E. Therefore ||z−Pnz|| ≤ ||y−Pny|| ||a|| and the inequality

follows by taking a limit. If a has the inverse a−1, then E = (Ea)a−1 and by previous λ(E) ≤ λ(Ea)||a−1
||.

(6) Let x ∈ co E. Then x =
∑n

i=1 tixi for some xi ∈ E, and positive ti such that
∑n

i=1 ti = 1. We have

||x − Pnx|| =
∥∥∥∥ n∑

i=1

ti(xi − Pnxi)
∥∥∥∥ ≤ n∑

i=1

ti||xi − Pnxi|| ≤ sup
x∈E
||x − Pnx||.

Thus, supx∈co E ||x − Pnx|| ≤ supx∈E ||x − Pnx||. The opposite inequality is obvious. The required follows from
Proposition 2.2-(2).

Proposition 2.4. Let B denote the unit ball in l2(A). Then λ(B) = 1.

Proof. Any submodule contains the origin. Hence λ(B) ≤ 1. Let 0 < δ < 1, and let M be some free finitely
generated submodule of l2(A). Then, there is nontrivial y ∈M⊥ and δ||y||−1y ∈ B ∩M⊥. We have

d(B,M) ≥ d(δ||y||−1y,M).

However, δ||y||−1y ⊥M which implies that for all x ∈M we have

||δ||y||−1y − x||2 = δ2 + ||x||2 ≥ δ2.

Hence d(B,M) ≥ δ. Thus λ(B) ≥ δ.
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Corollary 2.5. If E ⊆ F + δB then λ(E) ≤ λ(F) + δ.

Proof. Immediately follows from Proposition 2.3-(4) and Proposition 2.4.

Proposition 2.6. The measure of noncompactness λ has the following continuity properties:

1. |λ(E) − λ(F)| ≤ dH(E,F) = max{d(E,F), d(F,E)} (dH stands for the so called Hausdorff distance.)
2. λ(E) = λ(E) (E stands for the norm closure of E);
3. λ(E) = 0 iff E isA-precompact;
4. λ(E) ≤ supx∈E ||x||.

Proof. (1) Let d = dH(E,F). Then E ⊆ F + dB and by Corollary 2.5

λ(E) ≤ λ(F) + d, i.e. λ(E) − λ(F) ≤ d.

Similarly, F ⊆ E + dB implying λ(F) − λ(E) ≤ d.
(2) As it is easy to see dH(E,E) = 0 we can apply the previous item.
(3) Follows directly from the definition.
(4) Follows from E ⊆ (supx∈E ||x||) · B.

Example 2.7. In Proposition 2.3-(5) the strict inequalities might hold.
Indeed, let the algebraA contain a nontrivial projection, say p, and letA(1− p) is isomorphic toA. (For instance

A = L∞(0, 1) and p = χ[0,1/2].) Let

E =
{
(a1p + b1(1 − p), a2p + b2(1 − p), . . . ) |

∞∑
n=1

a∗nan ≤ 1,
∞∑

n=1

b∗nbn ≤ 4
}

and let a = p. Then ||p|| = 1 and λ(E) ≥ 2, since E contains a copy of a ball of radius 2 in l2(A) (when a j = 0). On
the other hand λ(Ep) ≤ 1. Indeed, Ep is contained in the unit ball of l2(A).

Finally, we want to define MNC of an operator T ∈ Ba(l2(A)). As it is expected, it will be the MNC of its
image of the unit ball.

Definition 2.8. Let T ∈ Ba(l2(A)) be an adjointable operator. We set

λ0(T) = λ(T(B1)),

where B1 is the unit ball in l2(A).

Proposition 2.9. The function λ0 has the following properties:

(a) λ0 is subadditive, i.e.
λ0(T1 + T2) ≤ λ0(T1) + λ0(T2);

(b) λ0 is positively homogeneous, i.e.
λ0(cT) = cλ0(T),

for all c > 0 and all T ∈ Ba(l2(A));

(c) λ0(T) ≤ ||T||, for all T ∈ Ba(l2(A));

Proof. Direct verification.

We will be able to say more on the MNC λ0 in section 4.
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3. Measure of noncompactness on uniform spaces - known results

Let us recall some basic definitions and facts concerning uniform spaces. For more details see [18] or
[5].

Uniform spaces are those topological spaces in which one can deal with notions such as Cauchy sequence,
Cauchy net or uniform continuity. Although it is usual to define them as spaces endowed with a family of
sets in X×X given as some kind of neighborhoods of the diagonal, so called entourages, for our purpose it
is more convenient to give an equivalent definition, via a family of semi-metrics.

Definition 3.1. A nonempty set endowed with a family of semi-metrics, functions dα : X × X→ [0,+∞) satisfying
(i) dα(x, x) = 0; (ii) dα(x, y) = dα(y, x); (iii) dα(x, z) ≤ dα(x, y) + dα(y, z) is called a uniform space.

Remark 3.2. There is some ambiguity in literature; sometimes, functions dα from the previous definition are called
”pseudo-metrics”, whereas the term ”semi-metric” is reserved for a different notion.

All dα are metrics except they do not distinguish points, i.e. there might be dα(x, y) = 0 for some
x , y. However it is provided that for all x , y there is an α such that dα(x, y) > 0. The family of sets
Bdα (x; ε) = {y ∈ X|dα(x, y) < ε}makes a basis for some topology. It is well known that a topological space X
is a uniform space if and only if it is completely regular.

Any locally convex topological vector space is a uniform space. Indeed, there is a family of semi-norms
generating its topology. This family can be obtained by Minkowski functionals of basic neighborhoods
of zero. And an arbitrary semi-norm define a semi-metric in a natural way. Conversely, any family of
semi-norms that distinguishes points leads to a locally convex Hausdorff topological vector space.

We point out two generalizations of the notion of MNC to the framework of uniform spaces, i.e, those
topological spaces that arise from the family of semi-metrics.

Sadovskii [18] considered a uniform space X and a family P of semi-metrics that are uniformly continuous
on X × X. Starting with Kuratowski and Hausdorff MNC on a semi-metric space (which is defined exactly
as on a metric space), Sadovskii defined corresponding MNCs α, χ : Υ → G, where Υ denotes the family
of all subsets that are bounded with respect to any semi-metric p ∈ P on the given uniform space, and G
denotes the set of functions 1 : P → [0,+∞) with uniformity generated by pointwise convergence and the
natural partial ordering: 11 ≤ 12 ⇔ (∀p ∈ P) 11(p) ≤ 12(p). Their definitions are

[α(E)](p) = inf
{
d > 0 : E =

m⋃
j=1

E j, for some E j,diam(E j) < d
}
,

[χ(E)](p) = inf
{
ε > 0 : E ⊆

m⋃
j=1

Bp(x j; ε) for some x j ∈ X
}
.

For such defined α and χ, in [18, §1.2.3. and §1.2.5.], the following is proved, provided that the family P
generates the topology on X.

Theorem 3.3. The Kuratowski and Hausdorff measures of noncompactness (µ = α or µ = χ) have the following
properties:

(a) µ is non-singular, that is, they are zero on any single-element set;

(b) µ is continuous, that is, for all E ∈ Υ, p ∈ P and ε > 0 there is an entourage V in X such that for all E1 that is
V-close to E there holds |µ(E1)(p) − µ(E)(p)| < ε;

(c) µ is semi-additive, that is, for all E1, E2 we have

µ(E1 ∪ E2) = max{µ(E1), µ(E2)};
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(d) The function is algebraically semi-additive, that is,

µ(E1 + E2)(p) ≤ µ(E1)(p) + µ(E2)(p) for all E1,E2 ∈ Υ;

(e) µ is invariant under shifts, that is,

µ(x + E) = µ(E) for all E ∈ Υ, x ∈ X;

(f) µ is invariant under the transition to its closure and to the convex hull of the set, that is,

µ(co E) = µ(E) = µ(E) for all E ∈ Υ;

(g) µ is uniformly continuous, that is, for all p ∈ P and ε > 0 there is an entourage V in X such that for all V-close
E1 and E2 there holds |µ(E1)(p) − µ(E2)(p)| < ε;

(h) The functions α, χ and I are equivalent to each other, that is,

χ(Ω) ≤ I(Ω) ≤ α(Ω) ≤ 2χ(Ω) for all Ω ∈ Υ.

Although it was not done in [18], one can also define the Istrăţescu MNC in a similar way, i.e.

[I(E)](p) = inf{ε > 0 : E 3 xn, p(xn, xm) ≥ ε for all m , n}.

By (1) one can easily derive

[χ(E)](p) ≤ [I(E)](p) ≤ [α(E)](p) ≤ 2[χ(E)](p) for all bounded E. (2)

Also, Theorem 3.3 hold for µ = I. Part (a) is obvious, parts (d) and (e) follow from [3, Proposition 1], part
(c) follows from [6], parts (b) and (g) from (2) and the corresponding properties of χ, and finally (f) can be
derived from [1, Theorem 1.3.4].

Arandjelović [2] dealt with an arbitrary uniform space, and gave the following:

Definition 3.4. Let X be a uniform space, metric space or semi-metric space. Any function Φ defined on the partitive
set of X, which satisfies the following:

(1) Φ(E) = +∞ if and only if E is unbounded;

(2) Φ(E) = Φ(E);

(3) from Φ(E) = 0 follows that E is totally bounded set;

(4) from E ⊆ F it follows Φ(E) ≤ Φ(F);

(5) if X is complete, and if {En}n∈N is a sequence of closed subsets of X such that En+1 ⊆ En for each n ∈ N and
limn→∞Φ(En) = 0, then K =

⋂
n∈N En is a nonempty compact set.

is called a measure of noncompactness on X.

Remark 3.5. Note that the only nontrivial requirement in (5) is that K is nonempty. Moreover, condition (5) can be
replaced by a weaker one - Φ(A ∪ {x}) = Φ(A). It was shown in [15], see also [].

Theorem 3.6. [2, Theorem 3] Let X be a uniform space and let {di|i ∈ I} be a family of semi-metrics which defines
topology on X. Denote by µi arbitrary MNC on the semi-metric space (X, di) for each i ∈ I. Then the function
µ∗ : X→ [0,+∞] defined by

µ∗(E) = sup
i∈I

µi(E)

for each E ∈ X, is a measure of noncompactness on X.

Uniform spaces make a proper subclass of all topological spaces, but still wide enough. For instance all
topological vector spaces are uniform spaces. Hence, we can apply results of Arandjelović to topological
vector spaces.
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4. Measures of ”noncompactness” over standard Hilbert W∗-modul l2(B(H))

In this section we shall discuss standard Hilbert modules over a W∗-algebra A, a narrower class then
that considered in section 2. As it is well known,A always has a unit.

In our earlier work [7], we construct a locally convex topology τ on l2(A) such that T ∈ Ba(l2(A)) is
”compact” implies its image of the unit ball is totally bounded with respect to τ. This topology is defined
via the family of semi-norms pϕ,y

pϕ,y(x) =

√√√
∞∑
j=1

|ϕ(η∗jξ j)|2, x = (ξ1, ξ2, . . . ) ∈ l2(A), (3)

where ϕ ∈ A∗ is a normal state and y = (η1, η2, ...) is a sequence of elements inA such that

sup
j≥1

ϕ(η∗jη j) = 1. (4)

Also, in special case, whereA = B(H) is the full algebra of all bounded operators on a Hilbert space H,
the converse is also proved, i.e. that any T ∈ Ba(l2(A)) whose image of the unit ball is totally bounded with
respect to τ must be ”compact”.

Construction described in the previous section endows the space l2(A) by the corresponding Kuratowski,
Hausdorff and Istrăţescu measure of noncompactness, α, χ, I : Υ→ G,

[α(E)](pϕ,y) = inf
{
ε > 0 : E =

n⋃
i=1

Si, pϕ,y(x′ − x′′) < ε, ∀x′, x′′ ∈ Si

}
,

[χ(E)](pϕ,y) = inf
{
ε > 0 : E ⊂

n⋃
i=1

Bpϕ,y (xi, ε), xi ∈ l2(A)
}
,

where Bpϕ,y (xi, ε) = {y|pϕ,y(y − xi) < ε}, and

[I(E)](pϕ,y) = sup{ε > 0 : there is infinite S ⊂ E such that pϕ,y(x′ − x′′) ≥ ε, ∀x′ , x′′ ∈ S}.

The function α, χ and I can be regarded as functions depending on two variables, on the bounded set
Ω and on the semi-norm pϕ,y. If we want to obtain a MNC that not depends on a particular semi-norm, we
can use the functions χ∗, α∗, I∗ : Υ→ [0,+∞) defined by

χ∗(E) = sup
pϕ,y∈P

[χ(E)](pϕ,y),

α∗(E) = sup
pϕ,y∈P

[α(E)](pϕ,y),

I∗(E) = sup
pϕ,y∈P

[I(E)](pϕ,y)

(5)

for each E ∈ Υ, where P is the set of all semi-norms of the form (3). Since α, χ and I annihilates all singletons
(Theorem 3.3-(a)), they satisfy condition in Remark 3.5, and hence they are measures of noncompactness
in the sense of Definition 3.4. By Theorem 3.6 α∗, χ∗ and I∗ are measures of noncompactness on (l2(A), τ) in
the sense of Definition 3.4, as well. Also, properties (c), (d), (e) and (f) in Theorem 3.3 are easily transferred
to α∗, χ∗ and I∗, by taking a supremum. Finally, by (2), we have

χ∗(E) ≤ I∗(E) ≤ α∗(E) ≤ 2χ∗(E). (6)

Remark 4.1. Note that l2(A) is rarely complete, due to [7, Proposition 3.3]. Therefore, the condition (5) in Definition
3.4 is vague, unless l2(A)′ � l2(A) which is equivalent to the condition thatA is finite dimensional.
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We want to place the MNC λ, discussed in section 2, somewhere in the preceding chain of inequalities.

Proposition 4.2. For any bounded set E ⊆ l2(A), we have

χ∗(E) ≤ λ(E).

Proof. Let E be a bounded set, and let Pn denote the projection to the first n coordinates in l2(A), i.e.
Pn(ξ1, ξ2, . . . ) = (ξ1, ξ2, . . . , ξn, 0, . . . ). Since E ⊆ PnE + (I − Pn)E, and since χ∗ is subadditive, we have

χ∗(E) ≤ χ∗(PnE) + χ∗((I − Pn)E).

However, by ([7, Proposition 3.4.]), the set PnE is totally bounded, and we have χ∗(PnE) = 0. Hence

χ∗(E) ≤ χ∗((I − Pn)E) ≤ sup
x∈E
||(I − Pn)x||,

for all n ∈N. Therefore, by Proposition 2.2-(2), χ∗(E) ≤ λ(E).

The preceding Proposition establishes a lower bound of λ. Before we obtained an upper bound for λ,
in a special case, we introduce balanced sets.

Definition 4.3. Let E ⊂ l2(A) be a bounded set.

(a) We say that E isA-balanced if x ·u ∈ E whenever x ∈ E and u ∈ A is unitary. (This definition is motivated by
the notion of balanced sets on topological vector spaces over the field C, where u unitary is reduced to |u| = 1.)

(b) ByA-balanced hull of E we assume the minimal balanced set containing E, that is
⋃

Eu, where the union is
taken over all unitaries u ∈ A.

In Proposition 2.3-(5) we proved λ(Eu) = λ(E). We give two extensions of this statement, the first of
them concerning the balanced hull.

Proposition 4.4. Let E ⊆ l2(A) be a bounded set and let F be itsA-balanced hull. Then λ(F) = λ(E).

Proof. For all x ∈ E and all unitaries u, we have ||u|| = 1, and hence ||xu − Pnxu|| ≤ ||x − Pnxu||. Therefore, by
Proposition 2.2-(2), we have

λ(F) = lim
n→+∞

sup
x∈E,u−unitary

||xu − Pnxu|| ≤ lim
n→+∞

sup
x∈E
||x − Pnx|| = λ(E).

The opposite inequality λ(E) ≤ λ(F) follows from E ⊆ F.

Proposition 4.5. Let E ⊆ l2(A) be a bounded set, let u ∈ A be a unitary and let µ stands for any of Kuratowski,
Hausdorff or Istrăţescu MNC. Then

µ∗(Eu) = µ∗(E).

Proof. First, observe that given a normal state ϕ onA and a unitary u ∈ A, the mapping ϕu, ϕu(x) = ϕ(u∗xu)
is also a normal state. Obviously, ϕu(1) = 1 and ϕu(x) ≥ 0 whenever x ≥ 0. Hence, it suffices to prove that
ϕu is normal. Let xα be an increasing net with the least upper bound x. Then uxαu∗ is also an increasing
net, bounded by uxu∗. Thus, its least upper bound is less then uxu∗. Moreover, it is equal to uxu∗ by
interchanging roles. Therefore

supϕu(xα) = supϕ(u∗xαu) = ϕ(u∗xαu) = ϕu(x).

Let ε > 0 be arbitrary. By (5) there is a semi-norm pϕ,y ∈ P such that [µ(Eu)](pϕ,y) > µ∗(Eu) − ε. Next, we
have pϕ,y(xu) = pϕu,yu, where yu∗ = (η1u∗, η2u∗, . . . ). Indeed

pϕ,y(xu)2 =

+∞∑
j=1

|ϕ(η∗jξ ju)|2 =

+∞∑
j=1

|ϕ(u∗(η ju∗)∗ξ ju)|2 = pϕu,yu∗ (x)2.

(Note that the pair (ϕu, yu∗) trivially satisfies (4).) Therefore, [µ(E)](pϕu,yu∗ ) = [µ(Eu)](pϕ,y) > µ∗(Eu) − ε and
hence µ∗(E) ≥ µ∗(Eu). The opposite inequality follows by E = (Eu)u−1.
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Remark 4.6. We don’t know whether Kuratowski, Hausdorff and Istrăţescu MNCs are stable with respect to balanced
hull.

Now, we are going to derive an upper bound for the MNC λ. Namely, in a special case, whereA = B(H),
we can obtain the exact position of λ in the inequality chain (6) for balanced sets.

Theorem 4.7. LetA = B(H). Let E ⊆ l2(A) be anA-balanced set. Then

λ(E) ≤
√
||E||I∗(E),

where ||E|| = supx∈E ||x||.

Proof. Let Pk denote the projection to the first k coordinates, i.e. Pk(ξ1, ξ2, . . . ) = (ξ1, . . . , ξk, 0, 0, . . . ). It is
well known that all Pk are ”compact”. If infk≥1 ||(I − Pk)E|| = 0, then from Proposition 4.2 and (6), it follows
λ∗(E) = χ∗(E) = I∗(E) = 0. So, let

δ = inf
k≥1
||(I − Pk)E|| > 0.

Then immediately, δ ≤ ||E||. Choose ε > 0 such that ε < δ2. Define the sequence of projections Qn ∈

{P1,P2, . . . } and the sequences of vectors xn and zn ∈ l2(A) in the following way. Let Q0 = 0. If Qn−1 is
already defined, there is xn ∈ E such that ||xn|| ≥ ||(I − Qn−1)xn|| > C1, where C1 = 1

2

(
δ +

√
δ2 − ε/2

)
. Since

limk→+∞ ||(I − Pk)(I −Qn−1)xn|| = 0, there is a positive integer kn such that ||(I − Pkn )(I −Qn−1)xn|| < C2, where
C2 = min

{
ε

2||E|| ,
1
2

(
δ −

√
δ2 − ε/2

)}
. Define Qn = Pkn and

zn = Qn(I −Qn−1)xn. (7)

The sequences xn and zn have the following properties:
Firstly, by definition, there hold the inequalities

||(I −Qn)(I −Qn−1)xn|| < C2, (8)

||zn|| ≤ ||xn|| ≤ ||E||, (9)

||zn|| ≥ ||(I −Qn−1)xn|| − ||(I −Qn)(I −Qn−1)xn|| > C1 − C2. (10)

Secondly,

〈zn, xn〉 = 〈zn, zn〉 . (11)

Indeed, since zn = Qn(I −Qn−1)xn, we have

〈zn, xn〉 = 〈Qn(I −Qn−1)xn, xn〉 =

= 〈Qn(I −Qn−1)xn, (I −Qn−1)Qnxn〉 = 〈zn, zn〉 .

Thirdly, for m > n we have

|| 〈zm, xn〉 || < C2||E||. (12)

Indeed, for such m and n we have Qn−1 ≤ Qn ≤ Qm−1, i.e. I − Qm−1 ≤ I − Qn ≤ I − Qn−1, implying
I −Qm−1 = (I −Qm−1)(I −Qn)(I −Qn−1), and thus

〈zm, xn〉 = 〈(I −Qm−1)zm, xn〉 =

= 〈zm, (I −Qm−1)(I −Qn)(I −Qn−1)xn〉 =

= 〈zm, (I −Qn)(I −Qn−1)xn〉 .
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Therefore, by (8) and (10)

|| 〈zm, xn〉 || ≤ ||zm|| · ||(I −Qn)(I −Qn−1)xn|| ≤ C2||E||.

Let us construct a semi-norm p, continuous in τ, and a totally discrete sequence from E. Since by (10)
||zn||

2 = || 〈zn, zn〉 || > (C1 −C2)2, we can choose a normal state ϕ and υ j, ν j ∈ A according to [7, Lemma 4.6.]),
such that

ϕ(υ∗n 〈zn, zn〉 νn) > (C1 − C2)2. (13)

Consider the semi-norm p given by

p(x) =

√√√ +∞∑
j=1

|ϕ(< z jυ j, x >)|2.

By (7) there is a sequence ζ j ∈ A such that

zn = (0, . . . , 0, ζkn−1+1, . . . , ζkn , 0, . . . ).

Define ω j = ζ jυn/ϕ(υ∗nζ∗jζ jυn)1/2, for kn−1 + 1 ≤ j ≤ kn. Obviously ϕ(ω∗jω j) = 1. Also, for x = (ξ1, ξ2, . . . ) we
have ∣∣∣ϕ(〈znυn, x〉)

∣∣∣2 =
∣∣∣∣ kn∑

j=kn−1+1

ϕ(υ∗nζ
∗

jζ jυn)1/2ϕ(ω∗jξ j)
∣∣∣∣2 ≤

≤

kn∑
j=kn−1+1

ϕ(υ∗nζ
∗

jζ jυn)
kn∑

j=kn−1+1

∣∣∣∣ϕ(ω∗jξ j)
∣∣∣∣2 =

= ϕ(υ∗n 〈zn, zn〉 υn)
kn∑

j=kn−1+1

∣∣∣∣ϕ(ω∗jξ j)
∣∣∣∣2 .

Including (9) we obtain ϕ(υ∗n 〈zn, zn〉 υn) ≤ ||υ∗n 〈zn, zn〉 υn|| = ||zn||
2
≤ ||E||2 and hence

p(x)2 =

+∞∑
n=1

|ϕ(〈znυn, x〉)|2 ≤ ||E||2
+∞∑
j=1

|ϕ(ω∗jξ j)|2 = ||E||2pϕ,ω1,...,ωn,...(x)2.

Thus, we conclude that p is well defined and also that it is continuous with respect to τ.
Also, E isA-balanced, so xnνn ∈ E. Finally we shall prove that xnνn is a totally discrete sequence. Indeed,

for m > n we have

p(xmνm − xnνn) ≥
∣∣∣ϕ(〈zmυm, xmνm − xnνn〉)

∣∣∣ ≥
≥

∣∣∣ϕ(υ∗m 〈zm, xm〉 νm)
∣∣∣ − ∣∣∣ϕ(υ∗m 〈zm, xn〉 νn)

∣∣∣ .
However, by (11) and (13), ∣∣∣ϕ(υ∗m 〈zm, zm〉 νm)

∣∣∣ > (C1 − C2)2

and, by (12)
|ϕ(υ∗m 〈zm, xn〉 νn)| ≤ || 〈zm, xn〉 || < C2||E||.

Therefore
p(xmνm − xnνn) > (C1 − C2)2

− C2||E|| ≥ δ2
− ε

and

pϕ,ω1,...,ωn,...(xmνm − xnνn) >
δ2
− ε
||E||

.

For ε ∈ (0, δ2), we have I∗(E) ≥ δ2
−ε
||E|| and hence I∗(E) ≥ δ2

||E|| =
λ(E)2

||E|| . Thus, λ(E) ≤
√
||E||I∗(E).
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Remark 4.8. The preceding proof is adapted proof of our earlier result [7, Theorem 4.10].

Corollary 4.9. On the standard Hilbert module l2(B(H)) over the algebra B(H) of all bounded operators on a Hilbert
space H, there holds

χ∗(E) ≤ λ(E) ≤
√
||E||I∗(E) ≤

√
||E||α∗(E) ≤

√
2||E||χ∗(E),

for any balanced set, i.e. a set for which x ∈ E, u-unitary implies xu ∈ E.

Finally, we discuss some relationship between the MNC of an arbitrary adjointable operator λ0 intro-
duced in Definition 2.8, and corresponding MNCs derived from α∗, χ∗ and I∗.

Definition 4.10. Let A is an arbitrary W∗-algebra and let T ∈ Ba(l2(A)) be an adjointable operator. The functions
α∗0, χ∗0, I∗0 : Ba(l2(A))→ [0,+∞) defined by

α∗0(T) = α∗(T(B1)), χ∗0(T) = χ∗(T(B1)), I∗0(T) = I∗(T(B1))

are called, respectively, Kuratowski, Hausdorff and Istrăţescu measure of noncompactness of the operator T.

Proposition 4.11. LetA be an arbitrary W∗-algebra, let T, S ∈ Ba(l2(A)) and let µ stands for any of MNCs α, χ, I.
Then

(a) All α∗0, χ∗0 and I∗0 are subadditive and positively homogeneous, i.e. there holds

µ∗0(T + S) ≤ µ∗0(T) + µ∗0(S), µ∗0(cT) = cµ∗(T), for all c > 0.

(b) The functions α∗0, χ∗0 and I∗0 are equivalent to each other, that is,

χ∗0(T) ≤ I∗0(T) ≤ α∗0(T) ≤ 2χ∗0(T).

Also, there holds χ∗0(T) ≤ λ0(T).

(c) χ∗0(T), λ0(T) ≤ ||T|| and α∗0(T), I∗0(T) ≤ 2||T||.

(d) If T is ”compact”, i.e. T belongs to the closed linear space generated by x 7→ z
〈
y, x

〉
, then λ0(T) = χ0(T) =

α0(T) = I0(T) = 0. In general, the converse might not hold.

(e) µ∗0(T + K) = µ∗0(T), as well as λ0(T + K) = λ0(T) for all ”compact” operators K.

Proof. Part (a) follows easily from Theorem 3.3-(d), whereas part (b) follows from (6) and Proposition 4.2.
Since T(B1) ⊆ B(0; ||T||) = ||T||B1, it follows λ0(T) ≤ ||T|| according to Proposition 2.4. Other inequalities

in part (c) follows from part (a).
If T is ”compact”, then T is norm limit of finite rank operators. Hence T(B1) isA-precompact. Therefore

λ0(T) = 0. This, together with (b) proves (d). The converse does not always hold due to [7, Example 5.1.].
Finally, (e) follows from (d).

In the caseA = B(H), we can obtain more.

Proposition 4.12. LetA = B(H) and let T ∈ Ba(l2(B(H))). Then

(a) There holds
χ∗0(T) ≤ λ0(T) ≤

√
||T||I∗0(T) ≤

√
||T||α∗0(T) ≤

√
2||T||χ∗0(T).

(b) µ∗0(T) = 0, µ ∈ {α, χ, I} iff λ0(T) = 0 iff T is a ”compact” operator.

Proof. Part (a) follows from Proposition 4.11-(b) and Theorem 4.7, since T(B1) is a balanced set (y = Tx ∈ T(B1)
implies yu = T(xu) ∈ T(B1)).

Part (b) follows from part (a) and Proposition 4.11-(d). Indeed, if any of four MNCs annihilate T, then,
by part (a), α∗0(T) = 0, and hence, T(B1) is totally bounded in the topology τ. By [7, Theorem 4.10.], T is
”compact”.
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5. Three questions

Question 5.1. It is easy to obtain the following: Let E ⊆ l2(A) be bounded. For any ε > 0 there is anA-precompact
set Cε such that E ⊆ Cε + (λ(E) + ε)B. (For instance Cε = E ∩M for a suitable free finitely generated M.)

Is it possible to get something stronger: There is anA-precompact set C such that E ⊆ C + λ(E) · B?

Question 5.2. Among all properties of MNCs on a Banach space, it turns out that the most important is µ(co E) =
µ(E). This was proved in this note for λ if we co E regard as a real field convex hull, i.e. co E = {

∑n
1 c jx j |

∑
c j =

1, c j ∈ R+, x j ∈ E}. However, there is a notion ofA-convex hull (see for instance [11])

coA E =
{ n∑

j=1

a∗jx ja j | x j ∈ E, a j ∈ A,
∑

a∗ja j = 1
}
.

Is it possible to obtain λ(coA E) = λ(E)?

Question 5.3. As it was mentioned in Remark 4.6, we ask for the following: Is it true µ∗(E) = µ∗(F), where F denotes
the balanced hull of E, i.e. F =

⋃
u Eu (the union runs through all unitaries u), and µ denotes any of Kuratowski,

Hausdorff or Istrăţescu MNC?
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