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Two {4,n − 3}-Isomorphic n-Vertex Digraphs
are Hereditarily Isomorphic

Youssef Boudabbousa

aDepartment of Mathematics, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia.

Abstract. Let D and D′ be two digraphs with the same vertex set V, and let F be a set of positive integers.
The digraphs D and D′ are hereditarily isomorphic whenever the (induced) subdigraphs D[X] and D′ [X] are
isomorphic for each nonempty vertex subset X. They are F-isomorphic if the subdigraphs D[X] and D′ [X]
are isomorphic for each vertex subset X with | X |∈ F.

In this paper, we prove that if D and D′ are two {4,n − 3}-isomorphic n-vertex digraphs, where n ≥ 9,
then D and D′ are hereditarily isomorphic. As a corollary, we obtain that given integers k and n with
4 ≤ k ≤ n − 6, if D and D′ are two {n − k}-isomorphic n-vertex digraphs, then D and D′ are hereditarily
isomorphic.

To the memory of my dear master Gérard LOPEZ who taught me and gave
me the passion of reconstruction. With all my gratitude and admiration.

1. Introduction

All digraphs mentioned here are finite, and have no loops and no multiple edges. Thus a digraph (or
directed graph) D consists of a nonempty and finite set V(D) of vertices with a collection E(D) of ordered
pairs of distinct vertices, called the set of edges of D. Such a digraph is denoted by (V(D),E(D)).

We recall the basic notions of the reconstruction problem in the theory of relations what we apply to the
case of digraphs.

Consider two digraphs D and D′ on the same vertex set V with |V| = n ≥ 1, and let k be a positive
integer. The digraphs D and D′

are hereditarily isomorphic if the subdigraphs D[X] and D′

[X], induced on
X, are isomorphic for each nonempty subset X of V. They are k-isomorphic whenever for every k-element
vertex subset X, the subdigraphs D[X] and D′[X] are isomorphic. They are (≤ k)-isomorphic if they are
k′-isomorphic for every positive integer k′ with k′ ≤ k. The digraphs D and D′ are (−k)-isomorphic whenever
either k ≥ n or D and D′ are (n − k)-isomorphic with k < n.
Let F be a set of non zero integers. The digraphs D and D′ are F-isomorphic whenever D and D′ are
p-isomorphic for every p ∈ F. The digraph D is F-reconstructible if every digraph F-isomorphic to D is
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isomorphic to D. Notice that D and D′ are (≤ k)-isomorphic if and only if they are {1, ..., k}-isomorphic.
Thus the ”{1, ..., k}-reconstruction” is also denoted by ”(≤ k)-reconstruction”. Recall that the converse D∗ of
D is obtained from D by reversing all its edges. The digraph D is F-self converse if D is F-isomorphic to its
converse. It is hereditarily self converse if it is hereditarily isomorphic to its converse.

Notice that the concept of ”hereditarily isomorphic tournaments” and that of ”hereditarily self converse
tournaments” were introduced by K. B. Reid and C. Thomassen in [37].

S. M. Ulam [41] conjectured that the symmetric digraphs with at least three vertices are (−1)-reconstructible.
Arbitrary large counter-examples were given by P. K. Stockmeyer [40] in the case of digraphs. Using one of
these counter-examples, Y. Boudabbous and J. Dammak [12] showed that there is an arbitrary large non self
converse tournament which is (−1)-self converse. But this conjecture is still open in the case of symmetric
digraphs. For this problem of reconstruction, we cite [3, 4, 38]. As for R. Fraı̈ssé [22], he conjectured the
(≤ k)-reconstruction of relations (of any arity m), k is a sufficiently large integer. In 1972, G. Lopez [27, 28]
gave a positive answer to the conjecture of Fraı̈ssé for the binary relations and hence for the digraphs by
proving the following well-known result.

Theorem 1.1. [27–29] Any digraph is (≤ 6)-reconstructible.

The next corollary is immediately deduced.

Corollary 1.2. If D and D′ are two (≤ 6)-isomorphic digraphs, then D and D′ are hereditarily isomorphic.

The conjecture of R. Fraı̈ssé is then true for the binary relations. However, in 1979, M. Pouzet [34]
showed that there is no analogue to this result for ternary relations or for relations with arity greater than
3. Building on Kelly’s lemma he also established a combinatorial lemma (see Section 3) whose immediate
consequence is: Given positive integers k and n with n ≥ 2k, if two n-vertex digraphs are (−k)-isomorphic, then
they are (≤ k)-isomorphic.
Thus, from the (≤ 6)-reconstruction follows that each digraph with at least 12 vertices is (−6)-reconstructible.
This positive result of reconstruction led M. Pouzet (see [3, 4]) to reformulate the problem of Ulam as follows.

Problem 1.3. What is the smallest positive integer k such that any n-vertex digraph, n large enough, is (−k)-
reconstructible?

This problem, still unresolved, initiated many works. The two following results were obtained respectively
by P. Ille [26], and by G. Lopez and C. Rauzy [31].

Theorem 1.4. [26] Any digraph with at least 11 vertices is (−5)-reconstructible.

Theorem 1.5. [31] Any digraph with at least 10 vertices is (−4)-reconstructible.

By the above consequence of the combinatorial lemma of M. Pouzet, Theorem 1.1 and Corollary 1.2
imply immediately the following.

Corollary 1.6. Given integers k and n with 6 ≤ k ≤ n − 6, if D and D′ are two (−k)-isomorphic n-vertex digraphs,
then D and D′ are hereditarily isomorphic.

Following Corollary 1.6, we are interesting to the following problem.

Problem 1.7. What is the smallest positive integer k such that if D and D′ are two (−k)-isomorphic n-vertex digraphs,
n large enough, then D and D′ are hereditarily isomorphic?

From the counter-examples of P. K. Stockmeyer and Corollary 1.6, the integer k of Problem 1.7 satisfies
the condition: 2 ≤ k ≤ 6.
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Our main result is:

Theorem 1.8. If D and D′ are two {4,−3}-isomorphic n-vertex digraphs, where n ≥ 9, then D and D′ are hereditarily
isomorphic.

To prove that the value (−3) in Theorem 1.8 is sharp, we obtain the following result.

Proposition 1.9. Given an integer n with n ≥ 8, there are two {4,−2,−1}-isomorphic n-vertex digraphs D and D′

such that D and D′ are not hereditarily isomorphic.

From Theorem 1.8, we deduce easily the following corollary which is an improvement of Theorem 1.4,
Theorem 1.5, and Corollary 1.6.

Corollary 1.10. Given integers k and n with 4 ≤ k ≤ n − 6, if D and D′ are two (−k)-isomorphic n-vertex digraphs,
then D and D′ are hereditarily isomorphic.

Notice that the result similar to Corollary 1.10 for the special case of tournaments was obtained in [11].

By Proposition 1.9 and Corollary 1.10, we improve, in particular, the condition ”2 ≤ k ≤ 6” concerning
the integer k of Problem 1.7 by: ”3 ≤ k ≤ 4”. Other than this, we do not know the exact value of such integer
k.

For other problems of reconstruction, we cite: the half-reconstruction of digraphs [16, 25], and the
reconstruction up to complementation of graphs [18, 19, 35, 36].

This paper is organized as follows. In Section 2, we fix our conventions about digraphs. In Section 3,
we recall the tools of our proofs: Gallai’s decomposition of digraphs, the notion of difference classes and
their basic properties, the definition and some properties of a prechain, the morphology of the difference
classes of two (≤ 4)-isomorphic digraphs, the description of the hereditarily self converse digraphs, the
combinatorial lemma of Pouzet, and the balanced lemma of Boussaı̈ri. The main result is proved in Section
4. In the last section, we prove Proposition 1.9 and Corollary 1.10, we present two examples to show that the
lower bounds of the orders of the digraphs given in Theorem 1.8 and Corollary 1.10 are the best possible,
and we give two open problems.

2. Preliminaries

A directed graph (or digraph) D consists of a nonempty and finite set V(D) of vertices with a collection E(D)
of ordered pairs of distinct vertices, called the set of edges of D. Such a digraph is denoted by (V(D),E(D)).
Given tow digraphs D and D′

, a bijection f from V(D) onto V(D′

) is an isomorphism from D onto D′

provided
that for any vertices x and y of D, xy ∈ E(D) ⇐⇒ f (x) f (y) ∈ E(D′

). The digraphs D and D′

are isomorphic,
which is denoted by D � D′

, if there exists an isomorphism from one onto the other, otherwise we denote
D � D′

. For elementary definitions and notations in digraphs we follow [42]. In particular, we recall the
following notations. The subdigraph of a digraph D induced by a nonempty vertex subset X is denoted by
D[X]. Given a proper subset X of V(D), the subdigraph D[V(D) \X] is also denoted by D−X, and by D− x
whenever X = {x}.

2.1. Module, Modular partition, Dilatation
In a digraph D, a vertex subset M is a module in D if for any vertices a and b in M and each vertex v outside

M, va ∈ E(D) ⇐⇒ vb ∈ E(D), and av ∈ E(D) ⇐⇒ bv ∈ E(D). Thus, a module of D is a set M of vertices
indistinguishable by the vertices outside M. This concept was introduced in [2, 39] and independently
under the name interval in [23], autonomous set in [24], and clan in [20, 21]. A module distinct from V(D)
is a proper module of D. The empty set, the singleton sets, and the full set of vertices are trivial modules. A
digraph is indecomposable if all its modules are trivial; indecomposable digraphs with at least three vertices
are prime digraphs.

The following properties of the modules of a digraph are well known.
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Proposition 2.1. [20] Let D be a digraph.

1. Given a nonempty vertex subset W, if X is a module of D, then W ∩ X is a module of D[W].
2. If X,Y are modules of D, then X ∩ Y is a module of D.
3. If X,Y are modules of D such that X ∩ Y , ∅, then X ∪ Y is a module of D.
4. If X,Y are modules of D such that X \ Y , ∅, then Y \ X is a module of D.

A partition P of the vertex set V(D) of a digraph D is a modular partition of D if all its elements are
modules of D. It follows that the elements of P may be considered as the vertices of a new digraph, the
quotient of D by P, denoted by D/P, and defined on P as follows: for any distinct elements X and Y of P,
XY ∈ E(D/P) if xy ∈ E(D) for any x and y with x ∈ X and y ∈ Y.

Given two digraphs H and D with a unique common vertex v, as in [1] for the special case of tournaments,
we say that we dilate D on the vertex v by H if we transform the digraph D to the digraph D′

defined on
V(D) ∪ V(H) such that D′

[V(D)] = D, D′

[V(H)] = H, and V(H) is a module of D′

. This new digraph D′

is
denoted by D(v,H).

2.2. Types of pairs

Consider a digraph D. Let x and y be two distinct vertices. We say that {x, y} is an oriented pair if
| {xy, yx} ∩ E(D) |= 1, otherwise we say that {x, y} is a neutral pair. The type of a neutral pair {x, y} is full if x
and y are adjacent, or void otherwise. Thus, every pair of distinct vertices is a pair of one of the three types:
oriented or full or void. Two neutral pairs having exactly one common vertex are said adjacent neutral pairs.
Thus the digraph D is complete, respectively empty, if all its pairs are full, respectively void. Moreover, the
digraph D is a tournament if all its pairs are oriented. Notice that, all the pairs of adjacent vertices of the
digraph (V(D),E(D) \ E(D∗)) are oriented, and hence (V(D),E(D) \ E(D∗)) is an oriented graph.

2.3. Special digraphs

• If T is the acyclic tournament on {a1, . . . , an} such that : aia j ∈ E(T) if and only if i < j, then T is denoted
by (a1 < . . . < an), and the vertices a1 and an are the extremities of T. As in [14], a pot is an acyclic
tournament or a digraph obtained from an acyclic tournament with at least two vertices by modifying
the adjacency type of its two extremities.

• A peak is any digraph isomorphic to a digraph on 3 vertices a, b and c for which {a, b} is a module and
it is the unique neutral pair. Notice that up to isomorphism, there are four peaks.

• A 3-cycle is a tournament isomorphic to ({0, 1, 2}, {01, 12, 20}).

• A diamond is any 4-vertex tournament having a unique 3-cycle. Notice that up to isomorphism, there
are two diamonds.

• Let D be a digraph. The arc-connected components of D are the connected components of the underlying
graph of the oriented graph (V(D),E(D) \ E(D∗)). The digraph D is arc-connected when it admits one
arc-connected component.

• Given a property that a digraph may enjoy (such as ”being a path”, ”being a cycle”, ”being arc-
connected”, ”being self converse”, and so on), we say that a vertex subset X of a digraph D has that
property if the subdigraph D[X] enjoys it.

3. Tools of our proofs

In this section we recall the tools of our proofs.
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3.1. Gallai’s decomposition
Let D be a digraph on a set V. A vertex subset X is a strong module of D provided that X is a module of

D, and for every module Y of D, if X ∩ Y , ∅, then either X ⊆ Y or Y ⊆ X. If | V |≥ 2, then P(D) denotes
the family of maximal, strong modules of D, under the inclusion, amongst the strong modules of D distinct
from V.

The following theorem gives Gallai’s decomposition result.

Theorem 3.1. [24, 32] Let D be a digraph with at least two vertices. The class P(D) is a modular partition of D, and
the quotient D/P(D) is prime, or an acyclic tournament, or a complete digraph, or an empty digraph.

Definition 3.2. Given a digraph D with at least two vertices, the elements of P(D) are the modular components
of D, P(D) is its canonical partition, and the quotient D/P(D) is its frame.

The next two lemmas are basic and their proofs are easy.

Lemma 3.3. Given a digraph D with at least 2 vertices, the frame of D is prime if and only if D has a modular
partition for which the corresponding quotient is prime. Moreover, if the frame of D is prime, then the following
assertions hold.

1. P(D) is the unique modular partition of D for which the corresponding quotient is prime.
2. P(D) is the class of the maximal proper modules of D.
3. Given a vertex subset B, if B does not include any element of P(D), then P(D − B) = {X \ B : X ∈ P(D)}, and

D − B has a prime frame which is isomorphic to the frame of D.
4. D has no modular partition in exactly two modules.

Lemma 3.4. Let D be a digraph with at least 2 vertices.

1. (a) The frame of D is an acyclic tournament if and only if D has a modular partition Q such that | Q |= 2 and
D/Q is an acyclic tournament.

(b) The frame of D is an empty digraph, respectively a complete digraph, if and only if D has a modular
partition Q such that | Q |= 2 and D/Q is an empty digraph, respectively a complete digraph.

2. If the frame of D is an acyclic tournament, then the following assertions hold.
(a) For each element X of P(D) with | X |≥ 2, the frame of the subdigraph D[X] is not an acyclic tournament.
(b) A vertex subset M is a module of D if and only if either M is a union of some elements of P(D) which are

consecutive vertices of the acyclic tournament D/P(D), or there is an element X of P(D) such that M is a
module of D[X].

3. If the frame of D is an empty digraph, respectively a complete digraph, then the following assertions hold.
(a) For each element X of P(D) with | X |≥ 2, the frame of the subdigraph D[X] is not an empty digraph,

respectively a complete digraph.
(b) A vertex subset M is a module of D if and only if either M is a union of some elements of P(D), or there is

an element X of P(D) such that M is a module of D[X].

In our proofs, we use the following notations.

Notation 3.5. Let D be a digraph defined on a vertex set V with | V |≥ 2.

1. Given a positive integer k, we denote by Pk(D) the set {X ∈ P(D) :| X |= k}.
2. If the frame of D is an acyclic tournament, then we let P̃(D) be defined as follows.

A subset X of V belongs to P̃(D) if and only if either X is an element of P(D) with | X |≥ 2, or X is a maximal
union of consecutive vertices of the acyclic tournament D/P(D) which are singletons.
Thus, by the second assertion of Lemma 3.4, P̃(D) is a modular partition of D. Moreover, if M ∈ P̃(D), then
either M ∈ P(D) with |M |≥ 2 or M is a union of some singleton elements ofP(D) and M is a maximal module
of D such that D[M] is an acyclic tournament.
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Notation 3.6. Let D and D′ be two digraphs defined on the same vertex set V, and let X be a subset of V such that
| V \X |≥ 2. If the subdigraphs D−X and D′ −X are isomorphic, then we denote by fX an isomorphism from D−X
onto D′ − X. Thus fX(Pk(D − X)) = Pk(D′ − X) for every positive integer k.

The following lemma is a simple consequence of Lemma 3.4.

Lemma 3.7. Let D be a digraph with at least 2 vertices, and Q be a modular partition of D with | Q |≥ 2.

1. If the frame of D is an acyclic tournament, thenQ = P̃(D) if and only if D andQ satisfy the following conditions.

(a) The quotient D/Q is an acyclic tournament.
(b) Given an element X ofQ with | X |≥ 2, if the frame of the subdigraph D[X] is an acyclic tournament, then

D[X] is an acyclic tournament.
(c) If X and Y of are two consecutive vertices of the acyclic tournament D/Q, then the subdigraphs D[X] and

D[Y] are not both acyclic tournaments.
2. If the frame of D is an empty digraph, respectively a complete digraph, then Q = P(D) if and only if D and Q

satisfy the following conditions.

(a) The quotient D/Q is an empty digraph, respectively a complete digraph.
(b) For each element X of Q with | X |≥ 2, the frame of the subdigraph D[X] is not an empty digraph,

respectively a complete digraph.

3.2. Difference graph and basic properties of difference classes

The following concept of difference classes was introduced by G. Lopez in 1972 [27, 28]. This concept
plays an important role in many reconstruction problems.

Definition 3.8. [27, 28] Let D and D′ be two 2-isomorphic digraphs on the same vertex set V. Thus D and D′ have
the same full pairs, the same void pairs, and the same oriented pairs. It follows that (V(D),E(D)\E(D′

)) is an oriented
graph and its converse is (V(D),E(D′

) \ E(D)), and hence the digraph (V(D),E(D) 4 E(D′

)), denoted by DD,D′ , is
a symmetric digraph, called the difference graph of D and D′ . The connected components of DD,D′ are called the
difference classes of D and D′ . The set of difference classes of D and D′ is denoted by cl(DD,D′ ).

Lemma 3.9. [29] Let D and D′ be two (≤ 3)-isomorphic digraphs, and C be a difference class of D and D′ . The
following assertions hold.

1. The class C is a module of D and D′ .
2. The subdigraphs D[C] and D′

[C] are arc-connected.
3. The set cl(DD,D′ ) is a modular partition of D and D′ with D/cl(DD,D′ ) = D′

/cl(DD,D′ ).

Using Lemma 3.9, we obtain the following corollary.

Corollary 3.10. Let D and D′ be two (≤ 3)-isomorphic digraphs. If Q is a modular partition of D such that each
element of Q is a union of some elements of cl(DD,D′ ), then Q is a modular partition of D′ with D′

/Q = D/Q.

Proof. Let X be an element of Q. The vertex subset X is a module of D′

because X is a module of D,
and D′

[{t, x}] = D[{t, x}] for any vertices x and t with x ∈ X and t < X. Thus Q is a modular partition of D′

.
Moreover, D′

/Q = D/Q because D′

/cl(DD,D′ ) = D/cl(DD,D′ ) by Lemma 3.9. �
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3.3. Prechains
In this subsection, we give the definition and some properties of prechains. The prechains were

introduced by Y. Boudabbous and C. Delhommé in [13], where they studied the (≤ k)-self converse (finite
or infinite) digraphs where k ≥ 4. Notice that the prechains were motivated by the morphology of the
difference classes of two (≤ 4)-isomorphic digraphs which was obtained by G. Lopez and C. Rauzy in 1992
[30], and that we will recall in the next subsection.

Definition 3.11. [13] A digraph is a prechain if it has neither adjacent neutral pairs, nor any induced subdigraph
which is a peak or a diamond.

Remark 3.12. Any digraph with at most two vertices is a prechain. Moreover, if D is a prechain, with at least 3
vertices, which is not a tournament, then given a neutral pair {u, v} of D and a vertex x of D with x < {u, v}, the pairs
{u, x} and {v, x} are two oriented pairs of D because D has no adjacent neutral pairs. It follows that any prechain with
at least 3 vertices is arc-connected.

The following proposition gives some properties of prechains.

Proposition 3.13. [13] Given a prechain D with at least 3 vertices, the following assertions hold.
1. The digraph D is arc-connected and (≤ 4)-self converse.
2. The subdigraph D[X] is a prechain for each nonempty vertex subset X.
3. The frame of D is a prime prechain.
4. The subdigraph D[M] is an acyclic tournament for each proper module M of D.

3.4. Morphology of the difference classes of two (≤ 4)-isomorphic digraphs
The following result of G. Lopez and C. Rauzy [30] gives the morphology of difference classes of two

(≤ 4)-isomorphic digraphs.

Theorem 3.14. [30] Let D and D′ be two (≤ 4)-isomorphic digraphs, and C be a difference class of D and D′ . The
following assertions hold.

1. (a) If D[C] has no adjacent neutral pairs, then D[C] is a prechain.
(b) If D[C] has adjacent neutral pairs, then D[C] or its complement is either a path or a cycle.

2. D[C] is (≤ 4)-self converse.
3. D′

[C] and D∗[C] are hereditarily isomorphic.

3.5. Hereditarily self converse digraphs
In [37], K. B. Reid and C. Thomassen described the hereditarily self converse tournaments. Then in [9],

using the morphology of difference classes of two (≤ 6)-isomorphic digraphs obtained by G. Lopez in 1972
([27, 28]), we obtained a complete description of the hereditarily self converse digraphs. The following
proposition is a consequence of the above description.

Proposition 3.15. [9, 13]
1. A digraph is hereditarily self converse if and only if all its arc-connected components are hereditarily self converse

modules.
2. Given an arc-connected digraph D with at least 8 vertices, D is hereditarily self converse if and only if D is a

pot, or D or its complement is either a path or a cycle.

The complete list of small arc-connected and hereditarily self converse digraphs is given in [9, 13].
Recall the below result, due to H. Bouchaala, Y. Boudabbous and G. Lopez [8] (see [6] for a detailed

proof), which extends the description of the (−k)-self converse prechain tournaments, due to H. Bouchaala
and Y. Boudabbous [7].

Proposition 3.16. [8] Given a prechain D with at least 9 vertices, if D is (−3)-self converse, then D is hereditarily
self converse.

The following corollary is an easy consequence of Proposition 3.16 and Theorem 3.14.

Corollary 3.17. Let D and D′ be two {4,−3}-isomorphic digraphs on the same vertex set V with | V |≥ 9. If the
difference graphDD,D′ is connected, then D and D′ are hereditarily isomorphic.
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3.6. Combinatorial lemma of Pouzet
The below result, called ”combinatorial lemma of Pouzet”, makes a link between the problems of

(≤ k)-reconstruction and those of (−k)-reconstruction.

Lemma 3.18. [33] Let p and r be positive integers, X be a finite set with | X |≥ p + r, and U and V be two sets
of p-element subsets of X. If | {Y ∈ U : Y ⊆ Q} |=| {Y ∈ V : Y ⊆ Q} | for every (p + r)-element subset Q of X,
then | {Y ∈ U : P′ ⊆ Y ⊆ Q′

} |=| {Y ∈ V : P′ ⊆ Y ⊆ Q′

} | for any subsets P′ and Q′ of X such that P′ ⊆ Q′ and
| Q′

\ P′ |≥ p + r. In particular, if | X |≥ 2p + r, thenU =V.

The following corollary is an easy consequence of Lemma 3.18.

Corollary 3.19. [33] Let D and D′ be two n-vertex digraphs with the same vertex set V. For each integer p with
0 < p < n, if D and D′ are p-isomorphic, then D and D′ are q-isomorphic for each integer q with 1 ≤ q ≤ min(p,n−p).

The following notation is needed to state an important second consequence of Lemma 3.18.

Notation 3.20. Given a digraph D, a subset F of V(D), and a digraph H, we denote by S(D,H; F) the set {Y ⊆ V(D) :
F ⊆ Y and D[Y] � H}, and by n(D,H; F) the cardinality of the set S(D,H; F).

Corollary 3.21. [34] Let n, p and h be integers such that 0 < p < n and 1 ≤ h ≤ n − p, and let H be a h-vertex
digraph. If D and D′ are two (−p)-isomorphic n-vertex digraphs, then n(D′,H; X) = n(D,H; X) for each vertex subset
X with at most p elements.

This corollary plays an important role in our proofs.

3.7. Balanced lemma of Boussaı̈ri and applications
First, we recall the following lemma [15].

Lemma 3.22. [15] Let p be an integer with p ≥ 2, i be an element of {1, ..., p}, and R be a digraph defined on {1, ..., p}.
If H and H′ are digraphs such that {1, ..., p} ∩ V(H) = {1, ..., p} ∩ V(H′

) = {i}, then the digraphs R(i,H) and R(i,H′

)
are isomorphic if and only if H and H′ are isomorphic.

Notice that Lemma 3.22 was firstly communicated by A. Boussaı̈ri, and a detailed proof of this lemma
is presented by J. Dammak in [17].

Second, we obtain the following corollary, which is an easy consequence of Lemma 3.22.

Corollary 3.23. Let p ba an integer with p ≥ 2, i be an element of {1, ..., p}, R and R′ be two isomorphic digraphs
defined on {1, ..., p}, and f be an isomorphism from R onto R′ . If H and H′ are digraphs such that {1, ..., p}∩V(H) = {i}
and {1, ..., p} ∩ V(H′

) = { f (i)}, then the digraphs R(i,H) and R′ ( f (i),H′

) are isomorphic if and only if H and H′ are
isomorphic.

Proof. Sufficiency of the condition is immediate. For necessity, assume that R(i,H) and R′ ( f (i),H′

) are
isomorphic. Consider the digraph R(i,K), where K is a digraph isomorphic to H′

with {1, ..., p} ∩V(K) = {i}.
It is easy to see that the digraphs R(i,K) and R′ ( f (i),H′

) are isomorphic. Since, R(i,H) and R′ ( f (i),H′

) are
isomorphic, it follows that R(i,H) and R(i,K) are isomorphic. Therefore, Lemma 3.22 implies that H and K
are isomorphic. Thus H and H′

are isomorphic. �

Notice that, in the case of tournaments, the above corollary was obtained by M. Bouaziz and Y. Boud-
abbous in [5].

Finally, we obtain the following consequence of Corollary 3.23.

Corollary 3.24. Let D and D′ be two isomorphic digraphs on the same vertex set V,Q be a common modular partition
of D and D′ such that D′

/Q = D/Q, and X0 be an element of Q. If D′

[X] � D[X] for every element X of Q \ {X0},
then D′

[X0] � D[X0].

Proof. Denote by R the subdigraph D[(V \X0)∪{x0}] and by R′ the subdigraph D′

[(V \X0)∪{x0}], where
x0 ∈ X0. Since D′

/Q = D/Q and D′

[X] � D[X] for every element X of Q \ {X0}, there exists an isomorphism
1 from R onto R′ such that 1(x0) = x0. Furthermore, it is not difficult to see that D = R(x0,D[X0]) and
D′

= R′ (x0,D
′

[X0]). Therefore, since D and D′

are isomorphic, Corollary 3.23 implies that the subdigraphs
D[X0] and D′

[X0] are isomorphic. �
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4. Proof of Theorem 1.8

4.1. Sketch of the proof of Theorem 1.8

To prove Theorem 1.8, we will proceed by induction on the number n of vertices of the digraphs.
First, we prove the following lemma.

Lemma 4.1. Given two (≤ 4)-isomorphic digraphs D and D′ with |cl(DD,D′ )| ≥ 2, the following assertions hold.

1. If the frame of D is not an acyclic tournament, then P(D′

) = P(D) and D′

/P(D) = D/P(D).
2. If the frame of D is an acyclic tournament, then P̃(D′

) = P̃(D) and D′

/P̃(D) = D/P̃(D).

Second, we prove the initialization of the induction by the following lemma.

Lemma 4.2. If D and D′ are two {4,−3}-isomorphic 9-vertex digraphs, then D and D′ are hereditarily isomorphic.

Third, we consider two {4,−3}-isomorphic n-vertex digraphs D and D′

on the same vertex set V where
n ≥ 10, and we assume that for each integer p with 9 ≤ p < n, if two p-vertex digraphs are {4,−3}-isomorphic,
then they are hereditarily isomorphic.
Since | V |≥ 10, Corollary 3.19 implies that D and D′

are (≤ 4)-isomorphic. We have to prove that the
digraphs D and D′

are hereditarily isomorphic. By Corollary 3.17, we may assume that the difference graph
DD,D′ is disconnected, and hence |cl(DD,D′ )| ≥ 2.

According to Theorem 3.1 and Lemma 4.1, to prove that the digraphs D and D′

are hereditarily isomor-
phic, we obtain the following three results.

Lemma 4.3. If the frame of D is prime, then the subdigraphs D[X] and D′

[X] are hereditary isomorphic for each
element X of P(D).

Lemma 4.4. If the frame of D is an acyclic tournament, then the subdigraphs D[X] and D′

[X] are hereditary
isomorphic for each element X of P̃(D).

Lemma 4.5. If the frame of D is an empty or a complete digraph, then the subdigraphs D[X] and D′

[X] are hereditary
isomorphic for each element X of P(D).

4.2. Proof of Lemma 4.1

Consider two (≤ 4)-isomorphic digraphs D and D′

with |cl(DD,D′ )| ≥ 2.

1. First, assume that the frame of D is an empty digraph, respectively a complete digraph. SetQ = P(D).
Given an element C of cl(DD,D′ ), since the subdigraph D[C] is arc-connected, C is contained in some
element of Q. It follows that each element of the partition Q is a union of some elements of cl(DD,D′ ).
Thus Corollary 3.10 implies thatQ is a modular partition of D′

with D′

/Q = D/Q, and hence D′

/Q is an
empty digraph, respectively a complete digraph. Moreover the digraph D′

and the partitionQ satisfy
the second condition of the second assertion of Lemma 3.7 because the digraph D and the partition Q
satisfy this condition, and the digraphs D and D′

are (≤ 2)-isomorphic. Therefore, Q = P(D′

) by the
second assertion of Lemma 3.7.
Second, assume that the frame of D is prime. By Lemma 3.9, each element of cl(DD,D′ ) is a common
proper module of D and D′

. Moreover, by Lemma 3.3,P(D) is the class of the maximal proper modules
of D. Therefore, each element of P(D) is a union of some elements of cl(DD,D′ ). Thus Corollary 3.10
implies that P(D) is a modular partition of D′

with D′

/P(D) = D/P(D). Hence P(D) is a modular
partition of D′

, and D′

/P(D) is prime. Thus Lemma 3.3 implies that P(D) = P(D′

).
Therefore, the first assertion holds.

2. Since the result is obvious when D is an acyclic tournament, we may assume that | P̃(D) |≥ 2. The
second assertion is a consequence of the following three claims.
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Claim 4.6. Each element of P̃(D) is a union of some elements of cl(DD,D′ ).

Proof. Consider an element X of P̃(D).
First assume that X ∈ P(D) with | X |≥ 2. By Lemma 3.4, the frame of the subdigraph D[X] is not
an acyclic tournament, and hence D[X] is not an acyclic tournament. Thus there is a subset Y of X
such that D[Y] is a 3-cycle or Y is a neutral pair of D. It follows that for every vertex z outside X, the
subdigraph D[Y∪{z}] is a diamond or a peak, and hence it is not (≤ 4)-self converse. Therefore, by the
second assertion of Theorem 3.14, there is no element of cl(DD,D′ ) including strictly X. On the other
hand, by Lemma 3.4, for each element C of cl(DD,D′ ), either C is a union of some elements of P(D) or
C is included in some element of P(D), because C is a module of D by Lemma 3.9. Therefore, X is a
union of some elements of cl(DD,D′ ).
Second assume that X ∈ P(D) with | X |= 1 or X ∈ (P̃(D) \ P(D)) with | X |≥ 2. Thus X is a union
of some singleton elements of P(D) and X is a maximal module of D such that D[X] is an acyclic
tournament. Moreover, by Lemma 3.9, the elements of cl(DD,D′ ) are modules of D. It follows that X
is a union of some elements of cl(DD,D′ ). �

Claim 4.7. For each element X of P(D) with | X |≥ 2, the frame of the subdigraph D′

[X] is not an acyclic
tournament.

Proof. Consider an element X of P(D) with | X |≥ 2. By Claim 4.6, there is a subset F of cl(DD,D′ )
such that X is the union of the elements of F . Clearly, the fact that D′

[{x, y}] = D[{x, y}], for each
(x, y) ∈ X × (V \ X), implies that F = cl(DD[X],D′ [X]).
First assume that | F |= 1. By Theorem 3.14, the subdigraphs D′

[X] and D∗[X] are hereditarily
isomorphic. On the other hand, by Lemma 3.4, the frame of the subdigraph D[X] is not an acyclic
tournament. It follows that the frame of the subdigraph D′

[X] is not an acyclic tournament.
Second assume that | F |≥ 2. Since the frame of D[X] is not an acyclic tournament, | cl(DD[X],D′ [X]) |≥ 2,
and the subdigraphs D[X] and D′

[X] are (≤ 4)-isomorphic, the first assertion applied to D[X] and
D′

[X] implies that P(D′

[X]) = P(D[X]) and D′

[X]/P(D[X]) = D[X]/P(D[X]), and hence the frame of
D′

[X] is not an acyclic tournament. �

Claim 4.8. P̃(D′

) = P̃(D) and D′

/P̃(D) = D/P̃(D).

Proof. By Claim 4.6, each element of P̃(D) is a union of some elements of cl(DD,D′ ). Thus Corollary
3.10 implies that P̃(D) is a modular partition of D′

with D′

/P̃(D) = D/P̃(D). Set Q = P̃(D). Thus Q is
modular partition of the digraph D′

such that the quotient D′

/Q is an acyclic tournament. Moreover,
given an element X of Q with | X |≥ 2, if the frame of D′

[X] is an acyclic tournament, then Claim 4.7
implies that X ∈ P̃(D)\P(D), and hence D[X] is an acyclic tournament; which implies that D′

[X] is also
an acyclic tournament because it is (≤ 4)-isomorphic to D[X]. Thus, the digraph D′

and the partition
Q satisfy the first and the second conditions of the first assertion of Lemma 3.7. On the other hand,
the digraph D′

and the partition Q satisfy the third condition of this assertion because the digraph D
and the partition Q satisfy this condition, and the digraphs D and D′

are (≤ 4)-isomorphic. Therefore,
Q = P̃(D′

) by the first assertion of Lemma 3.7. Thus P̃(D′

) = P̃(D) and D′

/P̃(D) = D/P̃(D). �

4.3. Proof of Lemma 4.2

Consider two {4,−3}-isomorphic digraphs D and D′

defined on the same vertex set V with | V |= 9. Since
| V | −3 = 6, D and D′

are 6-isomorphic. Moreover, by Corollary 3.19, D and D′

are {2, 3}-isomorphic. Thus D
and D′

are {2, 3, 4, 6}-isomorphic. To the contrary, suppose that D and D′

are not hereditarily isomorphic. By
Corollaries 1.2 and 3.17, the equivalenceDD,D′ has at least two classes, and D and D′

are not 5-isomorphic.
By Lemma 3.9, the set cl(DD,D′ ) is a modular partition of D and D′

with D/cl(DD,D′ ) = D′

/cl(DD,D′ ). Since D
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and D′

are {2, 3, 4}-isomorphic, it follows that there is a 5-element subset Y of some element X of cl(DD,D′ )
such that the subdigraphs D′

[Y] and D[Y] are not isomorphic.
Consider an element z of V \ X, and let Z be the element of cl(DD,D′ ) containing z. Denote by H the

2-vertex digraph D[{y, z}], where y ∈ Y. Since D/cl(DD,D′ ) = D′

/cl(DD,D′ ), D′

[{y, z}] = D[{y, z}] = H. It
follows that D[Y∪ {z}] = H(y,D[Y]) and D′

[Y∪ {z}] = H(y,D′

[Y]). Furthermore, by Lemma 3.22, H(y,D[Y])
and H(y,D′

[Y]) are not isomorphic because D[Y] and D′

[Y] are not isomorphic. Therefore, the subdigraphs
D[Y ∪ {z}] and D′

[Y ∪ {z}] are not isomorphic; which contradicts the fact that the digraphs D and D′

are
6-isomorphic. �

4.4. Proof of Lemma 4.3

Lemma 4.3 is immediately deduced from the following eight claims, where we assume that the frame
of D is prime. Thus | P(D) |≥ 3, and by Lemma 4.1, P(D′

) = P(D) and D′

/P(D) = D/P(D).

Claim 4.9. The subdigraphs D′

[X] and D[X] are hereditarily isomorphic for each element X of P(D) such that
| X |> n− | P(D) | −2.

Proof. Consider an element X of P(D) such that | X |> n− | P(D) | −2. Thus | Y |≤ 3 for every
Y ∈ P(D) \ {X}. Moreover, since D′[X] and D[X] are (≤ 4)-isomorphic, we may assume that | X |≥ 5.

First, we will prove that D′

[X] and D[X] are (−3)-isomorphic. We may assume that | X |≥ 8. Let B1 be
a 3-element subset of X. By Lemma 3.3, P(D − B1) = P(D′ − B1) = (P(D) \ {X}) ∪ {X \ B1}. It follows that
P|X|−3(D − B1) = P|X|−3(D′ − B1) = {X \ B1}, and hence fB1 (X \ B1) = X \ B1. Thus D′[X \ B1] and D[X \ B1] are
isomorphic, and hence D′[X] and D[X] are (−3)-isomorphic.

Second, we will prove that D′[X] and D[X] are hereditarily isomorphic. Since D′[X] and D[X] are
(−3)-isomorphic with | X |<| V |, from the induction hypothesis, we may assume that 5 ≤| X |≤ 8. Therefore,
by Corollary 1.2, it suffices to prove that D′[X] and D[X] are isomorphic and {−1,−2}-isomorphic. To do
so, consider a p-element subset B2 of X with p ∈ {0, 1, 2}, and let us prove that D′[X \ B2] and D[X \ B2] are
isomorphic. Let B3 be a (3 − p)-element subset of V \ X, and let Q = Q1 ∪ {X \ B2}, where Q1 is the set of
the nonempty elements of the set {Y \ B3 : Y ∈ P(D) \ {X}}. Since D′/P(D) = D/P(D) and | Y |≤ 3 for every
Y ∈ P(D) \ {X}, Q is a common modular partition of the two isomorphic subdigraphs D − (B2 ∪ B3) and
D′ − (B2 ∪ B3) such that (D − (B2 ∪ B3))/Q = (D′ − (B2 ∪ B3))/Q, and D′

[Z] � D[Z] for every Z ∈ Q \ {X \ B2}.
Thus Corollary 3.24 implies that D′[X \ B2] and D[X \ B2] are isomorphic. �

Claim 4.10. The subdigraphs D′[X] and D[X] are isomorphic for each element X of P(D).

Proof. First, assume that there exists X0 ∈ P(D) such that | X0 |> n− | P(D) | −2. By Claim 4.9, D′[X0]
and D[X0] are hereditarily isomorphic. Furthermore, | Y |≤ 3 for every Y ∈ P(D) \ {X0}. Since D and D′ are
(≤ 4)-isomorphic, it follows that D′[X] and D[X] are isomorphic for each element X of P(D).

Second, assume that | X |≤ n− | P(D) | −2 for every X ∈ P(D). Consider an element X of P(D), a
2-element subset B of X, and a subset C of V including X such that | C ∩ Y |= 1 for every Y ∈ P(D) \ {X}.
Denote by H the subdigraph D[C] and by Q the set {X} ∪ {{y} : y ∈ C \ X}. Clearly, Q is a modular partition
of H such that the quotient H/Q is isomorphic to D/P(D), and hence it is prime. Thus Lemma 3.3 implies
that the frame of H is prime with P(H) = Q. Furthermore, since C ∈ S(D,H; B), Corollary 3.21 implies that
n(D′,H; B) , 0. Consider an element K of S(D′,H; B). Since D′[K] is isomorphic to H, the frame of K is
prime, and K has a unique modular component J with | J |> 1. Moreover, D′[J] is isomorphic to D[X], and
hence | J |=| X |.

Let P1 = {Y ∈ P(D) :| Y ∩ K |≥ 2} and P2 = {Y ∈ P(D) :| Y ∩ K |= 1}.
The set K is the union of the two disjoint sets K1 and K2, where K1 =

⋃
Y∈P1

(K∩Y) and K2 =
⋃

Y∈P2

(K∩Y). Since

B ⊆ X ∩ K, X ∈ P1, and hence P2 ⊆ (P(D) \ {X}). Consider an element Y of P1. Since P(D′) = P(D), Y is a
module of D′. Hence Proposition 2.1 implies that Y ∩ K is a non trivial module of D′[K]. Furthermore, by
Lemma 3.3, the elements of P(D′[K]) are the maximal proper modules of D′[K]. Thus Y ∩ K ⊆ J. It follows
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that K1 ⊆ J, and hence (K \ J) ⊆ K2. Therefore, | P(D) | −1 =| K \ J |≤
∑

Y∈P2

| K ∩ Y |=| P2 |≤| P(D) | −1. Thus

| P2 |=| P(D) | −1, and hence P2 = P(D) \ {X} and P1 = {X}. Thus | X ∩ K |=| K | − | K2 |=| K | − | P2 |=
| K | − | P(D) | +1 =| J |; which implies that X ∩ K = J because X ∩ K ⊂ J. Thus J = X because | J |=| X |.
Consequently, D′[X] and D[X] are isomorphic. �

Claim 4.11. Consider distinct elements X1 and X2 of P(D), a proper subset B1 of X1, and a proper subset B2 of X2
such that | B1 ∪ B2 |= 3. If D′[X1 − B1] � D[X1 − B1], then D′[X2 − B2] � D[X2 − B2].

Proof. Denote by Q the set (P(D) \ {X1,X2}) ∪ {X1 − B1,X2 − B2}. By Lemma 3.3, Q = P(D − (B1 ∪ B2)) =
P(D′ − (B1 ∪B2)), and (D− (B1 ∪B2))/Q = (D′ − (B1 ∪B2))/Q. Thus the fact that D′[X1 −B1] � D[X1 −B1] and
Claim 4.10 imply that D′[Y] � D[Y] for every Y ∈ Q \ {X2 − B2}. Furthermore, the subdigraphs D− (B1 ∪ B2)
and D′ − (B1 ∪ B2) are isomorphic because the digraphs D and D′ are (−3)-isomorphic. Thus Corollary 3.24
implies that D′[X2 − B2] � D[X2 − B2]. �

Claim 4.12. The subdigraphs D′[X] and D[X] are (−3)-isomorphic for each element X of P(D).

Proof. We may assume that | X |≥ 4. Consider an element x of X, and a 3-element subset B of X. Denote
by Q the set (P(D) \ {X}) ∪ {X \ B}. By Lemma 3.3, Q = P(D − B) = P(D′

− B), and (D − B)/Q = (D′

− B)/Q.
Thus Claim 4.10 implies that D′[Y] � D[Y] for every Y ∈ Q \ {X \ B}. Furthermore, the subdigraphs D − B
and D′

−B are isomorphic because the digraphs D and D′ are (−3)-isomorphic. Thus Corollary 3.24 implies
that D′[X \ B] � D[X \ B]. Consequently, D′

[X] and D[X] are (−3)-isomorphic. �

Claim 4.13. If there exists an element Y ofP(D) such that | Y |≥ 9, then D′

[X] and D[X] are hereditarily isomorphic
for each element X of P(D).

Proof. Consider an element X of P(D). Since D′ and D are (≤ 4)-isomorphic, Claim 4.10 implies that if
| X |≤ 5, then D′

[X] and D[X] are hereditarily isomorphic. Furthermore, by Claim 4.12, D′

[X] and D[X] are
(−3)-isomorphic. Therefore, by the induction hypothesis, we may assume that 6 ≤| X |≤ 8. By Corollary
1.2, it suffices to prove that D′[X] and D[X] are {5, 6}-isomorphic. To do so, by Claims 4.10 and 4.12, it
suffices to prove that D′

[X] and D[X] are {−1,−2}-isomorphic. Notice that X , Y because | Y |≥ 9. Consider
a p-element subset B1 of X with p ∈ {1, 2}, a (3 − p)-element subset B2 of Y, and let x ∈ X. By Claim 4.12, the
induction hypothesis implies that D′

[Y \ B2] � D[Y \ B2]. Thus by Claim 4.11, D′

[X \ B1] � D[X \ B1], and
hence D′

[X] and D[X] are {−1,−2}-isomorphic. �

Claim 4.14. The subdigraphs D′[X] and D[X] are hereditarily isomorphic for each element X of P(D) such that
| X |= 8.

Proof. From Claim 4.13, we may assume that | Y |≤ 8 for every Y ∈ P(D). Consider an element X of
P(D) such that | X |= 8. Since D′ and D are (≤ 4)-isomorphic, by Corollary 1.2, it is sufficient to prove that
D′

[X] and D[X] are {−3,−2}-isomorphic. To do so, consider a p-element subset B1 of X with p ∈ {2, 3}, and
showing that D′

[X \ B1] and D[X \ B1] are isomorphic.
First assume that there exists X0 ∈ P(D) \ {X} such that | X0 |≤ 5, and let B2 be a (3 − p)-element

subset of X0. Consider the set Q defined by: Q = (P(D) \ {X,X0}) ∪ {X \ B1,X0 \ B2} when X0 , B2, and
Q = (P(D)\{X,X0})∪{X\B1}when X0 = B2. Clearly,Q is a common modular partition of the two isomorphic
subdigraphs D′

− (B1 ∪ B2) and D− (B1 ∪ B2) such that (D− (B1 ∪ B2))/Q = (D′

− (B1 ∪ B2))/Q. Furthermore,
since D′ and D are (≤ 4)-isomorphic, and | X0 |≤ 5, Claim 4.10 implies that D′

[Y] and D[Y] are isomorphic
for every Y ∈ Q \ {X \ B1}. Thus Corollary 3.24 implies that D′[X \ B1] � D[X \ B1].

Therefore, in the sequel we may assume that 6 ≤| Y |≤ 8 for every Y ∈ P(D) \ {X}.
Second assume that there exists X0 ∈ P(D) \ {X} such that | X0 |= 6. Consider a (3− p)-element subset B2

of X0, and let Q = (P(D) \ {X,X0})∪ {X \B1,X0 \B2}. If p = 3, then B2 = ∅, and hence D′[X0 \B2] � D[X0 \B2]
by Claim 4.10. Otherwise, p = 2 and Lemma 3.3 implies that P(D− (B1 ∪B2)) = P(D′ − (B1 ∪B2)) = Q. Thus
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P5(D − (B1 ∪ B2)) = P5(D′ − (B1 ∪ B2)) = {X0 \ B2}. It follows that fB1∪B2 (X0 \ B2) = X0 \ B2, and hence the
subdigraphs D′[X0 \ B2] and D[X0 \ B2] are isomorphic. Therefore, Claim 4.11 implies that D[X \ B1] and
D′[X \ B1] are isomorphic.

Thus in the sequel we may assume that | Y |∈ {7, 8} for every Y ∈ P(D) \ {X}.
Third, assume that there exists X0 ∈ P(D) \ {X} such that | X0 |= 8. Consider a (3 − p)-element subset B2

of X0, and let Q = (P(D) \ {X,X0})∪ {X \B1,X0 \B2}. By Lemma 3.3, P(D− (B1 ∪B2)) = P(D′ − (B1 ∪B2)) = Q.
Therefore, P|X|−p(D − (B1 ∪ B2)) = P|X|−p(D′ − (B1 ∪ B2)) = {X \ B1}. Thus fB1∪B2 (X \ B1) = X \ B1, and hence
D′

[X \ B1] and D[X \ B1] are isomorphic.
Finally, assume that | Y |= 7 for every Y ∈ P(D) \ {X}.
Consider two distinct elements X1 and X2 of P(D) \ {X}, an element x1 of X1, and a 2-element subset A2

of X2.
By Lemma 3.3, P(D− (A2 ∪ {x1})) = P(D′

− (A2 ∪ {x1})) = (P(D) \ {X1,X2})∪ {X1 \ {x1},X2 \A2}. Therefore,
P6(D− (B1 ∪ B2)) = P6(D′ − (B1 ∪ B2)) = {X1 \ {x1}}, and P5(D− (B1 ∪ B2)) = P5(D′ − (B1 ∪ B2)) = {X2 \A2}. It
follows that fA2∪{x1}(X1 \ {x1}) = X1 \ {x1} and fA2∪{x1}(X2 \A2) = X2 \A2. Thus D′

[X1 \ {x1}] � D[X1 \ {x1}] and
D′

[X2 \A2] � D[X2 \A2]. It follows that D′

[Y] and D[Y] are {−2,−1}-isomorphic for every Y ∈ P(D) \ {X}. At
present consider an element X0 of P(D) \ {X}, and a (3− p)-element subset B2 of X0. Since D′

[X0] and D[X0]
are {−2,−1, 1, 2, 3, 4}-isomorphic with | X0 |= 7, Corollary 1.2 implies that D′

[X0] and D[X0] are hereditarily
isomorphic. Thus D′

[X0 \ B2] � D[X0 \ B2]. Therefore, Claim 4.11 implies that D′

[X \ B1] and T[X \ B1] are
isomorphic. �

Claim 4.15. The subdigraphs D′[X] and D[X] are hereditarily isomorphic for each element X of P(D) such that
| X |= 7.

Proof. From Claim 4.13, we may assume that | Y |≤ 8 for every Y ∈ P(D). Consider an element X of
P(D) such that | X |= 7, and let x ∈ X. Since D′

[X] and D[X] are (≤ 4)-isomorphic, Corollary 1.2 implies that
it is sufficient to prove that D′

[X] and D[X] are {−2,−1}-isomorphic. Consider a p-element subset B1 of X
with p ∈ {1, 2}, and showing that D′

[X \ B1] and D[X \ B1] are isomorphic.
First, notice that if there exists X0 ∈ P(D) \ {X} such that | X0 |≥ 3 and D′[X0] and D[X0] are hereditarily

isomorphic, then by considering a (3 − p)-element subset B2 of X0, Claim 4.11 implies that D′

[X \ B1] and
D[X \ B1] are isomorphic. Moreover D′

and D are (≤ 4)-isomorphic. From Claims 4.10 and 4.14, it follows
that if there is Y ∈ (P(D) \ {X}) such that | Y |∈ {3, 4, 5, 8}, then D′

[X \ B1] � D[X \ B1].
Consequently, in the sequel we may assume that | Y |∈ {1, 2, 6, 7} for every Y ∈ P(D) \ {X}.
Second assume that | Y |∈ {1, 2} for every Y ∈ P(D) \ {X}. Consider a (3 − p)-element subset B2 of V \ X.

Let Q = Q1 ∪ {X \B1}, where Q1 is the set of the nonempty elements of the set {Y \B2 : Y ∈ P(D) \ {X}}. Since
D′/P(D) = D/P(D), Q is a common modular partition of the two isomorphic subdigraphs D′ − (B1 ∪ B2)
and D − (B1 ∪ B2) such that X \ B1 ∈ Q, (D′ − (B1 ∪ B2))/Q = (D − (B1 ∪ B2))/Q and D′[Y] � D[Y] for every
Y ∈ Q \ {X \ B1}. Thus Corollary 3.24 implies that D′[X \ B1] and D[X \ B1] are isomorphic.

Consequently, in the sequel we may assume that there is X0 ∈ P(D) \ {X} such that | X0 |∈ {6, 7}, and that
| Y |∈ {1, 2, 6, 7} for every Y ∈ P(D) \ {X}.

Third, consider two distinct elements X1 and X2 of P(D) such that | X1 |= 7 and | X2 |∈ {6, 7}, an element
x1 of X1 and a 2-element subset A2 of X2. By Lemma 3.3, P(D − (A2 ∪ {x1})) = P(D′ − (A2 ∪ {x1})) =
(P(D) \ {X1,X2}) ∪ {X1 \ {x1},X2 \ A2}. Thus P|X2 |−2(D − (A2 ∪ {x1})) = P|X2 |−2(D′ − (A2 ∪ {x1})) = {X2 \ A2}. It
follows that fA2∪{x1}(X2 \ A2) = X2 \ A2, and hence D′[X2 \ A2] � D[X2 \ A2]. Furthermore, P6(D′) = P6(D),
P6(D − (A2 ∪ {x1})) = P6(D′ − (A2 ∪ {x1})) = P6(D) ∪ {X1 \ {x1}}, and by Claim 4.10, D′[Y] � D[Y] for every
Y ∈ P6(D). Since fA2∪{x1}(P6(D− (A2 ∪ {x1})) = P6(D′ − (A2 ∪ {x1})), it follows that D[X1 \ {x1}] � D′[X1 \ {x1}].
By the foregoing, it follows that D[Y] and D′[Y] are (−1)-isomorphic for every Y ∈ P7(D). Moreover, it
follows that if | P7(D) |≥ 2, then D[Y] and D′[Y] are {−1,−2}-isomorphic for every Y ∈ P7(D), and hence
D′[X \ B1] � D[X \ B1]. Therefore, in the sequel we assume that P6(D) , ∅, P7(D) = {X}, and | Y |∈ {1, 2, 6}
for every Y ∈ P(D) \ {X}. Since D[X] and D′[X] are (−1)-isomorphic, we may assume that p = 2. At the
beginning, assume that P1(D) ∪ P2(D) , ∅, and let y ∈ Y where Y ∈ P1(D) ∪ P2(D). Let Q = Q1 ∪ {X \ B1},
whereQ1 is the set of the nonempty elements of the set {Z\ {y} : Z ∈ P(D)\ {X}}. Since D′/P(D) = D/P(D),Q
is a common modular partition of the two isomorphic subdigraphs D′− (B1∪{y}) and D− (B1∪{y}) such that
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X\B1 ∈ Q, (D′− (B1∪{y}))/Q = (D− (B1∪{y}))/Q, and D′[Y] � D[Y] for every Y ∈ Q\{X\B1}. Thus Corollary
3.24 implies that D′[X \ B1] and D[X \ B1] are isomorphic. At the end, assume that P(D) \ {X} = P6(D), and
consider two distinct elements X1 and X2 of P6(D), an element x1 of X1, and a 2-element subset A2 of X2.
Clearly, P5(D − (A2 ∪ {x1})) = P5(D′ − (A2 ∪ {x1})) = {X1 \ {x1}}. Thus fA2∪{x1}(X1 \ {x1}) = X1 \ {x1}, and hence
D[X1 \ {x1}] � D′[X1 \ {x1}]. Moreover | B1 ∪ {x1} |= 3. Thus Claim 4.11 implies that D′[X \ B1] and D[X \ B1]
are isomorphic. �

Claim 4.16. The subdigraphs D′[X] and D[X] are hereditarily isomorphic for each element X of P(D) such that
| X |= 6.

Proof. From Claim 4.13, we may assume that | Y |≤ 8 for every Y ∈ P(D). Consider an element X of
P(D) such that | X |= 6. By Claim 4.10, D′[X] � D[X]. Moreover, D and D′ are (≤ 4)-isomorphic. Thus, by
Corollary 1.2, it is sufficient to prove that D′[X] and D[X] are (−1)-isomorphic. Consider an element x1 of
X and showing that D′[X \ {x1}] and D[X \ {x1}] are isomorphic.

First assume that there is Y ∈ P(D) \ {X} such that | Y |≥ 3, and consider a 2-element subset B of Y. If
| Y |= 6, then the subdigraphs D′[Y \B] and D[Y \B] are isomorphic because D and D′ are (≤ 4)-isomorphic.
Otherwise, D′[Y \ B] and D[Y \ B] are isomorphic because D′[Y] and D[Y] are hereditarily isomorphic by
the preceding lemmas. Therefore, D′[Y \ B] � D[Y \ B] and | B ∪ {x1} |= 3. Thus Claim 4.11 implies that
D[X \ {x1}] and D′[X \ {x1}] are isomorphic.

Second assume that | Y |∈ {1, 2} for every Y ∈ P(D) \ {X}. Consider a 2-element subset B of V \ X. Let
Q = Q1 ∪ {X \ {x1}}, where Q1 is the set of the nonempty elements of the set {Y \ B : Y ∈ P(D) \ {X}}. Since
D′/P(D) = D/P(D), Q is a common modular partition of the two isomorphic subdigraphs D′ − (B ∪ {x1})
and D − (B∪ {x1}) such that X \ {x1} ∈ Q, (D′ − (B∪ {x1}))/Q = (D − (B∪ {x1}))/Q and D′[Y] � D[Y] for every
Y ∈ Q \ {X \ {x1}}. Thus Corollary 3.24 implies that D′[X \ {x1}] and D[X \ {x1}] are isomorphic. �

Now we continue the proof of Lemma 4.3.
From Claim 4.13, we may assume that | Y |≤ 8 for every Y ∈ P(D). Consider an element X of P(D). If
| X |∈ {6, 7, 8}, then D′[X] and D[X] are hereditarily isomorphic by Claims 4.14, 4.15, and 4.16. Otherwise,
| X |≤ 5. Moreover, D′[X] and D[X] are isomorphic by Claim 4.10. Since, D and D′ are (≤ 4)-isomorphic, it
follows that D′[X] and D[X] are hereditarily isomorphic. �

4.5. Proof of Lemma 4.4
We start with the following claim.

Claim 4.17. Let R and R′ be two digraphs on the same vertex set W, and Q be a common modular partition of R and
R′ such that the quotients R/Q and R′/Q are two equal acyclic tournaments. If f is an isomorphism from R onto R′,
then f (X) = X for every element X of Q.

Proof. Let Q = {Y1, . . . ,Yp} where the quotient R/Q is the acyclic tournament: Y1 < . . . < Yp. Since f is
an isomorphism from R onto R′, the set f (Q) is a modular partition of R′, and the quotient R′/ f (Q) is the
acyclic tournament: f (Y1) < . . . < f (Yp). Furthermore, R′/Q is the acyclic tournament: Y1 < ... < Yp, and
| f (Yi) |=| Yi | for every i ∈ {1, . . . , p}. To the contrary, suppose that there is X ∈ Q such that f (X) , X, and
let i0 be the smallest element of {1, . . . , p} such that f (Yi0 ) , Yi0 . Clearly, i0 < p and there is x ∈ Yi0 such that
f (x) < Yi0 . Thus there is j > i0 such that f (x) ∈ Y j. It follows that the outdegrees d+

R(x) and d+
R′ ( f (x)) satisfy

d+
R(x) ≥

∑
j≥i0+1

| Y j | and d+
R′ ( f (x)) <

∑
j≥i0+1

| Y j |. Thus d+
R(x) , d+

R′ ( f (x)); which contradicts the fact that f is an

isomorphism from R onto R′. �

Notice that since the result is obvious when D is an acyclic tournament, Lemma 4.4 is immediately
deduced from the following three claims, where we assume that the frame of D is an acyclic tournament,
and that | P̃(D) |≥ 2. Recall that P̃(D′

) = P̃(D) and D′

/P̃(D) = D/P̃(D) by Lemma 4.1.

Claim 4.18. The subdigraphs D′[X] and D[X] are {−3,−2}-isomorphic for each element X of P̃(D).
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Proof. Let X be an element of P̃(D). Since D and D′ are (≤ 4)-isomorphic, we may assume that | X |≥ 7.
Consider a p-element subset B1 of X with p ∈ {2, 3}, a (3 − p)-element subset B2 of V \ X, and showing that
D′[X \ B1] � D[X \ B1]. Let Q = Q1 ∪ {X \ B1}, where Q1 is the set of the nonempty elements of the set
{Y \ B2 : Y ∈ (P̃(D) \ {X})}. It is clear that Q is a common modular partition of the two isomorphic
subdigraphs D− (B1 ∪B2) and D′ − (B1 ∪B2) such that (D− (B1 ∪B2))/Q and (D′ − (B1 ∪B2))/Q are two equal
acyclic tournaments. Thus Claim 4.17 implies that fB1∪B2 (X \ B1) = X \ B1, and hence D′[X] and D[X] are
{−3,−2}-isomorphic. �

Claim 4.19. The subdigraphs D′[X] and D[X] are hereditarily isomorphic for each element X of P̃(D) such that
| X |≥ n − 2.

Proof. Let X be an element of P̃(D) such that | X |≥ n − 2. By Claim 4.18, D′[X] and D[X] are {−3,−2}-
isomorphic, and hence by the induction hypothesis, we may assume that | X |≤ 8. Since n ≥ 10, it follows
that n = 10, | X |= 8, and D′[X] and D[X] are {−3,−2, 1, 2, 3, 4}-isomorphic. Thus D′[X] and D[X] are
(≤ 6)-isomorphic, and hence they are hereditarily isomorphic by Corollary 1.2. �

Claim 4.20. The subdigraphs D′[X] and D[X] are isomorphic for each element X of P̃(D).

Proof. First, assume that there exists X0 ∈ P̃(D) such that | X0 |≥ n − 2. By Claim 4.19, D′[X0] and
D′[X0] are isomorphic. Furthermore, for every X ∈ P̃(D) \ {X0}, D′[X] and D[X] are isomorphic because
| X |≤ 2. Second, assume that | Y |≤ n − 3 for every Y ∈ P̃(D). Consider an element X of P̃(D). Since D
and D′

are (≤ 4)-isomorphic, we may assume that | X |≥ 5, and that D[X] is not an acyclic tournament, and
hence X ∈ P(D). Let B be a 2-element subset of X. Since X ∈ S(D,D[X]; B) and | X |≤ n − 3, Corollary 3.21
implies that n(D′,D[X]; B) , 0. Thus there exists a vertex subset K containing B such D′[K] � D[X]. To the
contrary, suppose that K , X. Thus {K ∩ X,K \ X} is a modular partition of D′[K] such that the quotient
D′[K]/{K ∩ X,K \ X} is a 2-vertex acyclic tournament. Since D′[K] � D[X], it follows that the subdigraph
D[X] has a modular partition Q such that | Q |= 2 and D[X]/Q is an acyclic tournament. Therefore, the
first assertion of Lemma 3.4 implies that the frame of D[X] is an acyclic tournament; which contradicts the
second assertion of Lemma 3.4. Therefore, K = X, and hence D′[X] � D[X]. �

Now we continue the proof of Lemma 4.4.
Let X be an element of P̃(D). Since D and D′

are (≤ 4)-isomorphic, we may assume that | X |≥ 5, and that
D[X] is not an acyclic tournament. By the preceding claims and the induction hypothesis, we may assume
that 6 ≤| X |≤ 8. Moreover, D′[X] and D[X] are isomorphic and {−3,−2}-isomorphic by Claims 4.20 and
4.18. Therefore, by Corollary 1.2 it is sufficient to prove that D′[X] and D[X] are (−1)-isomorphic. Consider
an element x of X, and a 2-element subset B of (V \ X). Let Q = Q1 ∪ {X \ {x}}, where Q1 is the set of the
nonempty elements of the set {Y \ B : Y ∈ (P̃(D) \ {X})}. It is clear that Q is a common modular partition of
the two isomorphic subdigraphs D− (B∪ {x}) and D′ − (B∪ {x}) such that the quotients (D− (B∪ {x}))/Q and
(D′ − (B ∪ {x}))/Q are two equal acyclic tournaments. Thus Claim 4.17 implies that fB∪{x}(X \ {x}) = X \ {x},
and hence D′[X] and D[X] are (−1)-isomorphic. �

4.6. Proof of Lemma 4.5

By interchanging (D,D′) and (D,D′), we may assume that the frame of D is an empty digraph. Lemma
4.5 is then immediately deduced from the following five claims. Recall that P(D′

) = P(D) and D′

/P(D) =
D/P(D) by Lemma 4.1.

Claim 4.21. If there is an element X0 ofP(D) such that | X0 |≥ n−2, then D[X] and D′

[X] are hereditarily isomorphic
for each element X of P(D).
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Proof. For each element Y of P(D) \ {X0}, the subdigraphs D[Y] and D′

[Y] are hereditarily isomorphic
because | Y |≤ 2. Thus it remains only to prove that D[X0] and D′

[X0] are hereditarily isomorphic. Consider
a 3-element subset B of X0, and let Q = {X0 \ B,V \ X0}. Clearly, Q is a common modular partition of
the two isomorphic subdigraphs D − B and D′

− B such that (D − B)/Q = (D′

− B)/Q. Moreover, the
subdigraphs D[V \ X0] and D′

[V \ X0] are isomorphic because | V \ X0 |≤ 2. Thus Corollary 3.24 implies
that D′

[X0 \ B] � D[X0 \ B], and hence D′

[X0] and D[X0] are (−3)-isomorphic. Thus by the induction
hypothesis, we may assume that | X0 |≤ 8. Since | X0 |≥ n − 2 and n ≥ 10, it follows that | X0 |= 8 and
| V \ X0 |= 2, and hence D′

[X0] and D[X0] are 5-isomorphic. Moreover D and D′

are (≤ 4)-isomorphic.
Therefore, by Corollary 1.2 it is sufficient to prove that D′[X0] and D[X0] are (−2)-isomorphic. To do so,
consider a 2-element subset C of X0, and denote by a and b the two elements of V \ X0. Clearly, {X0 \ C, {b}}
is a common modular partition of the two isomorphic subdigraphs D− (C∪ {a}) and D′

− (C∪ {a}) such that
(D−(C∪{a}))/{X0\C, {b}} = (D′

−(C∪{a}))/{X0\C, {b}}. Thus Corollary 3.24 implies that D′

[X0\C] � D[X0\C],
and hence D[X0] and D′

[X0] are (−2)-isomorphic. �

Claim 4.22. The subdigraphs D[X] and D′

[X] are isomorphic for each element X of P(D).

Proof. By Claim 4.21, we may assume that | Y |≤ n − 3 for every Y ∈ P(D). Consider an element X of
P(D). Since D and D′

are (≤ 4)-isomorphic, we may assume that | X |≥ 5. Let B be a 2-element subset of X.
Since X ∈ S(D,D[X]; B) and | X |≤ n − 3, Corollary 3.21 implies that n(D′,D[X]; B) , 0. Thus there exists a
vertex subset K including B such D′[K] � D[X]. If K , X, then {K ∩X,K \X} is a modular partition of D′[K]
such that the quotient D′[K]/{K ∩ X,K \ X} is an empty digraph. Since D′[K] � D[X], it follows that the
subdigraph D[X] has a modular partition Q such that | Q |= 2 and D[X]/Q is an empty digraph. Therefore,
the first assertion of Lemma 3.4 implies that the frame of D[X] is an empty digraph; which contradicts the
third assertion of Lemma 3.4. Therefore, K = X, and hence D′[X] � D[X]. �

Claim 4.23. Given an element X of P(D), the following assertions hold.

1. The subdigraphs D[X] and D′

[X] are (−3)-isomorphic.
2. The subdigraphs D[V \ X] and D′

[V \ X] are (−3)-isomorphic.

Proof. Assume that | X |≥ 4 (resp. | V \ X |≥ 4), and consider a 3-element subset B of X (resp. of V \ X).
Denote byQ the set {X−B,V \X} (resp. {X,V \ (X∪B)}). Clearly,Q is a common modular partition of the two
isomorphic subdigraphs D − B and D′ − B such that (D − B)/Q = (D′ − B)/Q. By Claim 4.22, D′[X] � D[X],
and D′[Y] � D[Y] for each element Y of P(D) \ {X}. Since the common frame of D and D′ is an empty
digraph, it follows that D′[V \ X] � D[V \ X]. Therefore, Corollary 3.24 implies that D′[X − B] � D[X − B]
(resp. D′[V \ (X ∪ B)] � D[V \ (X ∪ B)] ). Thus the assertions 1 and 2 hold. �

Claim 4.24. If | P(D) |≥ 3, then the subdigraphs D[X] and D′[X] are hereditarily isomorphic for each element X of
P(D).

Proof. Assume that | P(D) |≥ 3, and consider an element X ofP(D). Since D and D′ are (≤ 4)-isomorphic,
by Claim 4.22, Claim 4.23 and the induction hypothesis, we may assume 6 ≤| X |≤ 8.

First, assume that there is Y ∈ (P(D)\ {X}) such that | V \Y |≥ 9. By Claim 4.23, the subdigraphs D′[V \Y]
and D[V \ Y] are (−3)-isomorphic. Thus the induction hypothesis implies that D′[V \ Y] and D[V \ Y] are
hereditarily isomorphic. Consequently, the subdigraphs D′

[X] and D[X] are hereditarily isomorphic.
Second, assume that | V \Y |≤ 8 for each element Y of P(D) \ {X}. Thus | Y |≥ 2 for each Y ∈ (P(D) \ {X}).

Since | P(D) |≥ 3, | V |≥ 10, and 6 ≤| X |≤ 8, it follows that | V |= 10, | X |= 6, and P(D) = {X,Y1,Y2} where
| Y1 |=| Y2 |= 2. Since D and D′ are (≤ 4)-isomorphic and | X |= 6, by Claim 4.22 and Corollary 1.2, it
suffices to prove that D′

[X] and D[X] are (−1)-isomorphic. To do so, consider and element x of X, and let
Q = {X \ {x},Y2}. Clearly,Q is a common modular partition of the two isomorphic subdigraphs D− (Y1∪{x})
and D′

− (Y1 ∪ {x}) such that (D − (Y1 ∪ {x}))/Q = (D′

− (Y1 ∪ {x}))/Q. Moreover, the subdigraphs D[Y2] and
D′

[Y2] are isomorphic because | Y2 |= 2. Thus Corollary 3.24 implies that D′

[X \ {x}] � D[X \ {x}], and hence
D′

[X] and D[X] are (−1)-isomorphic. �
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Claim 4.25. If | P(D) |= 2, then the subdigraphs D[X] and D′[X] are hereditarily isomorphic for each element X of
P(D).

Proof. Assume that P(D) is a pair {X1,X2}, where | X1 |≤| X2 |.
First, we will prove that the subdigraphs D′

[X1] and D[X1] are 5-isomorphic. Since D and D′ are (≤ 4)-
isomorphic, by Claim 4.22, Claim 4.23 and the induction hypothesis, we may assume that | X1 |∈ {6, 7}.
Consider a p-element subset B of X1, where p =| X1 | −5. If D[X1 \ B] has a modular partition Q such that
| Q |= 2 and D[X1 \B]/Q is an empty digraph, then the subdigraphs D′

[X1 \B] and D[X1 \B] are isomorphic
because they are (≤ 4)-isomorphic. Thus, we may assume that D[X1 \ B] has no such a modular partition.
Consider an element y1 of X1 \ B. Clearly, the subdigraphs D − B and D′

− B are (−(3 − p))-isomorphic with
p ∈ {1, 2}, and | X1 \ B |≤ n − 3 because the subset (V \ X1) includes X2. Thus Corollary 3.21 implies that
n(D− B,D[X1 \ B]; {y1}) = n(D′

− B,D[X1 \ B]; {y1}). Thus there is a subset K of V \ B containing y1 such that
D′

[K] � D[X1 \ B]. If K , X1 \ B, then {K ∩X1,K ∩X2} is a modular partition of D′[K] such that the quotient
D′[K]/{K∩X1,K∩X2} is an empty digraph. Since D′[K] � D[X1 \B], it follows that the subdigraph D[X1 \B]
has a modular partition Q such that | Q |= 2 and D[X1 \ B]/Q is an empty digraph; which contradicts our
assumption. Therefore, K = X1 \ B, and hence D′

[X1 \ B] � D[X1 \ B]. Therefore, D′

[X1] and D[X1] are
5-isomorphic. Thus D′

[X1] and D[X1] are (≤ 5)-isomorphic.
Second, we will prove that the subdigraphs D′

[X1] and D[X1] are hereditarily isomorphic. By Claim 4.22,
Claim 4.23 and the induction hypothesis, we may assume that | X1 |∈ {6, 7, 8}. By Corollary 1.2, it remains
only to prove that the subdigraphs D′

[X1] and D[X1] are 6-isomorphic. By Claim 4.22, we may assume that
| X1 |∈ {7, 8}. Consider a p-element subset B of X1, where p =| X1 | −6. If D[X1 \B] has a modular partition Q
such that | Q |= 2 and D[X1 \ B]/Q is an empty digraph, then the subdigraphs D′

[X1 \ B] and D[X1 \ B] are
isomorphic because they are (≤ 5)-isomorphic. Thus, we may assume that D[X1 \B] has no such a modular
partition. Consider an element y1 of X1 \B. Since the subdigraphs D−B and D′

−B are (−(3−p))-isomorphic
and p ∈ {1, 2}, Corollary 3.21 implies that n(D − B,D[X1 − B]; {y1}) = n(D′

− B,D[X1 − B]; {y1}). Thus there is
a subset K of V \ B containing y1 such that D′

[K] � D[X1 \ B]. As previously, we obtain that K = X1 \ B, and
hence D′

[X1 \ B] � D[X1 \ B]. Therefore, D′

[X1] and D[X1] are 6-isomorphic.
Third, we will prove that the subdigraphs D′

[X2] and D[X2] are hereditarily isomorphic. Since D
and D′ are (≤ 4)-isomorphic, by Claim 4.22, Claim 4.23 and the induction hypothesis, we may assume
that | X2 |∈ {6, 7, 8}, and hence | X1 |≥ 2 because | V |≥ 10. Therefore, by Claim 4.23 and Corollary 1.2,
it suffices to prove that the subdigraphs D′

[X2] and D[X2] are {−1,−2}-isomorphic. To do so, consider
a p-element subset B2 of X2, with p ∈ {1, 2}, and a (3 − p)-element subset B1 of X1. If B1 = X1, then
D′

[X2 \B2] � D[X2 \B2] because D and D′

are (−3)-isomorphic. Otherwise, letQ = {X1 \B1,X2 \B2}. Clearly,
Q is a common modular partition of the two isomorphic subdigraphs D−(B1∪B2) and D′−(B1∪B2) such that
(D− (B1 ∪ B2))/Q = (D′ − (B1 ∪ B2))/Q. Moreover, D′

[X1 \ B1] and D[X1 \ B1] are isomorphic because D′

[X1]
and D[X1] are hereditarily isomorphic. Therefore, Corollary 3.24 implies that D′[X2 − B2] � D[X2 − B2].
Thus the subdigraphs D′

[X2] and D[X2] are {−1,−2}-isomorphic. �

Lemma 4.5 follows from Lemmas 4.24 and 4.25. �

The end of the proof of Theorem 1.8 follows from Lemmas 4.3, 4.4, and 4.5. �

5. Proofs of Proposition 1.9 and Corollary 1.10

5.1. Proof of Proposition 1.9

First, let us consider some particular prechains.

1. For each integer h ≥ 1, the rotational tournament T2h+1 is the prechain tournament defined on {0, ..., 2h}
as follows. For all i, j ∈ {0, ..., 2h}, (i, j) ∈ E(T2h+1), if there exists k ∈ {1, ..., h} such that j = i + k modulo
(2h + 1).

2. The tournament P6 is a 6-vertex prechain tournament of which the frame is a 3-cycle such that
P(P6) = {X1,X2,X3}where, T[Xi] is an i-vertex acyclic tournament, for each i ∈ {1, 2, 3}.
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3. For each integer h with h ≥ 2, a wheel W2h is a prechain of which the neutral pairs have the same
type, defined on {0, ..., 2h − 1} as follows, where the integers are considered modulo 2h. For each
i ∈ {0, . . . , 2h − 1}, {i, i + h} is a neutral pair, and for each k ∈ {1, . . . , h − 1}, {i, i + k} is an oriented pair
with (i, i + k) ∈ E(W2h).

Notice that it is easy to verify that any prechain tournament is (≤ 5)-self converse, and that the tourna-
ment P6 is not self converse.

The following lemma is easy to check and can be deduced from [7, 8].

Lemma 5.1. Given an integer h with h ≥ 4, the tournament T2h+1 and every wheel W2h are {4,−2,−1}-self converse,
and are not hereditarily self converse.

Now Proposition 1.9 is an immediate consequence of Lemma 5.1. �

5.2. Proof of Corollary 1.10
Consider an integer k with k ≥ 4, and two (−k)-isomorphic digraphs D and D′

on the same vertex set
V with | V |≥ k + 6. By Corollary 1.2 it is sufficient to prove that D and D′

are (≤ 6)-isomorphic. Consider
a vertex subset X with at most 6 elements. To obtain the result, we will prove that the subdigraphs D′

[X]
and D[X] are isomorphic. Consider a subset B of V \ X with | B |= k − 3. By Corollary 3.19, the digraphs
D and D′

are (≤ 4)-isomorphic. Moreover, the subdigraphs D′

− B and D − B are (−3)-isomorphic because
the digraphs D and D′

are (−k)-isomorphic. Thus the subdigraphs D′

− B and D− B are {4,−3}-isomorphic,
and have at least 9 vertices. Hence Theorem 1.8 implies that D′

− B and D − B are hereditarily isomorphic.
Consequently, the subdigraphs D′

[X] and D[X] are isomorphic. �

5.3. Remark
In this section, we present two examples to show that the lower bounds of the orders of the digraphs

given in Theorem 1.8 and Corollary 1.10 are the best possible.
First, consider an 8-vertex prechain tournament H of which the frame is a 3-cycle such that P(H) =

{X1,X2,X3} where, H[X1] and H[X2] are two 3-vertex acyclic tournaments, and H[X3] is a 2-vertex tourna-
ment. Since any prechain tournament is (≤ 5)-self converse, the prechain H is {4,−3}-self converse. On the
other hand, H is not hereditarily self converse because the subtournament H− {u, v} is P6, where u ∈ X1 and
v ∈ X3. Thus the value 9 is the best possible as a lower bound of n in Theorem 1.8.

Second, consider an integer k with k ≥ 4, and two (k + 5)-vertex tournaments K and K′ , obtained from a
k-vertex acyclic tournament by dilating the same vertex by the tournaments P6 and P∗6 respectively. Since
P6 is not self converse, Lemma 3.22 implies that the tournaments K and K′ are not isomorphic, and hence
they are not hereditarily isomorphic. On the other hand, since P6 is (≤ 5)-self converse, K and K′ are
(−k)-isomorphic. Thus the value k + 6 is the best possible as a lower bound of n in Corollary 1.10.

5.4. Open problems
First, recall that the determination of the exact value of the integer k in Problem 1.7 remains an open

problem. Now this problem becomes more precise:

Problem 5.2. For the smallest positive integer k such that if D and D′ are two (−k)-isomorphic n-vertex digraphs, n
large enough, then D and D′ are hereditarily isomorphic, decide whether k = 3 or k = 4?

Second, we pose the following problem.

Problem 5.3. For k ∈ {1, 2}, characterize the digraphs D such that every digraph {4,−k}-isomorphic to D is heredi-
tarily isomorphic to D.
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