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Abstract. Several characterization results of a symmetric distribution based on concomitants of order
statistics as well as k-records from Farlie-Gumbel-Morgenstern (FGM) family of bivariate distributions
are established. These include characterizations of a symmetric distribution on the basis of equality in
distribution, moments, Rényi and Tsallis entropies of concomitants of upper and lower order statistics, also
in terms of the same properties of concomitants of upper and lower k-records.

1. Introduction and preliminaries

It is well-known that characterization problems in applied probability and mathematical statistics are
statements in which the description of possible distributions of random variables follows from properties of
some functions in these variables. There are a lot of interesting characterizations of probability distributions
based on ordered variables in the literature, which have been established by several authors. See, for
example, Arnold et al. (1992, Ch. 6), Arnold et al. (1998, Ch. 4), Ahsanullah (2017) and references cited
therein. It is known that the class of symmetric distributions is so broad and includes several well-known
distributions such as normal, logistic, Student-t, Cauchy, Laplace, beta (with equal shape parameters) and
uniform distributions. Also, the properties and characterization of symmetric distributions are widely
used in many applications, see for example, Johnson et al. (1995) for more details. Let X1,X2, ...,Xn be
independent and identically distributed (iid) random variables with continuous distribution function (cdf)
FX and probability density function (pdf) fX with support SX and denote the corresponding order statistics
by X1:n, ...,Xn:n. Characterization of symmetric distributions based on the order statistics has been done by
a number of authors. Milošević and Obradović (2016) proved that |Xr:n| and |Xn−r+1:n|, (r ≤ n/2), are equally
distributed if and only if X has a symmetric distribution with respect to zero. Balakrishnan and Selvitella

(2017) proved that Xr:n
d
= −Xn−r+1:n for a given n and some fixed r = 1, ...,n if and only if fX(x) = fX(−x)

for all x ∈ R, i.e., the population distribution is symmetric, say around 0. Here, d
= means that the two

random variables have the same distribution. Testing of symmetry based on characterizations have been
also considered by several authors, see, for example, Baringhaus and Henze (1992), Nikitin and Ahsanullah
(2015), Amiri and Khaledi (2016), Milošević and Obradović (2016) and Božin et al. (2018) and references
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therein. The aim of this paper is to provide some new characterization results for symmetric distributions by
using some properties of concomitants of ordered variables from the FGM family of bivariate distributions.
This family of distributions has found extensive use in practice and is characterized by the specified marginal
cdf FX(x) and FY(y) of random variables X and Y, respectively, and a parameter λ, resulting in the bivariate
distribution function given by

FX,Y(x, y) = FX(x)FY(y)[1 + λ(1 − FX(x))(1 − FY(y))], (1)

where λ ∈ [−1, 1] is known as the association parameter. Two random variables X and Y are independent
whenever λ = 0, positively associated when λ > 0 and negatively associated when λ < 0. Bairamov and
Kotz (2002) introduced an extension of FGM family of bivariate distributions. For more details about FGM
family see, for example, Drouet Mari and Kotz (2001) and Balakrishnan and Lai (2009). In what follows,
based on some properties of concomitants of order statistics as well as concomitants of record values from
the FGM family of bivariate distributions, we establish characterizations of symmetric distributions. These
include characterizations on the basis of identity in distribution, moments, Rényi entropy, Tsallis entropy
and cross entropy of concomitants of upper and lower order statistics, also in terms of same properties of
concomitants of upper and lower k-records. With this in mind and for the convenience of the readers, let
us first recall some of notions here. Let X be a random variable having an absolutely continuous cdf FX and
pdf fX with support SX. Then, the entropy of order α or Rényi entropy is defined as

Hα(X) =
1

1 − α
log

∫
SX

f αX(x)dx, α > 0, α , 1. (2)

It should be mentioned that in information theory, the Rényi entropy of general order unifies the well-known
Shannon entropy with several other entropy notions, like the min-entropy or collision entropy. We refer the
reader to Cover and Thomas (1991) for more details and references. Also, Tsallis entropy was introduced
by Tsallis (1988) and it is a generalization of Boltzmann-Gibbs statistics. For a continuous random variable
X with pdf fX, Tsallis entropy of order α is defined by

Tα(X) =
1

α − 1

(
1 −

∫
SX

f αX(x)dx
)
, (3)

where the entropic index α is any real number. It can be shown that limα→1 Hα(X) = H(X) and also
limα→1 Tα(X) = H(X), where

H(X) = −

∫
SX

fX(x) log fX(x)dx, (4)

is commonly referred to as the entropy or Shannon information measure of X. Kerridge (1961) introduced
the concept of inaccuracy in the context of information theory. Nath (1968) extended Kerridge’s inaccuracy
to the case of continuous situation and discussed some properties. Let X and Y be two continuous random
variables with cdfs F and G, respectively. If F is the actual distribution function corresponding to the
observations and G is the distribution assigned by the experimenter and f and 1 are the corresponding
pdfs, then, the inaccuracy measure is defined as

K(X,Y) = −

∫
f (x) log 1(x)dx. (5)

The inaccuracy measure in Eq. (5) is also known as the cross entropy between two probability distributions
F and G, see for example Ghosh and Kundu (2018). We remind that when 1(x) = f (x) for all x, then Eq.
(5) becomes the Shannon’s entropy as given in (4). There are also characterization results based on some
information measures of order statistics and record values in the literature. See, Baratpour et al. (2007,
2008), Ahmadi and Fashandi (2009), Thapliyal et al. (2015) and Kumar (2017). Fashandi and Ahmadi
(2012) showed that the equality of entropies (Shannon and Rényi) of upper and lower order statistics as
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well as upper and lower records is a characteristic property of symmetric distributions. Recently, Ahmadi
and Fashandi (2019) established some characterization results of symmetric continuous distributions based
on various information measures properties of order statistics. In this work, we intend to obtain some
characteristic results for symmetric distributions based on concomitants.

The rest of this paper is organized as follows. Section 2 contains characterization results of symmetric
distributions based on concomitants of order statistics from FGM family of bivariate distributions. The
results based on concomitants of k-records are given in Section 3.

Throughout the paper, we assume that the set where the pdf is positive is an interval, where it may be
(−∞,+∞). Also, throughout this paper we assume that the integrals exist.

2. Results based on concomitants of order statistics

Suppose (Xi,Yi), i = 1, ...,n is a random sample from a bivariate population (X,Y) with joint cdf F(x, y).
If we order the sample by the X-variate, and obtain the order statistics, for the X sample, then the Y-variate
associated with the r-th order statistic Xr:n is called the concomitant of the r-th order statistic, and is denoted
by Y[r:n]. Then, the pdf of Y[r:n] is given by

fY[r:n] (y) =

∫
SX

fY|X(y|x) fXr:n (x)dx, y ∈ SY, (6)

where SY stands for the support of Y and fXr:n is the pdf of Xr:n and is given by

fXr:n (x) =
n!

(r − 1)!(n − r)!
Fr−1

X (x)(1 − FX(x))n−r f (x), x ∈ SX, (7)

see for example, David and Nagaraja (2003). For FGM family, from Eq. (1) the corresponding joint pdf is
given by

fX,Y(x, y) = fX(x) fY(y)[1 + λ(1 − 2FX(x))(1 − 2FY(y))]. (8)

Then, from Eqs. (6), (7) and (8), we immediately have the pdf of Y[r:n] to be

fY[r:n] (y) = fY(y)[1 + λ[r,n](1 − 2FY(y))], y ∈ SY, (9)

where λ[r,n] = (1 − 2r
n+1 )λ. For some recent discussion on concomitants of order statistics arising from FGM

family, see for example, Veena and Thomas (2017) and references therein.
In this section, we intend to investigate the conditions in which Y has a symmetric distribution based

on some properties of concomitants of order statistics from FGM family of bivariate distributions. In all
theorems, it is assumed that (X1,Y1), ..., (Xn,Yn) are iid pairs of bivariate random variables from a bivariate
FGM distribution function (1).

Theorem 2.1. The following two statements are equivalent:
(i) Y has a symmetric distribution about µ;

(ii) µ − Y[r:n]
d
= µ + Y[n−r+1:n] for some fixed positive integers r and n, such that 1 ≤ r ≤ n/2.

Proof. Suppose the marginal distribution of Y is symmetric around µ, then from (9) we have

fY[r:n] (µ − y) = fY(µ − y)[1 + λ[r,n](1 − 2FY(µ − y))]
= fY(µ + y)[1 + λ[n−r+1,n](1 − 2FY(µ + y))]
= fY[n−r+1:n] (µ + y), for all y ∈ SY,

because of λ[n−r+1,n] = −λ[r,n]. This means that µ − Y[r:n]
d
= µ + Y[n−r+1:n] for all r ∈ {1, ...,n}. For proving (ii)

⇒ (i), from Eq. (9), we obtain the cdf of µ − Y[r:n] to be

Fµ−Y[r:n] (y) =
1
2

∫ 1−2FY(µ−y)

−1
(1 + λ[r,n]u)du. (10)
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Similarly, from Eq. (9), we have the cdf of µ + Y[n−r+1:n] to be

Fµ+Y[n−r+1:n] (y) =

∫ y−µ

−∞

fY(u)[1 + λ[n−r+1,n](1 − 2FY(u))]du

=
1
2

∫ 2FY(y−µ)−1

−1
(1 + λ[r,n]u)du. (11)

By (ii) there exists some n and r, (1 ≤ r ≤ n/2) such that µ−Y[r:n]
d
= µ+Y[n−r+1:n], i.e., Fµ−Y[r:n] (t) = Fµ+Y[n−r+1:n] (t),

for all t ∈ R. Then, Eqs. (10) and (11) resulted that FY(µ − t) = 1 − FY(t − µ), for all t ∈ R. So, the proof is
complete. �

Let C1 be the class of all continuous cdf, F, with F−1(u) − µ ≥ µ − F−1(1 − u) for all u ∈ (0, 1/2) or
F−1(u) − µ ≤ µ − F−1(1 − u) for all u ∈ (0, 1/2), where F−1(u) is the quantile function and for u ∈ [0, 1]
is defined as F−1(u) = inf{t,F(t) ≥ u} and µ is the median of F (without loss of generality, we assume
µ = 0). It is known that the equality in C1 means that F is symmetric. Using this fact, Amiri and Khaledi
(2015) proposed a new test of symmetry against right skewness. It is easy to show that the class C1 is
not empty. For example, let F(y) = exp(−e−y),−∞ < y < +∞, i.e., Y has Gumbel distribution (extreme
value type I distribution for maximums), see, Kotz and Nadarajah (2000). Then, we immediately find
F−1(u) = − log(− log u) and µ = − log(log 2). It is not difficult to verify that, for Gumbel distribution we
have F−1(u) − µ ≥ µ − F−1(1 − u) for all u ∈ (0, 1/2), i.e., the Gumbel distribution belongs to C1. Many
characterization results of distribution by recurrence relations of moment of order statistics are known. We
have the next result for symmetric distribution based on the moments of concomitants of order statistics
from FGM type bivariate distributions.

Theorem 2.2. Suppose E(Ym) exists for some positive integer number m. Then, the following two statements are
equivalent for any FY belongs to C1:
(i) Y has a symmetric distribution;
(ii) E(Ym

[r:n]) = (−1)mE(Ym
[n−r+1:n]), for some fixed positive integers r and n, such that 1 ≤ r ≤ n/2.

Proof. The proof for (i)⇒ (ii) is easy. We prove that (i) follows by (ii). From Eq. (9), it is easy to show that
for any positive integer number m,

E(Ym
[r:n]) =

∫ 1

0

{
1 + λ[r,n](1 − 2u)

}
[F−1

Y (u)]mdu. (12)

It follows that (12) showing that E(Ym
[r:n]) exists provided E(Ym) exists. Similarly E(Ym

[n−r+1:n]) is given by

E(Ym
[n−r+1:n]) =

∫ 1

0

{
1 + λ[r,n](1 − 2u)

}
[F−1

Y (1 − u)]mdu. (13)

By Eqs. (12) and (13), we obtain

E(Ym
[r:n]) − (−1)mE(Ym

[n−r+1:n]) =

∫ 1

0

{
1 + λ[r,n](1 − 2u)

} (
[F−1

Y (u)]m
− [−F−1

Y (1 − u)]m
)

du

= 2λ[r,n]

∫ 1/2

0
(1 − 2u)

(
[F−1

Y (u)]m
− [−F−1

Y (1 − u)]m
)

du.

Now, suppose (ii) holds, then∫ 1/2

0
(1 − 2u)

(
[F−1

Y (u)]m
− [−F−1

Y (1 − u)]m
)

du = 0.
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By assumptions FY belongs to C1, this implies that

[F−1
Y (u)]m

− [−F−1
Y (1 − u)]m = 0,

for all u ∈ (0, 1/2). If m is an odd number, then F−1
X (u) = −F−1

X (1 − u) and if m is an even number then
F−1

X (u) = ±F−1
X (1 − u), the positive sign is not acceptable. These complete the proof. �

Let C2 be the class of all continuous pdf, f , with connected support and f (F−1(u)) ≥ f (F−1(1 − u)) for all
u ∈ (0, 1/2) or f (F−1(u)) ≤ f (F−1(1 − u)) for all u ∈ (0, 1/2). The class C2 also is not empty. For example,
if F is the Gumbel distribution, then we have f (F−1(u)) = −u log u ≥ −(1 − u) log(1 − u) = f (F−1(1 − u)) for
all u ∈ (0, 1/2). For FGM family, Fashandi and Ahmadi (2012) proved that (in Theorem 5) if H(Y[r:n]) =
H(Y[n−r+1:n]), then Y has uniform distribution on its support under some conditions. We have the next
result for symmetric distribution based on the entropies of concomitants of order statistics from FGM type
bivariate distribution. Let us remind the following lemma that will be used to obtain the new results.

Lemma 2.3. (Fashandi and Ahmadi, 2012) Let X be a continuous random variable with cdf FX and pdf fX with
support SX. Then, the identity

fX(F−1
X (u)) = fX(F−1

X (1 − u)), for almost all u ∈ (0, 1/2),

implies that there exists a constant c such that FX(c − x) = 1 − FX(c + x) for all x ∈ SX.

Theorem 2.4. The following two statements are equivalent for any fY belongs to C2:
(i) Y has a symmetric distribution;
(ii) H(Y[r:n]) = H(Y[n−r+1:n]), for some fixed positive integers r and n, such that 1 ≤ r ≤ n/2.

Proof. It is easy to show that (i) ⇒ (ii). We prove that (i) follows from (ii), Fashandi and Ahmadi (2012)
proved the following identity

H(Y[n−r+1:n]) −H(Y[r:n] = λ[r:n]

∫ 1

0
(1 − 2u) log

 fY(F−1
Y (u))

fY(F−1
Y (1 − u))

 du. (14)

From Eq. (14), H(Y[n−r+1:n]) −H(Y[r:n]) = 0 is equivalent to∫ 1

0
(1 − 2u) log

 fY(F−1
Y (u))

fY(F−1
Y (1 − u))

 du = 0. (15)

By Eq. (15), we have∫ 1/2

0
(1 − 2u) log

 fY(F−1
Y (u))

fY(F−1
Y (1 − u))

 du = 0. (16)

By assumption fY belongs to C2, consequently, from Eq. (16) we arrive at

fY(F−1
Y (u)) = fY(F−1

Y (1 − u)),

for all u ∈ (0, 1/2). The proof is completed by Lemma 2.3. �

We have the next result based on the Rényi entropy of order α, where α > 0 and α , 1.

Theorem 2.5. The following two statements are equivalent for any fY belongs to C2:
(i) Y has a symmetric distribution;
(ii) Hα(Y[r:n]) = Hα(Y[n−r+1:n]), for some fixed positive integers r and n, such that 1 ≤ r ≤ n/2.
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Proof. From Eqs. (2) and (9), the Rényi entropy of Y[r:n] is given by

Hα(Y[r:n]) =
1

1 − α
log

∫
SY

[ fY[r:n] (y)]αdy

=
1

1 − α
log

∫ 1

0

(
1 + λ[r,n](1 − 2u)

)α [ fY(F−1
Y (u))]α−1du, α > 0, α , 1. (17)

Similarly, we get the following statement for the Rényi entropy of Y[n−r+1:n]

Hα(Y[n−r+1:n]) =
1

1 − α
log

∫ 1

0

(
1 + λ[r,n](1 − 2u)

)α [ fY(F−1
Y (1 − u))]α−1du. (18)

If Y has a symmetric distribution, then from Eqs. (17) and (18), we immediately have Hα(Y[r:n]) =
Hα(Y[n−r+1:n]) for all r and n, 1 ≤ r ≤ n/2. Now, we show that (i) follows by (ii). If Hα(Y[r:n]) = Hα(Y[n−r+1:n]),
then from this and Eqs. (17) and (18), it can be shown that∫ 1

0

(
1 + λ[r,n](1 − 2u)

)α
{[ fY(F−1

Y (u))]α−1
− [ fY(F−1

Y (1 − u))]α−1
}du =∫ 1/2

0

{(
1 + λ[r,n](1 − 2u)

)α
−

(
1 − λ[r,n](1 − 2u)

)α}
{[ fY(F−1

Y (u))]α−1
− [ fY(F−1

Y (1 − u))]α−1
}du = 0. (19)

First suppose λ ∈ (0, 1), since by assumption r ≤ n/2, then 0 < λ[r,n] < 1 and 0 < λ[r,n](1 − 2u) < 1 for
u ∈ (0, 1/2). Consequently, we have the following inequality(

1 + λ[r,n](1 − 2u)
)α > (

1 − λ[r,n](1 − 2u)
)α , α > 0, (20)

for u ∈ (0, 1/2). By assumptions fY belongs to C2, thus Eqs. (19) and (20) conclude that

[ fY(F−1
Y (u))]α−1

− [ fY(F−1
Y (1 − u))]α−1 = 0, α > 0, α , 1,

for all u ∈ (0, 1/2). Then in this case, the proof is completed by Lemma 2.3. Now, suppose λ ∈ (−1, 0), then
we have 0 < −λ[r,n] < 1. Consequently, we arrive at the following inequality(

1 + λ[r,n](1 − 2u)
)α < (

1 − λ[r,n](1 − 2u)
)α , α > 0,

for u ∈ (0, 1/2). Then the expression in the first curly braces in Eq. (19) becomes negative. So, the proof is
completed by noting that fY belongs to C2 and using Lemma 2.3. �

From Eqs. (3) and (9), the Tsallis entropy of Y[r:n] is given by

Tα(Y[r:n]) =
1

α − 1

(
1 −

∫ 1

0

(
1 + λ[r,n](1 − 2u)

)α [ fY(F−1
Y (u))]α−1du

)
. (21)

Using Eq. (21), we obtain a similar result as in Theorem 2.5 based on Tsallis entropy of order α which is
stated in the next theorem. The proof is similar, so it is omitted.

Theorem 2.6. The following two statements are equivalent for any fY belongs to C2:
(i) Y has a symmetric distribution;
(ii) Tα(Y[r:n]) = Tα(Y[n−r+1:n]), for some fixed positive integers r and n, such that 1 ≤ r ≤ n/2.

Analogous to the cross entropy (5) between two density functions f and 1, a measure of inaccuracy
associated with the distribution of Y[r:n] and the parent distribution is given by

K(Y[r:n],Y) = −

∫
SY

fY[r:n] (y) log fY(y)dy. (22)

Next theorem provides a result for symmetric distributions based on the cross entropy of concomitants of
order statistics in FGM family.



J. Ahmadi, M. Fashandi / Filomat 33:13 (2019), 4239–4250 4245

Theorem 2.7. The following two statements are equivalent for any fY belongs to C2:
(i) Y has a symmetric distribution;
(ii) K(Y[r:n],Y) = K(Y[n−r+1:n],Y), for some fixed positive integers r and n such that 1 ≤ r ≤ n/2.

Proof. We prove (ii)⇒ (i). For FGM family, from Eqs. (9) and (22) we get

K(Y[r:n],Y) = −

∫
SY

fY(y)[1 + λ[r,n](1 − 2FY(y))] log fY(y)dy

= −

∫ 1

0
[1 + λ[r,n](1 − 2u)] log fY(F−1

Y (u))du. (23)

Similarly, K(Y[n−r+1:n],Y) is given by

K(Y[n−r+1:n],Y) = −

∫ 1

0
[1 + λ[n−r+1,n](1 − 2u)] log fY(F−1

Y (u))du

= −

∫ 1

0
[1 − λ[r,n](1 − 2u)] log fY(F−1

Y (u))du

= −

∫ 1

0
[1 + λ[r,n](1 − 2u)] log fY(F−1

Y (1 − u))du. (24)

By assumptions, Eqs. (23) and (24), we arrive at∫ 1

0
(1 − 2u) log

 fY(F−1
Y (u))

fY(F−1
Y (1 − u))

 du = 0. (25)

So, by Eq. (25), the rest of the proof is similar to the proof of Theorem 2.4. �

3. Results based on concomitants of k-records

Let {Xi, i ≥ 1} be a sequence of iid random variables with an absolutely continuous cdf FX(x) and pdf
fX(x) with support SX. Upper k-record process is defined in terms of the k-th largest X yet seen, k ≥ 1. For
the continuous case, let TU

1,k = k,RU
1,k = X1:k and for n ≥ 2, let TU

n,k = min{ j : j > Tn−1,k, X j > XTU
n−1,k−k+1:TU

n−1,k
},

where Xi:m denotes the i-th order statistic in a sample of size m. The sequence of upper k-records is then
defined by RU

n,k = XTn,k−k+1:Tn,k for n ≥ 1, see Arnold et al. (1998, p. 43). The pdf of RU
n,k is given by

fRU
n,k

(u) =
(−k log F̄X(u))n−1

(n − 1)!
k(F̄X(u))k−1 fX(u), u ∈ SX, (26)

where F̄X = 1 − FX is the survival function of X. An analogous definition can be given for lower k-record
values, let us denote the n-th lower k-record values by RL

n,k. Then, the pdf of RL
n,k is

fRL
n,k

(l) =
(−k log FX(l))n−1

(n − 1)!
k(FX(l))k−1 fX(l), l ∈ SX. (27)

See, Arnold et al. (1998) and references therein for more details on the theory and applications of record
values. The superscript ‘U’ and ‘L’ stand for the upper record and the lower record, respectively.

Now, let (X1,Y1), (X2,Y2), ... be a sequence of iid pairs of random variables with common absolutely
continuous joint cdf FX,Y and {RU

n,k,n ≥ 1} be the sequence of upper k-record values in the sequence of X’s.
Then the Y-variate associated with the X-value which qualified as the n-th upper k-record will be called the
concomitant of the n-th upper k-record and will be denoted by RU

[n,k]. Then, the pdf of RU
[n,k] is given by

fRU
[n,k]

(y) =

∫
SX

fY|X(y|x) fRU
n,k

(x)dx, y ∈ SY, (28)
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see Arnold et al. (1998, p. 272) for the case of ordinary records (case k = 1). When the bivariate sequence
{(Xi,Yi), i ≥ 1} follows a bivariate FGM distribution, then from Eqs. (8), (26) and (28), we obtain the pdf of
RU

n,k to be

fRU
[n,k]

(y) = fY(y)
{
1 + λ(n,k)(1 − 2FY(y))

}
, y ∈ SY, (29)

where λ(n,k) = (2
(

k
k+1

)n
− 1)λ, see also Theorem 1 in Chacko and Mary (2013). Similarly, one can define the

concomitant corresponding to the lower k-records. Denote the concomitant of the n-th lower k-record by
RL

[n,k], then the pdf of RL
[n,k] is

fRL
[n,k]

(y) =

∫
SX

fY|X(y|x) fRL
n,k

(x)dx, y ∈ SY. (30)

For FGM family, from Eqs. (8), (27) and (30), we obtain the pdf of RL
[n,k] to be

fRL
[n,k]

(y) = fY(y)
{
1 − λ(n,k)(1 − 2FY(y))

}
, y ∈ SY. (31)

In the remainder of this section, we establish some characterization results for symmetric distributions based
on the properties of concomitants of k-records in FGM type bivariate distributions. In all theorems, it is
assumed that {(Xi,Yi), i ≥ 1} is a sequence of iid pairs of random variables form bivariate FGM distribution
function (1).

Theorem 3.1. The following two statements are equivalent:
(i) Y has a symmetric distribution about µ;

(ii) µ − RU
[n,k]

d
= µ + RL

[n,k] for some fixed positive integers n, k ≥ 1.

Proof. Suppose the marginal distribution of Y is symmetric around µ, then from Eq. (29) we have

fRU
[n,k]

(µ − y) = fY(µ − y)
{
1 + λ(n,k)(1 − 2FY(µ − y))

}
= fY(µ + y)

{
1 + λ(n,k)(2FY(µ + y) − 1))

}
= fRL

[n,k]
(µ + y), for y ∈ SY, by (31).

This means that µ − RU
[n,k]

d
= µ + RL

[n,k] for all n, k ≥ 1. For the converse from Eq. (29), we obtain the cdf of
µ − RU

[r:n] to be

Fµ−RU
[r:n]

(y) =
1
2

∫ 1−2FY(µ−y)

−1
(1 + λ(n,k)u)du. (32)

Similarly, from Eq. (31), we have the cdf of µ + RL
[n,k] to be

Fµ+RL
[n,k]

(y) =
1
2

∫ 2FY(y−µ)−1

−1
(1 + λ(n,k)u)du. (33)

Then, Eqs. (32) and (33) resulted that FY(µ − t) = 1 − FY(t − µ), for all t ∈ R. Hence, the proof is complete.�

We have the next result based on the moments of the concomitants of k−records for FGM family. Here
also let the classC1 be as in the previous section, i.e. the class of all continuous cdf, F, with F−1(u) ≥ −F−1(1−u)
for all u ∈ (0, 1/2) or F−1(u) ≤ −F−1(1 − u) for all u ∈ (0, 1/2).
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Theorem 3.2. Suppose E(Ym) exists for some positive integer number m. Then, the following two statements are
equivalent for any FY belongs to C1:
(i) Y has a symmetric distribution;
(ii) E

(
RU

[n,k]

)m
= (−1)mE

(
RL

[n,k]

)m
, for some fixed positive integers n, k ≥ 1.

Proof. From Eq. (29), it is easy to show that

E[
(
RU

[n,k]

)m
] =

∫ 1

0

{
1 + λ(n,k)(1 − 2u)

}
[F−1

Y (u)]mdu. (34)

Similarly from Eq. (31), we have

E[
(
RL

[n,k]

)m
] =

∫ 1

0

{
1 + λ(n,k)(1 − 2u)

}
[F−1

Y (1 − u)]mdu. (35)

By Eqs. (34) and (35), we obtain

E[
(
RU

[n,k]

)m
] − E[

(
−RL

[n,k]

)m
] =

∫ 1

0

{
1 + λ(n,k)(1 − 2u)

} (
[F−1

Y (u)]m
− [−F−1

Y (1 − u)]m
)

du

= 2λ(n,k)

∫ 1/2

0
(1 − 2u)

(
[F−1

Y (u)]m
− [−F−1

Y (1 − u)]m
)

du.

Now, suppose (ii) holds, then∫ 1/2

0
(1 − 2u)

(
[F−1

Y (u)]m
− [−F−1

Y (1 − u)]m
)

du = 0.

By assumptions FY belongs to C1, this implies that

[F−1
Y (u)]m

− [−F−1
Y (1 − u)]m = 0,

for all u ∈ (0, 1/2). The rest of the proof is similar to the proof of Theorem 2.2. �

We have the next result regarding the entropies properties of concomitants of k-records form FGM
family of bivariate distributions. Here also, let C2 be the same as in the previous section, i.e., C2 is the
class of all continuous pdf, f , with connected support and f (F−1(u)) ≥ f (F−1(1 − u)) for all u ∈ (0, 1/2) or
f (F−1(u)) ≤ f (F−1(1 − u)) for all u ∈ (0, 1/2).

Theorem 3.3. The following two statements are equivalent for fY belongs to C2:
(i) Y has a symmetric distribution;
(ii) H(RU

[n,k]) = H(RL
[n,k]), for some fixed positive integers n, k ≥ 1.

Proof. From Eq. (29), the entropy of RU
[n,k] is given by

H(RU
[n,k]) = −

∫ 1

0

(
1 + λ(n,k)(1 − 2u)

)
{log fY(F−1

Y (u)) − log
(
1 + λ(n,k)(1 − 2u)

)
}du. (36)

Similarly, from Eq. (31), the entropy of RL
[n,k] is

H(RL
[n,k]) = −

∫ 1

0

(
1 + λ(n,k)(2u − 1)

)
{log fY(F−1

Y (u)) − log
(
1 + λ(n,k)(2u − 1)

)
}du. (37)

If Y has a symmetric distribution, then from Eqs. (36) and (37), we readily find that H(RU
[n,k]) = H(RL

[n,k]) for
all n, k ≥ 1. Now, suppose (ii) holds, then from Eqs. (36) and (37) we obtain∫ 1

0
(1 − 2u) log

 fY(F−1
Y (u))

fY(F−1
Y (1 − u))

 du = 0.
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The rest of the proof is the same as in Theorem 2.4. �

Theorem 3.4. The following two statements are equivalent for fY belongs to C2:
(i) Y has a symmetric distribution;
(ii) fY belongs to C2 and Hα(RU

[n,k]) = Hα(RL
[n,k]), for some fixed positive integers n, k ≥ 1.

Proof. From Eqs. (2) and (29), the Rényi entropy of RU
[n,k] is given by

Hα(RU
[n,k]) =

1
1 − α

log
∫

SY

[ fRU
[n,k]

(u)]αdu

=
1

1 − α
log

∫ 1

0

(
1 + λ(n,k)(1 − 2u)

)α
[ fY(F−1

Y (u))]α−1du. (38)

Similarly, from Eqs. (2) and (31), the Rényi entropy of RL
[n,k] is

Hα(RL
[n,k]) =

1
1 − α

log
∫ 1

0

(
1 + λ(n,k)(1 − 2u)

)α
[ fY(F−1

Y (1 − u))]α−1du. (39)

Suppose (ii) holds, then from Eqs. (38) and (39) we get∫ 1

0

(
1 + λ(n,k)(1 − 2u)

)α {
[ fY(F−1

Y (u))]α−1
− [ fY(F−1

Y (1 − u))]α−1
}

du = 0.

This can be rewritten as∫ 1/2

0

{(
1 + λ(n,k)(1 − 2u)

)α
−

(
1 − λ(n,k)(1 − 2u)

)α}
{[ fY(F−1

Y (u))]α−1
− [ fY(F−1

Y (1 − u))]α−1
}du = 0. (40)

If λ(n,k) ∈ (−1, 0], then 0 <
(
1 + λ(n,k)(1 − 2u)

)
< 1 and 1 <

(
1 − λ(n,k)(1 − 2u)

)
< 2 for all u ∈ (0, 1/2), then,

the first term in the integrand (40) is negative. Also, if λ(n,k) ∈ (0, 1), then 1 <
(
1 + λ(n,k)(1 − 2u)

)
< 2 and

0 <
(
1 − λ(n,k)(1 − 2u)

)
< 1 for all u ∈ (0, 1/2), these imply that the first term in the integrand (40) is positive.

Consequently, by assumptions and Lemma 2.3, the proof is completed. �

We have a similar result as in Theorem 3.4 based on Tsallis entropy of concomitants of k-records in FGM
family which is stated in the next theorem. The proof is similar, so it is omitted.

Theorem 3.5. The following two statements are equivalent for fY belongs to C2:
(i) Y has a symmetric distribution;
(ii) Tα(RU

[n,k]) = Tα(RL
[n,k]), for some fixed positive integers n, k ≥ 1.

Similar to the cross entropy (5) between two pdfs f and 1, a measure of inaccuracy associated with
distribution of RU

[n,k] and the parent distribution is given by

K(RU
[n,k],Y) = −

∫
SY

fRU
[n,k]

(y) log fY(y)dy. (41)

Next theorem provides a result for symmetric distributions based on Kerridge inaccuracy of concomitants
of k-records in FGM family.

Theorem 3.6. The following two statements are equivalent for fY belongs to C2:
(i) Y has a symmetric distribution;
(ii) K(RU

[n,k],Y) = K(RL
[n,k],Y), for some fixed positive integers n, k ≥ 1.
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Proof. We prove (ii)⇒ (i). For FGM family, from Eqs. (9) and (41) we get

K(RU
[n,k],Y) = −

∫
SY

fY(u)[1 + λ(n,k)(1 − 2FY(u))] log fY(y)dy

= −

∫ 1

0
[1 + λ(n,k)(1 − 2u)] log fY(F−1

Y (u))du. (42)

Similarly, K(RL
[n,k],Y) is given by

K(RL
[n,k],Y) = −

∫ 1

0
[1 + λ(n,k)(2u − 1)] log fY(F−1

Y (u))du

= −

∫ 1

0
[1 + λ(n,k)(1 − 2u)] log fY(F−1

Y (1 − u))du. (43)

By assumptions, Eqs. (42) and (43), we arrive at∫ 1

0
[1 + λ(n,k)(1 − 2u)] log

 fY(F−1
Y (u))

fY(F−1
Y (1 − u))

 du = 0. (44)

So, by Eq. (44), the rest of the proof is similar to the proof of Theorem 2.4. �

4. Conclusion

In this paper, we have provided various new characterization results for symmetric distributions based
on some properties of concomitants of order statistics as well as on the basis of concomitants of k-records
in FGM family. It is well known that characterizations of distributions often provide useful tools for
constructing goodness-of-fit statistics. It may be noted that testing for symmetry is one of the oldest
classical nonparametric problems and has an extensive literature. It has been investigated by several
authors based on characterizations results, see for example, Baringhaus and Henze (1992), Nikitin and
Ahsanullah (2015), Milošević and Obradović (2016), Allison and Pretorius (2017) and Božin et al. (2018).
As mentioned by Józefczyk (2012), an answer to the question about symmetry is usually essential for many
problems in econometrics, computer science, engineering and social sciences. So, the results obtained in
this article may be useful in constructing goodness-of-fit test for symmetry.
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