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Abstract. Mixed convection in magnetohydrodynamic second grade nanofluid flow through a porous
medium containing nanoparticles and gyrotactic microorganisms with chemical reaction is considered.
Buongiorno’s nanofluid model is used incorporating the buoyancy forces and Darcy-Forchheimer effect.
Nanoparticles increase the thermal conduction in bioconvection flow and microorganisms simultaneously
increase the stability of nanofluids. For the constructive (or generation) chemical reaction, the mass transfer
displays an increasing behavior. Ordinary differential equations together with the boundary conditions are
obtained through the similarity variables from the governing equations of the problem, which are solved by
the Homotopy Analysis Method (HAM). The investigations are presented through graphs and the results
are interpreted which depict the influences of all the embedded parameters.

1. Introduction

Bio-convection is a natural phenomenon obtained by randomly moving of microorganisms in single-
celled or in a colony of cells form. Different bio-convection systems are exist due to the motion in particular
direction of the multiple types of microorganisms. Gyrotactic microorganisms move against the gravity in
still fluid while their up swimming is made denser in the upper part of the suspension than the lower part.
Mixed convection has applications in biofuel, fertilizers, ethanol, enzyme bio-sensors, biotechnology and
various environmental systems. Khan et al. [1] reported the comparison of Casson and Williamson nanoflu-
ids flow containing nanoparticles and gyrotactic microorganisms using actively controlled nanofluid model
boundary conditions. Their results show that stratification is dependent on microorganisms concentration.
Amirsom et al. [2] presented the three-dimensional flow of bio-convection nanofluids containing gyrotactic
microorganisms past a bi-axial stretching sheet with the effects of anisotropic slip, thermal jump and mass
slip. Waqas et al. [3] investigated the modified second-grade nanofluid flow and heat transfer with nanopar-
ticles concentration and motile microorganisms past a stretching surface exploring the rheological behavior.
Khan et al. [4] analyzed the bioconvection flow of Oldroyd-B nanofluid past a periodically moving stretch-
ing sheet under the effective Prandtl number. Mansour et al. [5] investigated the mixed bioconvection in
a square lid-driven cavity filled with gyrotactic microorganisms with different magnetic field inclinations
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in which the left wall of the lid-driven cavity is moving up with a constant speed in the vertical direction.
Zaman and Gul [6] reported the MHD bioconvection flow of Williamson nanomaterial in the presence
of gyrotactic microorganisms with nanoparticles, buoyancy forces and Newtonian conditions. Waqas et
al. [7] investigated the numerical study of micropolar nanofluid past the moving sheet in the presence of
activation energy, microorganisms and Nield boundary conditions. Ramzan et al. [8] explored the flow of
aqueous based nanofluid comprising single and multi-wall carbon nanotubes over a vertical cone through
a porous medium with heat generation/absorption, gyrotactic microorganisms, thermal radiation, Joule
heating and chemical reaction. Sohail et al. [9] discussed the entropy analysis of three dimensional flow of
Maxwell nanofluid containing gyrotactic microorganisms in the presence of homogeneous-heterogeneous
reactions with Cattaneo-Christov heat flux and mass diffusion. Some other studies on bioconvection can
be read in the references [10–15].
Many engineering, biomedical and industrial processes are highly affected by magnetohydrodynamic fluid
flows which are used to pump, heat levitate, stir liquid metals, designing of cooling and heating systems,
instruments of blood flow measurement, nuclear reactors, MHD generators, neutrons diffusion rate reg-
ulation etc. Scientists and researchers are active to explore magnetohydrodynamics. Anjum et al. [16]
focused to elaborate the features of entropy generation in polystyrene-water and polystyrene-kerosene
nanofluids with the combined phenomena of thermal stratification and convective boundary conditions
with viscous dissipation and stagnation points in the presence of MHD to analyze the flow characteristics
deformed by the Riga plate. Lu et al. [17] elaborated the effects of magnetohydrodynamic and Cattaneo
Christov heat flux on the squeezing flow, heat and mass transfer of carbon nanotubes over two disks using
bvp4c function of the MAPLE software. Jawad et al. [18] analyzed the rotational stagnation-point flow of
Maxwell nanofluid past a porous radially stretching/shrinking rotating disk using Buongiorno’s nanofluid
model and Von Karman similarity variables. Raju et al. [19] examined the magnesium oxide+water and
magnesium oxide+ethylene glycol nanofluid in the presence of magnetohydrodynamics to show that time
taken for execution is more in magnesium oxide with ethylene glycol mixture compared to magnesium
oxide+water for all the considered non-dimensional parameters. The other MHD studies can be seen in
the references [20–29].
The convective heat transfer in the porous medium has extensive applications including boilers operating,
heat exchangers, water filtration, oil and gas flowing in reservoirs, groundwater flows, fuel cells, transfer
of drugs in tissues, packed-bed energy storage systems, fluidized beds, thermal insulation etc.
The popular Navier-Stokes equations are used to study the dynamics of fluids in permeable or imperme-
able medium. Scientists and researchers are investigating different types of problems using Navier-Stokes
equations. There are interesting studies employing Navier-Stokes equations which can be solved through
the common techniques of integration. To this end, Benbernou [30] established a Serrin-type regularity
criterion in terms of pressure for Leray weak solutions to the Navier-Stokes equations. Involving fluid
flow, Gala et al. [31] presented a study that deals with the blow-up criterion for the hydrodynamic system
modeling the flow of three-dimensional nematic liquid crystal materials. In another note, Gala et al. [32]
considered the regularity problem under the critical condition to the Boussinesq equations with zero heat
conductivity. Applying Navier-Stokes equations to the physical problems, Khan et al. [33] discussed the
behavior of flow and transfer of heat analysis of a second-grade fluid through a porous medium past a
stretching sheet showing that the velocity and temperature decrease with porosity parameter. Hussain
et al. [34] worked on a numerical study for the effect of porosity and internal heat generation/absorption
on mixed convection flow of nanofluid over a backward facing step along with the entropy generation in
which the channel downstream bottom wall is isothermally heated while the remaining walls of the channel
are thermally insulated. Ramesh [35] examined the behavior of three different hybrid nanoparticles flow in
porous medium characterized by Forchheimer medium across a rotating disk using convective conditions
for heat transfer and RKF method. Gosh and Mukhopadhyay [36] presented the nanofluid flow over an
exponentially porous shrinking sheet in the presence of velocity slip and thermal slip under the effects of
silver nanoparticle in two different types of base fluids. Khan et al. [37] worked on a transient MHD flow
in Carreau-Yasuda nanofluid produced by impulsively started disk in the presence of Darcy-Forchheimer
and chemical reactive species considering conventional Fourier’s and Fick’ laws.
The authors have analyzed the mixed convection in gravity-driven MHD second grade nanofluid flow con-
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taining both nanoparticles and gyrotactic microorganisms through a Darcy-Forchheimer porous medium
with chemical reaction along a convectively heated vertical surface. Similarity transformations are used in
the basic governing equations of the problem to convert it to dimensionless form which have been solved
using a powerful analytic tool Homotopy Analysis Method (HAM) [38]. The influences of all the pertinents
parameters on velocity, temperature, concentration and density motile microorganisms profiles have been
shown graphically and illustrated.

2. Methods

2.1. Basic equations

A flow of MHD, unsteady, laminar and an incompressible second grade nanofluid falling downwards
along a vertical solid surface due to gravity in two dimensions is under focused. The uniform downward
flow on the right side of the plate has a constant temperature T∞ at x = 0 and the nanofluid on the left
side of the plate has another constant temperature T f . Darcy-Forchheimer effect is involved for the porous
medium. For removing the bioconvection instability, supposition is that the nanofluid is in dilute form
and the stability of the nanoparticles suspended in the base fluid exist so that the nanoparticles do not
agglomerate in the fluid. There does not exist nanaparticles flux at the solid wall. It is assumed that
microorganisms are constantly distributed at the wall. For the survival of the microorganisms, the base
fluid is taken as water. A magnetic field of intensity B0 is imposed in the positive y-direction. The absence
of applied voltage and the magnetic Reynolds make the induced magnetic field and Hall effects too much
less which can be considered to zero. The physical description of the problem is shown in Fig. 1.
Applying aforementioned suppositions, the basic governing equations are as in [1, 10, 13–15]

Figure 1: Problem geometry.
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where U represents the free stream velocity, a represents constant, u and v are the velocity components
in the x-and y-directions. α1 is the normal stress moduli,

∼
v=

(
bWc
∆C

)
∇C represents the average swimming

velocity vector of the oxytactic microorganisms embedding b which represents the chemotaxis constant and
Wc represents the maximum cell swimming speed. The subscripts p, f and f∞ represent respectively the
solid particles, the nanofluid and the base fluid at far field. ∆ρ = ρcell - ρ f∞ represents the density difference
between a cell and base fluid density at far field, µ f represents the dynamic viscosity, γav represents the
average volume of microorganisms, σ represents the electrical conductivity and ρ f represents the density of
the nanoliquid. ν f =

µ f

ρ f
represents the kinematic viscosity, β represents the coefficient of volumetric volume

expansion of a second grade nanofluid, g represents the acceleration due to gravity, C represents the

nanopartical volume fraction, k = k0x represents the permeability of porous medium and kF =
kF

0
√

x
represents

the Forchheimer resistance factor where k0 represents the initial permeability. N represents the number
density of motile microorganisms, C∞ represents the ambient nanofluid volume fraction, λ = k1

ρ f
represents

the thermal diffusivity of the nanofluid in which k1 represents the thermal conductivity, kr represents the rate
(constant) of chemical reaction, τ =

(ρc)P

(ρc) f
represents the ratio of nanoparticle heat capacity and the base fluid

heat capacity at constant pressure P, DB represents the Brownian diffusion coefficient at constant pressure,
Dn represents the diffusivity of microorganisms, T∞ represents the ambient temperature, DT represents the
thermophoretic diffusion coefficient and T represents the temperature inside the boundary layer.
The boundary conditions are

u = 0, v = 0, −k1
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u→ U(x),
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→ 0, T→ T∞, C→ C∞, N→ N∞ as y→∞, (8)

where h f (x) represents the coefficient of heat transfer on behalf of T f , Cw represents the wall nanofluid
(secondgrade) volume fraction, Nw represents the wall concentration of microorganisms and N∞ represents
the ambient concentration of microorganisms. N∞ = 0 so that the boundary conditions are satisfied at
infinity.
Applying the transformations for nondimensional variables f, θ, φ, Ω and similarity variable ζ as
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where ψ represents the stream function which is used as u =
∂ψ
∂y and v = - ∂ψ

∂x , x and y are the Cartesian
coordinates along surface and normal to it. Equation (9) identically satisfies mass conservation equation
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(1). With the help of equation (9), the equations (2)-(5), (7)-(8) yield the following six equations (10)-(15).
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the magnetic field parameter. For γ1 = 0, the present study corresponds to viscous nanofluid case and if γ1
= γ3 = γ4 = γ5 = M = 0, then the non-Newtonian, Darcy Forchheimer, chemical reaction and magnetic field
effects are not exist.

3. Solution of the Problem by Homotopy Analysis Method

Choosing the suitable initial approximations to satisfy the boundary conditions and auxiliary linear
operators for velocity, temperature, concentration and motile microorganism concentration in the following
form
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where Ci(i = 1-9) are the arbitrary constants.



N. S. Khan / Filomat 33:14 (2019), 4627–4653 4632

3.1. Zeroth-order deformation problems
Introducing the nonlinear operator ℵ as
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where p is an embedding parameter such that p ∈ [0, 1].
The zeroth-order deformation problems are

(1 − p)L f [f(ζ, p) − f0(ζ)] = p}ℵ f [f(ζ, p), θ(ζ, p), φ(ζ, p),Ω(ζ, p)], (23)

(1 − p)Lθ[θ(ζ, p) − θ0(ζ)] = p}ℵθ[f(ζ, p), θ(ζ, p), φ(ζ, p)], (24)

(1 − p)Lφ[φ(ζ, p) − φ0(ζ)] = p}ℵφ[f(ζ, p), θ(ζ, p), φ(ζ, p)], (25)

(1 − p)LΩ[Ω(ζ, p) −Ω0(ζ)] = p}ℵΩ[f(ζ, p), φ(ζ, p),Ω(ζ, p)], (26)

where } represents the auxiliary non-zero parameter.
Let us suppose that equation (23) has the boundary conditions

f(0, p) = 0, f′(0, p) = 0, f′(∞, p) = 1. (27)

Equation (24) has the boundary conditions

θ′(0, p) = −γ2(1 − θ(0, p)), θ(∞, p) = 0. (28)

Equation (25) has the boundary conditions

Nbφ′(0, p) + Ntθ′(0, p) = 0, φ(∞, p) = 0. (29)

Similarly equation (26) has the boundary conditions

Ω(0, p) = 1, Ω(∞, p) = 0. (30)

For p = 0 and p = 1, one obtains the following results

p = 0⇒ f(ζ, 0) = f0(ζ) and p = 1⇒ f(ζ, 1) = f (ζ), (31)

p = 0⇒ θ(ζ, 0) = θ0(ζ) and p = 1⇒ θ(ζ, 1) = θ(ζ), (32)

p = 0⇒ φ(ζ, 0) = φ0(ζ) and p = 1⇒ φ(ζ, 1) = φ(ζ), (33)
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Similarly

p = 0⇒ Ω(ζ, 0) = Ω0(ζ) and p = 1⇒ Ω(ζ, 1) = Ω(ζ). (34)

On the application of Taylor series expansion on equations (31)-(34), the simplified equations take the
following forms

f(ζ, p) = f0(ζ) +

∞∑
m=1

fm(ζ)pm, fm(ζ) =
1

m!
∂mf(ζ, p)
∂pm |p=0, (35)

θ(ζ, p) = θ0(ζ) +

∞∑
m=1

θm(ζ)pm, θm(ζ) =
1

m!
∂mθ(ζ, p)
∂pm |p=0, (36)

φ(ζ, p) = φ0(ζ) +
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φm(ζ)pm, φm(ζ) =
1
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∂mφ(ζ, p)
∂pm |p=0, (37)

Ω(ζ, p) = Ω0(ζ) +

∞∑
m=1

Ωm(ζ)pm, Ωm(ζ) =
1

m!
∂mΩ(ζ, p)
∂pm |p=0 . (38)

The convergence of the series is sharply relying on }. Suppose } is taken in such a manner that the series in
equations (35)-(38) converge at p = 1, then equations (35)-(38) result in

f(ζ) = f0(ζ) +

∞∑
m=1

fm(ζ), (39)

θ(ζ) = θ0(ζ) +

∞∑
m=1

θm(ζ), (40)

φ(ζ) = φ0(ζ) +

∞∑
m=1

φm(ζ), (41)

Ω(ζ) = Ω0(ζ) +

∞∑
m=1

Ωm(ζ). (42)

3.2. m-th order deformation problems
Operating for m times derivative with respect to p of equations (23) and (27), then dividing by m! and

using p = 0 provide the following equations

L f [fm(ζ) − χmfm−1(ζ)] = }R
f
m(ζ), (43)

fm(0) = f ′m(0) = f ′m(∞) = 0, (44)

R
f
m(ζ) = f ′′′m−1 +

2
3
−

2
3

m−1∑
k=o

[
f ′m−1−k f ′k

]
+

m−1∑
k=o

[
fm−1−k f ′′k

]
+ γ1

m−1∑
k=0

[
2 f ′m−1−k f ′′′k − f ′′m−1−k f ′′k − 3 fm−1−k f iv

k

]
+

Grθm−1 − Nrφm−1 + RbΩm−1 −M f ′m−1 − γ3 f ′m−1 − γ4 f ′m−1−k f ′k . (45)

Operating for m times derivative with respect to p of equations (24) and (28), then dividing by m! and using
p = 0 provide the following equations

Lθ[θm(ζ) − χmθm−1(ζ)] = }Rθm(ζ), (46)



N. S. Khan / Filomat 33:14 (2019), 4627–4653 4634

θ′m(0) − γ2θm(0) = 0, θm(∞) = 0, (47)

Rθm(ζ) = θ′′m−1 + Pr
m−1∑
k=o

fm−1−kθ
′

k + Nt
m−1∑
k=o

θ′m−1−kθ
′

k + Nb
m−1∑
k=o

θ′m−1−kφ
′

k. (48)

Operating for m times derivative with respect to p of equations (25) and (29), then dividing by m! and using
p = 0 provide the following equations

Lφ[φm(ζ) − χmφm−1(ζ)] = }R
φ
m(ζ), (49)

Nbφ′m(0) + Ntθ′m(0) = φm(∞) = 0, (50)

R
φ
m(ζ) = φ′′m−1 + Le

m−1∑
k=o

fm−1−kφ
′

k +
Nt
Nb
θ′′m−1 − γ5φm−1. (51)

Operating for m times derivative with respect to p of equations (26) and (30), then diving by m! and using
p = 0 provide the following equations

LΩ[Ωm(ζ) − χmΩm−1(ζ)] = }RΩ
m(ζ), (52)

Ωm(0) = Ω′m(∞) = 0, (53)

RΩ
m(ζ) = Ω′′m−1 + Sc

m−1∑
k=o

fm−1−kΩ
′

k + Pe
m−1∑
k=o

[
φ′m−1−kΩ

′

k + φ′′m−1−kΩk

]
, (54)

χm =

{
0, m 6 1
1, m > 1. (55)

If f∗m(ζ), θ∗m(ζ), φ∗m(ζ) and Ω∗m(ζ) are the particular solutions, then the general solutions of equations (43),
(46), (49) and (52) are

fm(ζ) = f∗m(ζ) + C1 + C2 exp(ζ) + C3 exp(−ζ), (56)

θm(ζ) = θ∗m(ζ) + C4 exp(ζ) + C5 exp(−ζ), (57)

φm(ζ) = φ∗m(ζ) + C6 exp(ζ) + C7 exp(−ζ), (58)

Ωm(ζ) = Ω∗m(ζ) + C8 exp(ζ) + C9 exp(−ζ). (59)

4. Results and Discussion

The dimensionless equations (10)-(15) are computed via MATHEMATICA using HAM code. It is
interesting to discuss the role of all the emerging parameters on the non-dimensional velocity profile,
non-dimensional temperature profile, non-dimensional concentration profile and non-dimensional motile
gyrotactic microorganisms profile f (ζ), θ(ζ),φ(ζ) and Ω(ζ) respectively. The effects of embedded parameters
on the velocity f (ζ), temperature θ(ζ), concentration φ(ζ) and motile gyrotactic microorganisms Ω(ζ) fields
have been plotted in Figures (6-17), (18-25), (26-35) and (36-46) respectively. The schematic diagram of the
problem is demonstrated in Fig. 1. Liao [38] introduced } curves for the convergence of the series solutions
of the problems. Therefore, the admissible }-curves for f (ζ), θ(ζ), φ(ζ) and Ω(ζ) are drawn in the ranges -
1.3 ≤ } ≤ 0.0, - 1.8 ≤ } ≤ 0.2, - 2.1 ≤ } ≤ 0.1 and - 2.0 ≤ } ≤ 0.0 in Figures (2-3) and Figures (4-5) respectively.
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Figure 2: } curve of f (ζ).

Figure 3: } curve of θ(ζ).

Figure 4: } curve of φ(ζ).
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Figure 5: } curve of Ω(ζ).

4.1. Velocity profile
Figure 6 presents that the motion is slow when the second grade nanofluid parameter γ1 increases.

Figure 7 depicts that flow rises as the reduced heat transfer parameter γ2 rises. Figure 8 reveals that velocity
f (ζ) is completely decelerated when the porosity parameter γ3 is enhanced. The reason is that fluid flow
receives resistivity due to porous medium holes. Figure 9 shows that motion of non-Newtonian second-
grade nanofluid is reduced to minimum value as the inertial parameter γ4 resumes the positive values.
Figure 10 projects that motion is enhanced on increasing the chemical reaction parameter γ5. Gravity favors
the motion with the increments in chemical reaction quantity. Figure 11 expresses that the velocity f (ζ)
rises for the rising quantities of buoyancy parameter Gr. Gravity is involved in this phenomena. Figure
12 clarifies the effect of buoyancy ratio parameter Nr on flow which has an increasing behavior. Figure 13
displays that velocity f (ζ) has no progress for increasing quantities of bioconvection Rayleigh number Rb.
Figure 14 shows that Lewis number Le accelerates the velocity f (ζ). Figure 15 describes that velocity f (ζ) is
made high for increasing the Schmidt number Sc. From Figure 16 it is found that the velocity f (ζ) decreases
on amplifying the values of magnetic field parameter M. Magnetic field generates Lorentz forces which
retard the flow. Figure 17 provides the information about the progress of velocity f (ζ) and Prandtl number
Pr. Motion becomes fast as Pr increases.

Figure 6: Role of f (ζ) and γ1.
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Figure 7: Role of f (ζ) and γ2.

Figure 8: Role of f (ζ) and γ3.

Figure 9: Role of f (ζ) and γ4.



N. S. Khan / Filomat 33:14 (2019), 4627–4653 4638

Figure 10: Role of f (ζ) and γ5.

Figure 11: Role of f (ζ) and Gr.

Figure 12: Role of f (ζ) and Nr.
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Figure 13: Role of f (ζ) and Rb.

Figure 14: Role of f (ζ) and Le.

Figure 15: Role of f (ζ) and Sc.
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Figure 16: Role of f (ζ) and M.

Figure 17: Role of f (ζ) and Pr.
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4.2. Temperature profile

Figure 18 exhibits that the second grade nanofluid parameter γ1 rises the temperatureθ(ζ) due to viscous
forces. Figure 19 demonstrates that the larger values of reduced heat transfer parameter γ2 mitigates the
temperature θ(ζ). Figure 20 reveals that the porosity parameter γ3 decreases the temperature since heat is
used in the pores of medium. Figure 21 shows that temperature decreases as the values of inertial parameter
γ4 increases since the medium faces resistivity on account of which heat cannot diffuse easily. Figure 22
shows that chemical reaction parameter γ5 increases the temperature θ(ζ) due to chemical combination
of different species. Figure 23 displays that temperature is at once increases with the increasing values of
thermophoresis parameter Nt. Magnetic field parameter M increases the temperature as shown by Figure 24.
Magnetic field focuses on the controlling of heat and mass transfer flow therefore the temperature enhances
for the strength of magnetic field. Prandtl number Pr makes low the temperature θ(ζ) as projected by Figure
25.

Figure 18: Role of θ(ζ) and γ1.

Figure 19: Role of θ(ζ) and γ2.
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Figure 20: Role of θ(ζ) and γ3.

Figure 21: Role of θ(ζ) and γ4.

Figure 22: Role of θ(ζ) and γ5.
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Figure 23: Role of θ(ζ) and Nt.

Figure 24: Role of θ(ζ) and M.

4.3. Nanoparticles concentration profile

Figure 26 shows that the saturation becomes low with the non-Newtonian effect. As the non-Newtonian
second-grade nanofluid parameter γ1 increases the viscous forces increase so no capacity is left for further
saturation after some specific time. Figure 27 depicts that the concentration φ(ζ) is low for the convective
heat slip parameter namely reduced heat parameter γ2. The concentration rises with the greater values
of porosity parameter γ3 which is evident from Figure 28. The inertial parameter γ4 increases the con-
centration φ(ζ) as shown by Figure 29. The reason is that γ4 basically shows the resistance which favors
the nanoparticles concentration. The chemical reaction parameter γ5 has been enhanced the concentration
depicted through Figure 30. Figure 31 shows that the Brownian motion parameter Nb increases the concen-
tration profile φ(ζ). Figure 32 specifies that the thermophoresis parameter Nt decreases the concentration
profile φ(ζ). Figure 33 reveals that Lewis number Le makes thick the concentration φ(ζ). Figure 34 projects
that the concentration field φ(ζ) is made strong as soon as the magnetic field parameter M is made strong.
Magnetic field leads to the Lorentz force which increases the concentration. Prandtl number Pr increases
the nanoparticle concentration so the φ(ζ) is enhanced as shown in Figure 35.
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Figure 25: Role of θ(ζ) and Pr.

Figure 26: Role of φ(ζ) and γ1.

Figure 27: Role of φ(ζ) and γ2.
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Figure 28: Role of φ(ζ) and γ3.

Figure 29: Role of φ(ζ) and γ4.

Figure 30: Role of φ(ζ) and γ5.
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Figure 31: Role of φ(ζ) and Nb.

Figure 32: Role of φ(ζ) and Nt.

Figure 33: Role of φ(ζ) and Le.
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Figure 34: Role of φ(ζ) and M.

Figure 35: Role of φ(ζ) and Pr.
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4.4. Gyrotactic microorganisms concentration
Figure 36 shows that the microorganism concentration profile Ω(ζ) rises with larger values of second

grade nanofluid parameter γ1. Non-Newtonian effect has a pleasant effect on gyrotactic microorganisms.
Figure 37 focuses on the role of reduced heat parameter γ2 on the microorganism concentration Ω(ζ) profile.
Figure 38 shows that the microorganism concentration Ω(ζ) is reduced for the porosity parameter γ3. The
microorganisms cannot move freely in the porous medium. Figure 39 contains the non-dimensional mi-
croorganisms concentration Ω(ζ) profile and inertial parameter γ4. The distribution of microorganisms is on
low status. Figure 40 projects that the chemical reaction parameter γ5 increases the microorganisms concen-
tration field Ω(ζ). It is shown in Figure 41 that the microorganisms concentration Ω(ζ) has no progress for
the Brownian motion parameter Nb due to collision of nanoparticles. Figure 42 contains the thermophoresis
parameter Nt and the microorganisms concentration profile Ω(ζ). Concentration is enhanced by assigning
the positive values. Figure 43 illustrates that the microorganisms concentration field Ω(ζ) is enhanced for
the greater values of Lewis number Le. Schmidt number Sc decreases the microorganisms concentration
profile Ω(ζ) as shown in Figure 44. Figure 45 shows the effect of bioconvection Peclet number Pe on Ω(ζ)
which implies that Pe increases the microorganisms concentration profile Ω(ζ). Figure 46 reveals that by
increasing the magnetic field parameter M, the non-dimensional motile density function profile Ω(ζ) is
increased.

Figure 36: Role of Ω(ζ) and γ1.

5. Conclusions

The present article investigates the MHD mixed convection in gravity-driven non-Newtonian second
grade nanofluid flow containing both nanoparticles and gyrotactic microorganisms using Darcy Forch-
heimer porous medium model of Buongiorno’s nanofluid in the presence of chemical reaction along a
convectively heated vertical surface. The analytical solution due to Homotopy Analysis Method (HAM) is
discussed for the velocity, temperature, concentration and microorganism concentration fields for various
parameters. The main findings of the study are the following.
(i) The velocity f (ζ) decreases for the parameters γ3, γ4, Rb and M while it increases for the parameters γ1,
γ2, γ5, Gr, Nr, Le, Sc and Pr.
(ii) The temperature θ(ζ) decreases for the parameters γ2, γ3, γ4, M and Pr while it increases for the param-
eters γ1, γ5 and Nt.
(iii) The concentration φ(ζ) decreases for the parameters γ1, γ2, Nt and Pr while it increases for the param-
eters γ3, γ4, γ5, Nb, Le and M.
(iv) The microorganism concentration Ω(ζ) decreases for the parameters γ3, γ4, Nb, Sc and M while it
increases for the parameters γ1, γ2, γ5, Le, Nt and Pe.
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Figure 37: Role of Ω(ζ) and γ2.

Figure 38: Role of Ω(ζ) and γ3.

Figure 39: Role of Ω(ζ) and γ4.
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Figure 40: Role of Ω(ζ) and γ5.

Figure 41: Role of Ω(ζ) and Nb.

Figure 42: Role of Ω(ζ) and Nt.
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Figure 43: Role of Ω(ζ) and Le.

Figure 44: Role of Ω(ζ) and Sc.

Figure 45: Role of Ω(ζ) and Pe.
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Figure 46: Role of Ω(ζ) and M.
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