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Abstract. Resistance of social graphs to active attacks is a very important feature which must be maintained
in the modern networks. Recently introduced k-metric antidimension graph invariant is used to define a new
measure for resistance of social graphs. In this paper we have found and proved the k-metric antidimension
for generalized Petersen graphs GP(n, 1) and GP(n, 2). It is proven that GP(2m+1, 1) and GP(8, 2) are 2-metric
antidimensional, while all other GP(n, 1) and GP(n, 2) graphs are 3-metric antidimensional.

1. Introduction

The notion of (k, l)-anonymity was introduced by Trujillo-Rasua and Yero (2016) in [8]. As explained
in that paper the motivation was to establish a new measure for evaluating the resistance of social graphs
against active attacks. This measure uses a new graph invariant: k-metric antidimension.

Let G = (V,E) be a simple connected graph and d(u, v) is the length of the shortest path between the
vertices u and v. The metric representation r(v|S) of vertex v with respect to an ordered set of vertices
S = {u1, ...,ut} is defined as r(v|S) = (d(v,u1), ..., d(v,ut)). Values d(v,ui) are considered as metric coordinates
of v with respect to vertices ui.

Definition 1.1. ([8]) Let k be the largest positive integer with the property that for every vertex v ∈ V(G) \ S there
exist at least k − 1 different vertices v1, ..., vk−1 ∈ V(G) \ S with r(v|S) = r(v1|S) = ... = r(vk−1|S). In other words, v
and v1, ..., vk−1 have the same metric representation with respect to S. Then, set S is called a k-antiresolving set for G.

Definition 1.2. ([8]) For fixed k, the minimum cardinality amongst all k-antiresolving sets in G is called the k-metric
antidimension of graph G, and it is denoted by adimk(G). A k-antiresolving set of that minimum cardinality adimk(G)
is called a k-antiresolving basis of G.

Definition 1.3. ([8]) If k = max{t | adimt(G) exists} then graph G is called k-metric antidimensional.

Observation 1.4. ([8]) If G has maximum degree ∆ and G is k-metric antidimensional then 1 ≤ k ≤ ∆ holds.
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In the sequel we shall use the equivalence relation defined in [1, 2]. Let S ⊆ V(G) be a subset of vertices
of a connected graph G and let ρS be equivalence relation on V(G) \ S defined by

(∀a, b ∈ V(G) \ S) (aρSb ⇔ r(a|S) = r(b|S))

and let S1, ...,Sm be the equivalence classes of ρS. Then the following property can be proved.

Proposition 1.5. ([1, 2]) Let k be a fixed integer, k ≥ 1. Then S is a k-antiresolving set in G if and only if
min
1≤i≤m

|Si| = k.

In [2, 10] it has been proved that the problem of determining the k-metric antidimension of a graph for
a fixed k is NP-complete in general case.

For some graphs with special structures it would be interesting to investigate the privacy measure based
on the k-metric antidimension. Such investigations are considered in the literature:

• In [9] are considered 1-metric antidimensional trees and unicyclic graphs;

• Privacy violation properties of eight real social networks and large number of synthetic networks
generated by both the classical Erdös-Rényi model and the Barbábasi-Albert preferential-attachment
model were analyzed in [4];

• First privacy-preserving graph transformation improving privacy is presented in [6]. Experiments on
random graphs show that the proposed method effectively counteracts active attacks;

• k-metric antidimensions of wheels and grid graphs are given in [1].

In this paper we study the k-metric antidimension of generalized Petersen graphs introduced by Coxeter
[3]. The generalized Petersen graph GP(n, k) (n ≥ 3; 1 ≤ k < n/2) has 2n vertices and 3n edges, where vertex
set V and edge set E are defined as follows: V = {ui, vi | 0 ≤ i ≤ n − 1}, E = {{ui,ui+1}, {ui, vi}, {vi, vi+k}

| 0 ≤ i ≤ n − 1}, with vertex indices taken modulo n. In this notation the well-known Petersen graph
presented on Figure 1 is GP(5, 2).

There are a lot of papers devoted to generalized Petersen graphs and their invariants. Some recent
results include: metric dimension [7], strong metric dimension [5], and power domination [11].

Example 1.6. Consider the Petersen graph G given on Figure 1. By total enumeration it is easy to see that G is
3-antidimensional: 1-antiresolving basis is {u0,u2}, 2-antiresolving basis is {u0, v0}, while 3-antiresolving basis is

{v0}. Therefore, adimk(G) =

2, k = 1, 2
1, k = 3

.
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Figure 1: Petersen graph G
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It should be noted that, according to Definition 1.3, if a graph is k-metric antidimensional, it does not
mean that there exists an l-antiresolving set for each l ∈ {2, ..., k − 1}. For example, wheel graphs studied
in [1] are n-metric antidimensional, but for 4 ≤ l ≤ n − 1 there are no l-antiresolving sets in wheel graphs.
Therefore, as mentioned and presented in [2, 4], it is an interesting problem to find families of graphs for
which there exist l-antiresolving sets for all values of l, such that 2 ≤ l ≤ k − 1. In the next two sections we
show that GP(n, 1) and GP(n, 2) satisfy the previous property.

In Section 2 we prove that GP(2m, 1) is 3-metric antidimensional, while GP(2m + 1, 1) is 2-metric antidi-
mensional. In Section 3 it is shown that GP(n, 2) is 3-metric antidimensional, except for n = 8, when it is
2-metric antidimensional.

2. k-metric antidimension of GP(n,1) u
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Figure 2: Graph GP(6,1)

Theorem 2.1. Graph GP(2m, 1) is 3-metric antidimensional and

(i) adim1(GP(2m, 1)) = 1

(ii) adim2(GP(2m, 1)) = 4

(iii) adim3(GP(2m, 1)) = 2

Proof. (i) Let us consider set S = {u0}. The equivalence classes of ρS are given in Table 1. More precisely,
the first column of Table 1 contains set S, while in the second one the equivalence classes of relation ρS are
given, and in the third column the metric representations with respect to S are shown for all their vertices.
Since the minimal cardinality of equivalence classes is one, according to Property 1.5, it follows that S = {u0}

is 1-antiresolving set. Since |S| = 1, S = {u0} is a 1-antiresolving basis of GP(2m, 1), so adim1(GP(2m, 1)) = 1.
(ii) Due to symmetry of GP(2m, 1) and the fact that set {u0} is 1-antiresolving, it follows that every set S
consisting of only one vertex of GP(2m, 1) is 1-antiresolving. Let us consider sets S of cardinality two. From
symmetry properties of GP(2m, 1), without loss of generality we can assume u0 ∈ S. We have two cases.
Case 1. vm < S. Then from Table 1 it follows that vm is the only vertex with the metric coordinate with
respect to vertex u0 which is equal to m + 1 and, consequently, S is 1-antiresolving.
Case 2. If vm ∈ S then S = {u0, vm} and the corresponding equivalence classes are given in Table 1. From
Table 1 and Property 1.5 it follows that set {u0, vm} is 3-antiresolving.
Cases 1 and 2 demonstrate that there does not exist set S of cardinality 2 which is 2-antiresolving for
GP(2m, 1).
Next we consider sets S with cardinality three. Again, we can suppose that u0 ∈ S. If we vm < S, as in Case
1, we can conclude that S is 1-antiresolving. Suppose that vm ∈ S and consider cases v0 ∈ S or um ∈ S. If
v0 ∈ S, i.e. S = {u0, v0, vm}, then equivalence class {um, vm−1, vm+1} from Table 1 is partitioned into 2 classes:
{um} with metric representation equal to (m, 1,m + 1) and {vm−1, vm+1} with metric representation equal to
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(m, 1,m − 1). Similarly, if um ∈ S, i.e. S = {u0,um, vm}, then class {u1,um−1, v0} from Table 1 is partitioned
into {u1,um−1} with metric representation equal to (1,m,m − 1) and {v0} with metric representation equal to
(1,m,m + 1). Hence, if u0, vm ∈ S and v0 ∈ S or um ∈ S set S is 1-antiresolving. Finally, if u0, vm ∈ S and
v0 < S and um < S we consider equivalence class {um, vm−1, vm+1} from Table 1. Table 2 contains distances
of um, vm−1, vm+1 from all possible third elements of S. From Table 2 it follows that in all cases equivalence
class {um, vm−1, vm+1} is partitioned with respect to the third coordinate into two classes, one of cardinality 2
and the other of cardinality 1. Consequently, set S is again 1-antiresolving. Therefore, there does not exist
set S of cardinality 3 which is 2-antiresolving for GP(2m, 1).
Consider now set S = {u0, v0,um, vm} of cardinality 4 and the corresponding classes in Table 1. Since all
classes have cardinality 2, it follows that S is 2-antiresolving for GP(2m, 1). Since adim2(GP(2m, 1)) > 3, we
conclude adim2(GP(2m, 1)) = 4.
(iii) Let S = {u0, vm}. As we have already concluded in (ii), from Table 1 it follows that S is 3-antiresolving set
for GP(2m, 1) and consequently adim3(GP(2m, 1)) ≤ 2. Let us prove that there does not exist a 3-antiresolving
set S′ of cardinality one. By symmetry, we can suppose that S′ = {u0}. As proved in (i), S′ is 1-antiresolving
set.
Since GP(2m, 1) is 3-regular, according to Observation 1.4, it follows that GP(2m, 1) is k-metric antidimen-
sional for some k ≤ 3. From (i)-(iii) it follows that GP(2m, 1) is 3-metric antidimensional.

Table 1: Equivalence classes of ρS on GP(2m, 1)

S Equivalence class Metric representation
{u0} {u1,un−1, v0} (1)

{ui,un−i, vi−1, vn−i+1} (i), 2 ≤ i ≤ m − 1
{um, vm−1, vm+1} (m)

{vm} (m + 1)
{u0, vm} {u1,un−1, v0} (1,m)

{ui,un−i, vi−1, vn−i+1} (i,m − i + 1), 2 ≤ i ≤ m − 1
{um, vm−1, vm+1} (m, 1)

{u0, v0,um, vm} {u1,un−1} (1, 2,m − 1,m)
{ui,un−i} (i, i + 1,m − i,m − i + 1)
{vi−1, vn−i+1} (i, i − 1,m − i + 2,m − i + 1)
{um−1, vm+1} (m,m − 1, 2, 1)

Table 2: Distances of um, vm−1, vm+1 from the third element of S

Third element um vm−1 vm+1

ui, 1 ≤ i ≤ m − 1 m − i m − i m − i + 2
un−i, 1 ≤ i ≤ m − 1 m − i m − i + 2 m − i
vi, 1 ≤ i ≤ m − 1 m − i + 1 m − i − 1 m − i + 1
vn−i, 1 ≤ i ≤ m − 1 m − i + 1 m − i + 1 m − i − 1

Theorem 2.2. Graph GP(2m + 1, 1) is 2-metric antidimensional and

(i) adim1(GP(2m + 1, 1)) = 2

(ii) adim2(GP(2m + 1, 1)) = 1

Proof. (i) Let S = {u0, v1}. It is easy to see that vertex v2 has unique metric representation with respect to S
equal to (3, 1). According to Property 1.5, S is 1-antiresolving set of GP(2m + 1, 1).
Let us prove that S is 1-antiresolving basis of GP(2m+1, 1). Suppose contrary, that there exists 1-antiresolving
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set S′ of cardinality 1. Without loss of generality, due to the symmetry of GP(2m + 1, 1), we can assume
that S′ = {u0}. The equivalence classes of ρS′ are given in Table 3. From Table 3 it follows that set S′ is
2-antiresolving, which is a contradiction. Therefore, S = {u0, v1} is an 1-antiresolving basis of GP(2m + 1, 1),
i.e. adim1(GP(2m + 1, 1)) = 2.
(ii) Let S = {u0}. From Table 3 it is evident that set S = {u0} is 2-antiresolving set of GP(2m + 1, 1). Since
|S| = 1, S is a 2-antiresolving basis of GP(2m + 1, 1) and hence adim2(GP(2m + 1, 1)) = 1.
From (i) and (ii) it follows that GP(2m + 1, 1) is k-metric antidimensional for k ≥ 2. On the other side,
according to Observation 1.4, k ≤ 3. Let us prove that GP(2m + 1, 1) is not 3-metric antidimensional, i.e. that
in this graph there does not exist a 3-antiresolving set.
Let S be a set of vertices from V. Without loss of generality, we can assume u0 ∈ S. Consider the following
two cases:
Case 1. vm < S or vm+1 < S. According to Table 3, the equivalence class with respect to S′ = {u0} with metric
coordinate m + 1 is {vm, vm+1}. Therefore, the equivalence class with respect to S, S ⊇ S′, whose members
have distance from u0 equal to m + 1 has cardinality less or equal to 2. It follows that S is not a 3-metric
antidimensional set.
Case 2. Suppose that vm ∈ S and vm+1 ∈ S. Then each vertex ui, i = 1, ...,n − 1, v j, j = 0, ...,n − 1, j , m,m + 1
has unique metric representation with respect to {u0, vm, vm+1} ⊆ S and therefore S is 1-antiresolving set.
Cases 1 and 2 demonstrate that in GP(2m + 1, 1) there does not exist a 3-antiresolving set. Therefore,
GP(2m + 1, 1) is 2-metric antidimensional.

Table 3: Equivalence classes of ρS′ on GP(2m, 1)

S′ Equivalence class Metric representation
{u0} {u1,un−1, v0} (1)

{ui,un−i, vi−1, vn−i+1} (i), 2 ≤ i ≤ m
{vm, vm+1} (m + 1)

3. k-metric antidimension of GP(n,2)
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Figure 3: Graph GP(9,2)

Theorem 3.1. For m , 2 graph GP(4m, 2) is 3-metric antidimensional and

(i) adim1(GP(4m, 2)) = 2
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(ii) adim2(GP(4m, 2)) = 1

(iii) adim3(GP(4m, 2)) = 1

Proof. (i) Let S = {u0,u2m}. It is easy to see that v0 has unique metric representation (1,m + 1) with respect
to S. Therefore, S is 1-antiresolving set. Suppose that there exists 1-antiresolving set S′ of cardinality 1.
Due to the symmetry of GP(4m, 2), we can assume that S′ = {u0} or S′ = {v0}. From Table 4 it can be
seen that the equivalence classes in both cases have cardinality at least 2, which is a contradiction. Hence,
adim1(GP(4m, 2)) = 2.
(ii) Let S = {v0}. According to Table 4, S is a 2-antiresolving basis of cardinality 1, so adim2(GP(4m, 2)) = 1.
(iii) Let S = {u0}. From Table 4 we conclude that S is a 3-antiresolving basis of GP(4m, 2), i.e. adim3(GP(4m, 2)) =
1.
From (i)-(iii) it follows that GP(4m, 2) is k-metric antidimensional for k ≥ 3. Since GP(4m, 2) is 3-regular,
according to Observation 1.4, it follows that k = 3, i.e. GP(4m, 2) is 3-metric antidimensional.

Table 4: Equivalence classes of ρS on GP(4m, 2)

S Equivalence class Metric representation
{u0} {u1,u4m−1, v0} (1)

{ui,u4m−i, v2i−3, v2i−2, v4m−2i+2, v4m−2i+3} (i), i = 2, 3, 4
{u2i−5,u2i−4,u4m−2i+4,u4m−2i+5, v2i−3, v2i−2, v4m−2i+2, v4m−2i+3} (i), i = 5, ...,m

{u2m−3,u2m−2,u2m+2,u2m+3, v2m−1, v2m, v2m+1} (m + 1)
{u2m−1,u2m,u2m+1} (m + 2)

{v0} {u0, v2, v4m−2} (1)
{u1,u2,u4m−2,u4m−1, v4, v4m−4} (2)

{u2i−3,u2i−2,u4m−2i+2,u4m−2i+3, v2i−5, v2i, v4m−2i, v4m−2i+5} (i), i = 3, ...,m − 1
{u2m−3,u2m−2,u2m+2,u2m+3, v2m−5, v2m, v2m+5} (m)

{u2m−1,u2m,u2m+1, v2m−3, v2m+3} (m + 1)
{v2m−1, v2m+1} (m + 2)

Theorem 3.2. Graph GP(4m + 1, 2) is 3-metric antidimensional and

(i) adim1(GP(4m + 1, 2)) = 2

(ii) adim2(GP(4m + 1, 2)) = 2

(iii) adim3(GP(4m + 1, 2)) = 1

Proof. (i) The proof is similar to the proof of (i) in Theorem 3.1. Let S = {u0,u2m}. Then vertex v0 has unique
metric representation (1,m + 1), which implies that S is an 1-antiresolving set. Using Table 5 and the same
argument as in (i) of Theorem 3.1 we conclude that {u0} and {v0} are not 1-antiresolving sets, and due to the
symmetry of GP(4m + 1, 2) the same holds for all singleton subsets of V. Therefore, adim1(GP(4m + 1, 2)) = 2.
(ii) Let S = {u0, v0}. According to Table 5, S is a 2-antiresolving set since all equivalence classes are of
cardinality at least 2. Since by Table 5 equivalence classes for sets {u0} and {v0} are of cardinality at least 3,
similarly as in (i) we conclude adim2(GP(4m + 1, 2)) = 2.
(iii) For S = {v0} , directly from Table 5 it follows that adim3(GP(4m + 1, 2)) = 1.
From (i)-(iii) it follows that GP(4m + 1, 2) is k-metric antidimensional for k ≥ 3. By Observation 1.4 it follows
that k = 3, i.e. GP(4m + 1, 2) is 3-metric antidimensional.
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Table 5: Equivalence classes of ρS on GP(4m + 1, 2)

S Equivalence class Metric representation
{u0} {u1,u4m, v0} (1)

{ui,u4m−i+1, v2i−3, v2i−2, v4m−2i+3, v4m−2i+4} (i), i = 2, 3, 4
{u2i−5,u2i−4,u4m−2i+5,u4m−2i+6, v2i−3, v2i−2, v4m−2i+3, v4m−2i+4} (i), i = 5, ...,m + 1

{u2m−1,u2m,u2m+1,u2m+2} (m + 2)
{v0} {u0, v2, v4m−1} (1)

{u1,u2,u4m−1,u4m, v4, v4m−3} (2)
{u2i−3,u2i−2,u4m−2i+3,u4m−2i+4, v2i−5, v2i, v4m−2i+1, v4m−2i+6} (i), i = 3, ...,m
{u2m−1,u2m,u2m+1,u2m+2, v2m−3, v2m−1, v2m+2, v2m+4} (m + 1)

{u0, v0} {u1,u4m} (1, 2)
{v2, v4m−1} (2, 1)
{u2,u4m−1} (2, 2)
{v1, v4m} (2, 3)
{v4, v4m−3} (3, 2)
{u3,u4m−2} (3, 3)
{v3, v4m−2} (3, 4)

{u4,u4m−3, v6, v4m−5} (4, 3)
{u2i−5,u2i−4,u4m−2i+5,u4m−2i+6, v2i−2, v4m−2i+3} (i, i − 1), i = 5, ...,m + 1

{v2i−3, v4m−2i+4} (i, i + 1), i = 4, ...,m
{v2m−1, v2m+2} (m + 1,m + 1)

{u2m−1,u2m,u2m+1,u2m+2} (m + 2,m + 1)

Theorem 3.3. For m ≥ 3 graph GP(4m + 2, 2) is 3-metric antidimensional and

(i) adim1(GP(4m + 2, 2)) = 1

(ii) adim2(GP(4m + 2, 2)) = 2

(iii) adim3(GP(4m + 2, 2)) = 2

Proof. (i) Let S = {u0}. Then vertex u2m+1 has the unique metric representation (m + 3) and therefore,
adim1(GP(4m + 2, 2)) = 1.
(ii) S = {u0,u2m+1}. From Table 6, S is a 2-antiresolving set. If we consider singleton subsets of V, due to
symmetry it is sufficient to analyze cases {u0} and {v0}. By (i), {u0} is 1-antiresolving and since v2m+1 has
unique metric representation (m + 3) with respect to {v0}, set {v0} is also 1-antiresolving. It means that all
singleton subsets of V are not 2-antiresolving. This implies that adim2(GP(4m + 2, 2)) = 2.
(iii) For S = {v0, v2m+1} from Table 6 it follows that S is a 3-antiresolving set. Since all singleton vertices are
1-antiresolving sets it follows that adim3(GP(4m + 2, 2)) = 2.
From (i)-(iii) it follows that GP(4m + 2, 2) is k-metric antidimensional for k ≥ 3. According to Observation
1.4 it follows that k = 3, i.e. GP(4m + 2, 2) is 3-metric antidimensional.
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Table 6: Equivalence classes of ρS on GP(4m + 2, 2)

S Equivalence class Metric representation
{u0,u2m+1} {u1,u4m+1, v0} (1,m + 2)

{ui,u4m−i+1} (i,m − i + 2), i = 2, 3, 4
{v2i−3, v2i−2, v4m−2i+4, v4m−2i+5} (i,m − i + 3), i = 2, ...,m
{u2i−5,u2i−4,u4m−2i+6,u4m−2i+7} (i,m − i + 5), i = 5, ...,m + 1

{u2m−2,u2m+4} (m + 1, 3)
{u2m−3,u2m+5} (m + 1, 4)
{u2m,u2m+2, v2m+1} (m + 2, 1)
{u2m−1,u2m+3} (m + 2, 2)

{v0, v2m+1} {u0, v2, v4m} (1,m + 2)
{u1,u2,u4m,u4m+1, v4, v4m−2} (2,m + 1)

{u2i−3,u2i−2,u4m−2i+4,u4m−2i+5, v2i−5, v2i, v4m−2i+2, v4m−2i+7} (i,m − i + 3), i = 3, ...,m
{u2m−1,u2m,u2m+2,u2m+3, v2m−3, v2m+5} (m + 1, 2)

{u2m+1, v2m−1, v2m+3} (m + 2, 1)

Theorem 3.4. For m ≥ 2 graph GP(4m + 3, 2) is 3-metric antidimensional and

(i) adim1(GP(4m + 3, 2)) = 2

(ii) adim2(GP(4m + 3, 2)) = 1

(iii) adim3(GP(4m + 3, 2)) = 1

Proof. (i) Let S = {u0,u2}. Then vertex u1 has unique metric representation (1, 1) and consequently, S is
1-antiresolving set. Since by Table 7 sets {u0} and {v0} are 2-antiresolving and 3-antiresolving, respectively,
then adim1(GP(4m + 3, 2)) = 2.
(ii) and (iii) follow directly from Table 7.
Since GP(4m + 3, 2) is 3-regular, according to Observation 1.4, it follows that GP(4m + 3, 2) is k-metric
antidimensional for some k ≤ 3. From (i)-(iii) it follows that GP(4m + 3, 2) is 3-metric antidimensional.

Table 7: Equivalence classes of ρS on GP(4m + 3, 2)

S Equivalence class Metric representation
{u0} {u1,u4m+2, v0} (1)

{ui,u4m−i+3, v2i−3, v2i−2, v4m−2i+5, v4m−2i+6} (i), i = 2, 3, 4
{u2i−5,u2i−4,u4m−2i+7,u4m−2i+8, v2i−3, v2i−2, v4m−2i+5, v4m−2i+6} (i), i = 5, ...,m + 1

{u2m−1,u2m,u2m+3,u2m+4, v2m+1, v2m+2} (m + 2)
{u2m+1,u2m+2} (m + 3)

{v0} {u0, v2, v4m+1} (1)
{u1,u2,u4m+1,u4m+2, v4, v4m−1} (2)

{u2i−3,u2i−2,u4m−2i+5,u4m−2i+6, v2i−5, v2i, v4m−2i+3, v4m−2i+8} (i), i = 3, ...,m
{u2m−1,u2m,u2m+3,u2m+4, v2m−3, v2m+1, v2m+2, v2m+6} (m + 1)

{u2m+1,u2m+2, v2m−1, v2m+4} (m + 2)

The values for the metric antidimension of the cases which are not covered by Theorems 3.1 - 3.4 are
obtained by total enumeration and given in the next two observations.

Observation 3.5. Graph GP(8, 2) is 2-metric antidimensional and adim1(GP(8, 2)) = 1 and adim2(GP(8, 2)) = 1.
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Observation 3.6. Graphs GP(6, 2), GP(7, 2) and GP(10, 2) are 3-metric antidimensional and

adimk(GP(6, 2)) =

1, k = 1, 2
2, k = 3

adimk(GP(7, 2)) =

2, k = 1, 2
1, k = 3

adimk(GP(10, 2)) =


1, k = 1
4, k = 2
2, k = 3

.

4. Conclusions

In this article the recently introduced k-metric antidimension problem is considered. We have studied
mathematical properties of the k-antiresolving sets and the k-metric antidimension of some generalized
Petersen graphs. Exact formulas for the k-metric antidimension of GP(n, 1) and GP(n, 2) are obtained.

A possible direction of future research could be considering the k-metric antidimension of some other
challenging classes of graphs.
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