Spectral Properties of Square Hyponormal Operators

Muneo Chō, Dijana Mosić, Biljana Načevska Nastovska, Taiga Saito

1. Introduction

Let \mathcal{H} be a complex Hilbert space, and let $B(\mathcal{H})$ denote the set of all bounded linear operators on \mathcal{H}. For $T \in B(\mathcal{H})$, we denote by T^*, $\ker(T)$, $r(T)$, $\sigma(T)$, $\sigma_0(T)$, $\sigma_r(T)$, respectively, the adjoint, the null space, the range, the spectrum, the approximate point spectrum and the residual spectrum of T. It is well-known that $\sigma(T) = \sigma_0(T) \cup \sigma_r(T)$.

An operator $T \in B(\mathcal{H})$ is self-adjoint if $T = T^*$. An operator $T \in B(\mathcal{H})$ is normal and 2-normal if $T^* T = T T^*$ and $T^* T^2 = T^2 T$, respectively. By Fuglede-Putnam Theorem, it is easily to see that T is 2-normal if and only if T^2 is normal (see [4]). An operator $T \in B(\mathcal{H})$ is positive (denoted by $T \geq 0$) if $\langle Tx, x \rangle = 0$, for all $x \in \mathcal{H}$. For self-adjoint operators $T, S \in B(\mathcal{H})$, $T \geq S$ means $T - S \geq 0$.

For an operator $T \in B(\mathcal{H})$, let $|T| = (T^* T)^{1/2}$ and $|T^*| = (T T^*)^{1/2}$. For $0 < p \leq 1$, T is said to be p-hyponormal if $|T|^p \geq |T|^p$. When $p = 1$ and $p = \frac{1}{2}$, T is said to be hyponormal and semi-hyponormal, respectively. Notice that T is hyponormal if and only if $\|T^* x\| \leq \|T x\|$, for all $x \in \mathcal{H}$. By Corollary 1 of [3], in general, if T is p-hyponormal (0 < $p \leq 1$), then T^n is $\frac{p}{n}$-hyponormal. An operator $T \in B(\mathcal{H})$ is said to be paranormal if $\|T x\| \leq \|T^2 x\| \cdot \|x\|$, for all $x \in \mathcal{H}$. An operator $T \in B(\mathcal{H})$ is said to be algebraically hyponormal if $p(T)$ is hyponormal and paranormal, for some nonconstant complex polynomial p, respectively.

In [7, 8], the authors showed that if T is algebraically hyponormal and algebraically paranormal, then T is isoloid and Weyl’s Theorem holds, respectively.
The aim of this paper is to study a bounded linear operator T on a complex Hilbert space such that T^2 is a hyponormal operator. Firstly, notice that there exists an operator T such that T^2 is hyponormal and T is not hyponormal.

Let $\mathcal{H} = \ell^2$ and T be the unilateral shift with the weights $\{a_n \geq 0\}$ such that

$$Tx := (0, a_1x_1, a_2x_2, ...) \quad \text{for} \quad x = (x_1, x_2, ...) \in \mathcal{H}.$$

Then T is hyponormal if and only if $a_j \leq a_{j+1}$ $(j = 1, 2, ...)$, i.e., $\{a_j\}$ is a monotone increasing sequence, for $a_j = 1$ $(j \neq 2)$ and $a_2 = \frac{1}{2}$. Since the sequence $\{a_n\}$ is not increasing, the operator T is not hyponormal. But since

$$T^2x = (0, 0, a_1a_2x_1, a_2a_3x_2, ...) \quad \text{and} \quad T^2x = (a_1a_2x_3, a_2a_3x_4, ...),$$

T^2 is hyponormal if and only if $a_2a_{j+1} \leq a_{j+2}a_{j+3}$ for $j = 1, 2, ...$. Hence, by this weights $a_j = 1$ $(j \neq 2)$ and $a_2 = \frac{1}{2}$, the operator T^2 is hyponormal and T is not hyponormal.

In [4–6], the authors have studied spectral properties of n-normal operator, that is, an operator T such that T^n is normal, in the cases that $\sigma(T) \cap (-\sigma(T)) = \emptyset$ or $\sigma(T) \cap (-\sigma(T)) \subset \{0\}$. Since an operator T such that T^2 is hyponormal is algebraically hyponormal, T is isoloid and Weyl’s Theorem holds. Hence, we study other spectral properties of such an operator T in this paper.

2. Basic properties

In the beginning, we introduce a square hyponormal operator and investigate some basic properties of this operator.

Definition 2.1. For an operator $T \in B(\mathcal{H})$, T is said to be square hyponormal if T^2 is hyponormal.

The following result follows from the definition of square hyponormal operators.

Theorem 2.2. Let $T \in B(\mathcal{H})$ be square hyponormal. Then the following statements hold.

1. If T is invertible, then so is T^{-1}.

2. For an even number $n = 2k \in \mathbb{N}$, T^n is $\frac{1}{k}$-hyponormal.

3. If $S \in B(\mathcal{H})$ is unitary equivalent to T, then S is square hyponormal.

4. If $T - t$ is square hyponormal for all $t > 0$, then T is hyponormal.

Proof.

1. is clear.

2. Since T^2 is hyponormal, by Corollary 1 of [3], $T^n = T^{2k} = (T^2)^k$ is $\frac{1}{k}$-hyponormal.

3. is clear.

4. Since

$$0 \leq (T - t)^2(T - t)^2 - (T - t)^2(T - t)^2 = T^2T^2 - T^2T^2 - 2T^2T^2 + 4T^2T^2 - 2T^2T^2,$$

we obtain that

$$0 \leq \frac{1}{4t^2}(T^2 - T^2) - (T - t)^2(T - t)^2 = \frac{1}{4t^2}(T^2 - T^2) - (T - t)^2(T - t)^2$$

Letting $t \to \infty$, we have $T^2T - TT^* \geq 0$. \qed

We now consider the restriction of a square hyponormal operator to an invariant closed subspace.
\textbf{Theorem 2.3.} Let $T \in B(\mathcal{H})$ be square hyponormal and M be an invariant closed subspace for T. Then $T_{|M}$ is square hyponormal.

\textit{Proof.} Since M is an invariant closed subspace for T, we observe that

$$T = \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{33} \end{bmatrix} : \begin{bmatrix} M \\ M^{\perp} \end{bmatrix} \to \begin{bmatrix} M \\ M^{\perp} \end{bmatrix}.$$

Therefore, for $D = T_{1}T_{2} + T_{2}T_{3}$, since

$$T^2 = \begin{bmatrix} T_{11}^2 & DT_{12} \\ 0 & T_{33}^2 \end{bmatrix} \quad \text{and} \quad (T^2)' = \begin{bmatrix} (T_{11}^2)' & 0 \\ D' & (T_{33}^2)' \end{bmatrix},$$

we have

$$(T^2)'T^2 - T^2(T^2)' = \begin{bmatrix} (T_{11}^2)'T_{11}^2 - T_{11}^2(T_{11}^2)' - DD' \\ D'T_{11}^2 - T_{11}^2D' \end{bmatrix} \begin{bmatrix} (T_{11}^2)'D - D(T_{11}^2)' \\ D'D + (T_{33}^2)'T_{33}^2 - T_{33}^2(T_{33}^2)' \end{bmatrix} \geq 0.$$

Hence we deduce that $(T_{11}^2)'I_{11}^2 - T_{11}^2(T_{11}^2)' - DD' \geq 0$ and so $(T_{11}^2)'I_{11}^2 - T_{11}^2(T_{11}^2)' \geq 0$. Therefore, $T_{|M}$ is square hyponormal. \qed

3. Spectral property

Under some additional assumptions, we study spectral properties of a square hyponormal operator in this section. Firstly, we show the following theorem.

\textbf{Theorem 3.1.} Let $T \in B(\mathcal{H})$ be square hyponormal. If $\mu(\sigma(T)) = 0$, then T^2 is normal, where μ is the planar Lebesgue measure.

\textit{Proof.} Since $\mu(\sigma(T)) = 0$, we have that $\mu(\sigma(T^2)) = 0$ by the spectral mapping theorem. By T^2 is hyponormal and Putnam’s Theorem, it holds

$$\|T^2 - T^2T^2\| \leq \frac{1}{\pi} \mu(\sigma(T^2)) = 0.$$

Hence, T^2 is normal. \qed

\textbf{Remark 3.2.} If T is p-hyponormal and square hyponormal with $\mu(\sigma(T)) = 0$, then, by Corollary 2 of [3], T is normal. But let $S = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ on \mathbb{C}^2. Then S is square hyponormal with $\mu(\sigma(S)) = 0$ and S is not normal.

If T is compact, then $\mu(\sigma(T)) = 0$. Hence, we have the following corollary.

\textbf{Corollary 3.3.} If $T \in B(\mathcal{H})$ is compact square hyponormal, then T^2 is normal.

An operator $T \in B(\mathcal{H})$ is said to have SVEP (single-valued extension property) if for every open subset G of \mathbb{C} and any \mathcal{H}-valued analytic function f on G such that $(T - z)f(z) \equiv 0$ on G, then $f(z) \equiv 0$ on G. It is well known that:

1. If $\ker(T - z) \perp \ker(T - w)$ for any distinct nonzero eigenvalues z and w, then T has SVEP.
2. Let p be polynomial. If $p(T)$ has SVEP, then T has SVEP.

See details in [2, 11, 12]. Since it is clear that a hyponormal operator has SVEP, we have the next corollary by (2).
Corollary 3.4. Let \(T \in \mathcal{B}(\mathcal{H}) \) be square hyponormal. Then \(T \) has SVEP.

Let \(\mathcal{K}(\mathcal{H}) \) be the set of all compact operators on \(\mathcal{H} \). Then, for \(T \in \mathcal{B}(\mathcal{H}) \), the Weyl spectrum \(\sigma_w(T) \) and the Browder spectrum \(\sigma_b(T) \) of \(T \) are defined as belows:

\[
\sigma_w(T) = \bigcap_{K \in \mathcal{K}(\mathcal{H})} \sigma(T + K) \quad \text{and} \quad \sigma_b(T) = \bigcap_{K \in \mathcal{K}(\mathcal{H}), TK = KT} \sigma(T + K).
\]

If \(T \) has SVEP, then \(\sigma_w(T) = \sigma_b(T) \) by Corollary 3.53 of [2]. Let \(\mathcal{H} = \sigma(T) \) denote the set of all analytic function defined on an open set containing \(\sigma(T) \). Then, by Corollary 3.72 of [2], we have the following result.

Corollary 3.5. Let \(T \in \mathcal{B}(\mathcal{H}) \) be square hyponormal. Then, for \(f \in \mathcal{H}(\sigma(T)) \),

\[
\sigma_w(f(T)) = \sigma_b(f(T)) = f(\sigma_w(T)) = f(\sigma_b(T)).
\]

Next for \(T \in \mathcal{B}(\mathcal{H}) \), we set the following property:

\[
(\ast) \quad \sigma(T) \cap (-\sigma(T)) \in [0].
\]

Then we begin with the following result.

Theorem 3.6. Let \(T \in \mathcal{B}(\mathcal{H}) \) be square hyponormal with \((\ast)\) and \(M \) be an invariant subspace for \(T \). If \(\sigma(T_M) = \{z\} \), then the following assertions hold.

1. If \(z = 0 \), then \((T_M)^2 = 0 \).
2. If \(z \neq 0 \), then \(T_M \) is hyponormal.

Proof. (1) By Theorem 2.3, \(T_M \) is square hyponormal. Since \(\sigma((T_M)^2) = \{0\} \), we have \((T_M)^2 = 0 \) by Putnam’s theorem.

(2) Similarly, from \(\sigma((T_M)^2) = \{z^2\} \), we get \((T_M)^2 = z^2 \) and hence

\[
0 = (T_M)^2 - z^2 = (T_M + z)(T_M - z).
\]

By the assumption \((\ast)\), \(-z \not\in \sigma(T)\) and there exists \((T_M + z)^{-1} \). Hence, it holds \(T_M - z = 0 \). \(\square \)

Theorem 3.7. Let \(T \in \mathcal{B}(\mathcal{H}) \) be a square hyponormal operator. If \(T \) satisfies \((\ast)\), then \(\sigma(T) = [\mathbb{Z} : z \in \sigma_a(T^*)] \).

Proof. Since \(\sigma(T) = \sigma_a(T) \cup \sigma_r(T) \), we may show \(\sigma_a(T) \subset [\mathbb{Z} : z \in \sigma_a(T^*)] \).

1. If \(0 \in \sigma_a(T) \), then \(0 \in \sigma_a(T^2) \) and \(T^2 \) is hyponormal. Hence, it is easy to see \(0 \in \sigma_a(T^*) \).

2. Let \(z \in \sigma_a(T) \) and \(z \neq 0 \). Then there exists a sequence \(\{x_n\} \) of unit vectors such that \((T - z)x_n \to 0 \) as \(n \to \infty \). Thus, \((T^2 - z^2)x_n \to 0 \) as \(n \to \infty \). Because \(T^2 \) is hyponormal, we have \((T^2 - z^2)x_n \to 0 \) and \((T^* - \overline{z})(T^* - z)x_n \to 0 \) as \(n \to \infty \). By the assumption \((\ast)\), \(-\overline{z} \not\in \sigma(T^*)\) which gives \((T^* - \overline{z})x_n \to 0 \) as \(n \to \infty \) and therefore \(\overline{z} \in \sigma_a(T^*) \). It completes the proof. \(\square \)

Theorem 3.8. Let \(T \in \mathcal{B}(\mathcal{H}) \) be square hyponormal and satisfy \((\ast)\).

1. If \(z \) and \(w \) are distinct eigen-values of \(T \) and \(x, y \in \mathcal{H} \) are corresponding eigen-vectors, respectively, then \(\langle x, y \rangle = 0 \).

2. If \(z, w \) are distinct values of \(\sigma_a(T) \) and \(\{x_n\}, \{y_n\} \) are the sequences of unit vectors in \(\mathcal{H} \) such that \((T - z)x_n \to 0 \) and \((T - w)y_n \to 0 \) as \(n \to \infty \), then \(\lim_{n \to \infty} \langle x_n, y_n \rangle = 0 \).

Proof. (1) follows from (2). So, we show (2). Since \((T - z)x_n \to 0 \) and \((T - w)y_n \to 0 \) as \(n \to \infty \), it holds that \((T^2 - z^2)x_n \to 0 \) and \((T^2 - w^2)y_n \to 0 \). Because \(T^2 \) is hyponormal, we get \((T^2 - \overline{w^2})y_n \to 0 \). Hence,

\[
\lim_{n \to \infty} z^2 \langle x_n, y_n \rangle = \lim_{n \to \infty} z^2 \langle x_n, y_n \rangle = \lim_{n \to \infty} (T^2 - z^2) \langle x_n, y_n \rangle = \lim_{n \to \infty} \langle x_n, T^2y_n \rangle = \lim_{n \to \infty} w^2 \langle x_n, y_n \rangle.
\]

If \(z^2 = w^2 \), then \((z + w)(z - w) = 0 \). Since \(z \neq w \), we have \(z = -w \). By \((\ast)\), this implies \(z = w = 0 \). Therefore, \(z^2 \neq w^2 \), and so \(\lim_{n \to \infty} \langle x_n, y_n \rangle = 0 \). \(\square \)
Thus, we have the following corollary.

Corollary 3.9. Let $T \in B(\mathcal{H})$ be square hyponormal and satisfy (\ast). If z and w are distinct eigen-values of T, then $\ker(T - z) \perp \ker(T - w)$.

Let M be a subspace of \mathcal{H}. M is said to be a reducing subspace for T if $T(M) \subset M$ and $T^*(M) \subset M$, that is, M is an invariant subspace for T and T^*. Then we have a following result.

Theorem 3.10. Let $T \in B(\mathcal{H})$ be square hyponormal and satisfy (\ast). If z is a non-zero eigen-value of T, then $\ker(T - z) = \ker(T^2 - z^2) \subset \ker(T^2 - z^2) = \ker(T^* - \overline{z})$ and hence $\ker(T - z)$ is a reducing subspace for T.

Proof. Firstly, we show that $\ker(T - z) = \ker(T^2 - z^2)$. Because it is clear that $\ker(T - z) \subset \ker(T^2 - z^2)$, we will verify that $\ker(T^2 - z^2) \subset \ker(T - z)$. Let $x \in \ker(T^2 - z^2)$, i.e., $(T^2 - z^2)x = 0$. Then $(T + z)(T - z)x = 0$. Since $z \neq 0$, by the assumption (\ast), we have $-z \notin \sigma(T)$. Hence, it follows $(T - z)x = 0$ and $x \in \ker(T - z)$. Therefore, $\ker(T^2 - z^2) \subset \ker(T - z)$ and $\ker(T - z) = \ker(T^2 - z^2)$. Since T^2 is hyponormal, $\ker(T^2 - z^2) \subset \ker(T^2 - \overline{z})$. Evidently, $\ker(T^* - \overline{z}) \subset \ker(T^2 - z^2)$. Let $x \in \ker(T^2 - z^2)$. Because $(T^* + \overline{z})(T^* - \overline{z})x = 0$ and $T^* \overline{z}$ is invertible by the assumption (\ast), we obtain that $x \in \ker(T^* - \overline{z})$. Hence, $\ker(T^2 - z^2) = \ker(T^* - \overline{z})$. Finally, by the above results, it is clear that $\ker(T - z)$ is a reducing subspace for T. □

The following remark is same with the corresponding in the paper of [5].

Remark 3.11. In general, $\ker(T)$ is not a reducing subspace for a square hyponormal operator T.

(1) Let T be as in Example 2.3 of [1], that is, let $\mathcal{H} = \ell^2$, $\{e_j\}_{j=1}^{\infty}$ be the standard orthonormal basis of ℓ^2 and T be defined by

$$Te_j = \begin{cases} e_1 & (j = 1) \\ e_{j+1} & (j = 2k) \\ 0 & (j = 2k + 1). \end{cases}$$

Then T is a square hyponormal operator and satisfies (\ast). Since $e_3 \in \ker(T)$ and $TT^*e_3 = e_3 \neq 0$, $\ker(T)$ does not reduce T. Let P be the orthogonal projection to the first coordinate. Since $T^2 = P$, it is clear that $\ker(T) \nsubseteq \ker(T^2) = \ker(P)$.

(2) We give an easy example. Let $S = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ on \mathbb{C}^2. Since $S^2 = 0$ and $\sigma(S) = \{0\}$, S is square hyponormal and satisfies (\ast). Let $x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Then $x \in \ker(S)$ and $SS^*x = x \neq 0$. Hence, $\ker(S)$ does not reduce S and $\ker(S) \nsubseteq \ker(S^2) = \mathbb{C}^2$.

For an isolated point λ of $\sigma(T)$, the Riesz idempotent for λ is defined by

$$E_\lambda(\lambda) = \frac{1}{2\pi i} \int_{\partial D} (z - T)^{-1} \, dz,$$

where D is a closed disk centered at λ which contains no other points of $\sigma(T)$. For an operator $T \in \mathcal{L}(\mathcal{H})$, the quasinilpotent part of T is defined by

$$\mathcal{H}_0(T) := \{x \in \mathcal{H} : \lim_{n \to \infty} \|T^n x\|^{\frac{1}{n}} = 0\}.$$

Then $\mathcal{H}_0(T)$ is a linear (not necessarily closed) subspace of \mathcal{H}. It is known that if T has SVEP, then

$$\mathcal{H}_0(T - \lambda) = \{x \in \mathcal{H} : \lim_{n \to \infty} \|(T - \lambda)^n x\|^{\frac{1}{n}} = 0\} = E_\lambda(\lambda)\mathcal{H}.$$
for all \(\lambda \in \mathbb{C} \). In general, \(\ker(T - \lambda)^m \subset \mathcal{H}_0(T - \lambda) \) and \(\mathcal{H}_0(T - \lambda) \) is not closed. However, if \(\lambda \) is an isolated point of \(\sigma(T) \), then \(E_T(\{\lambda\})\mathcal{H} = \mathcal{H}_0(T - \lambda) \) and \(\mathcal{H}_0(T - \lambda) \) is closed. Also, if \(T \) is normal and \(T = \int_{\sigma(T)} \lambda dF(\lambda) \) is the spectral decomposition of \(T \), then

\[
\mathcal{H}_0(T - \lambda) = E_T(\{\lambda\})\mathcal{H} = \ker(T - \lambda) = \ker(T - \lambda)^*.
\]

In 2012, J. T. Yuan and G. X. Ji ([12, Lemma 5.2]) proved following Lemma.

Lemma 3.12. Let \(T \in \mathcal{B}(\mathcal{H}) \), \(m \) be a positive integer and \(\lambda \) be an isolated point of \(\sigma(T) \).
(i) The following assertions are equivalent:
(a) \(E_T(\{\lambda\})\mathcal{H} = \ker(T - \lambda)^m \),
(b) \(\ker(E_T(\{\lambda\})) = (T - \lambda)^m\mathcal{H} \).

In this case, \(\lambda \) is a pole of the resolvent of \(T \) and the order of \(\lambda \) is not greater than \(m \).
(ii) If \(\lambda \) is a pole of the resolvent of \(T \) and the order of \(\lambda \) is \(m \), then the following assertions are equivalent:
(a) \(E_T(\{\lambda\}) \) is self-adjoint.
(b) \(\ker((T - \lambda)^m) \subset \ker((T - \lambda)^m)^* \).
(c) \(\ker((T - \lambda)^m) = \ker((T - \lambda)^m)^* \).

By this lemma, we prove the following theorem.

Theorem 3.13. Let \(T \in \mathcal{B}(\mathcal{H}) \) be square hyponormal and satisfy (\ast). Let \(\lambda \) be an isolated point of spectrum of \(T \). Then the following statements hold.
(i) If \(\lambda = 0 \), then \(\mathcal{H}_0(T) = \ker(T^2) = \ker(T^{2^2}) \), \(E_T(\{0\}) \) is self-adjoint and the order of pole \(\lambda \) is not greater than \(2 \).
(ii) If \(\lambda \neq 0 \), then \(\mathcal{H}_0(T - \lambda) = \ker(T - \lambda) = \ker((T - \lambda)^*) \), \(E_T(\{\lambda\}) \) is self-adjoint and the order of pole \(\lambda \) is \(1 \).

Proof. (i) Assume that \(\lambda = 0 \). Since \(\sigma(T^2) = \{z^2 : z \in \sigma(T)\} \), it follows that \(0 \) is an isolated point of spectrum of \(T^2 \). We prove that \(\mathcal{H}_0(T) = \mathcal{H}_0(T^2) \). Let \(x \in \mathcal{H}_0(T) \). Then \(\|T^n x\|^{\frac{1}{n}} \to 0 \) and \(\|T^{2^n} x\|^{\frac{1}{2^n}} \to 0 \). Hence, \(x \in \mathcal{H}_0(T^2) \). Conversely, let \(x \in \mathcal{H}_0(T^2) \). Then \(\|T^{2^n} x\|^{\frac{1}{2^n}} \to 0 \) and so \(\|T^{2^n} x\|^{\frac{1}{2^n}} \to 0 \). From

\[
\frac{\|T^{2^n+1} x\|^{\frac{1}{2^n+1}}}{\|T\|^{\frac{1}{2^n}}} \leq \left(\frac{\|T^{2^n} x\|^{\frac{1}{2^n}}}{\|T\|^{\frac{1}{2^n}}} \right)^{\frac{1}{2^n}} \to 0 \ (n \to \infty),
\]

it follows that \(x \in \mathcal{H}_0(T) \). Therefore, \(\mathcal{H}_0(T) = \mathcal{H}_0(T^2) \). Since \(T^2 \) is hyponormal, we observe that \(E_{T^2}(\{0\})\mathcal{H} = \mathcal{H}_0(T^2) = \ker(T^2) \) by Stampfli [10]. So,

\[
E_T(\{0\})\mathcal{H} = \mathcal{H}_0(T) = \mathcal{H}_0(T^2) = E_{T^2}(\{0\})\mathcal{H} = \ker(T^2) = \ker(T^2).
\]

Now, \(0 \) is a pole of the resolvent of \(T \), the order of \(T \) is not greater than \(2 \) and \(E_T(\{0\}) \) is self-adjoint by Lemma 3.12.

(ii) Next we assume that \(\lambda \neq 0 \). Then \(\lambda^2 \) is an isolated point of \(\sigma(T^2) \) by Lemma 2.1 of [5]. We will prove \(\mathcal{H}_0(T - \lambda) = \mathcal{H}_0(T^2 - \lambda^2) \). Let \(x \in \mathcal{H}_0(T - \lambda) \). Then \(\|(T - \lambda)^n x\|^{\frac{1}{n}} \to 0 \) and

\[
\|((T^2 - \lambda^2)^n x)\|^{\frac{1}{n}} \leq \|((T + \lambda)^n (T - \lambda)^n x)\|^{\frac{1}{n}} \leq \|T + \lambda\|\|(T - \lambda)^n x\|^{\frac{1}{n}} \to 0,
\]

which implies \(\mathcal{H}_0(T - \lambda) \subset \mathcal{H}_0(T^2 - \lambda^2) \). Conversely, let \(x \in \mathcal{H}_0(T^2 - \lambda^2) \). Since \(T + \lambda \) is invertible by the assumption (\ast), we have

\[
\|(T - \lambda)^n x\|^{\frac{1}{n}} = \|(T + \lambda)^{-n} (T + \lambda)^n (T - \lambda)^n x\|^{\frac{1}{n}} \leq \|(T + \lambda)^{-1}\|^n \|(T^2 - \lambda^2)^n x\|^{\frac{1}{n}} \leq \|(T + \lambda)^{-1}\|^n \|T^2 - \lambda^2\|^n \|x\|^{\frac{1}{n}} \to 0.
\]
Hence, $\mathcal{H}_0(T - \lambda) \supset \mathcal{H}_0(T^2 - \lambda^2)$ and $\mathcal{H}_0(T - \lambda) = \mathcal{H}_0(T^2 - \lambda^2)$. Because T^2 is hyponormal, it follows that $E_T((\lambda^2))\mathcal{H} = \mathcal{H}_0(T^2 - \lambda^2) = \ker(T^2 - \lambda^2)$ by Stampfli [10]. Hence

$$E_T((\lambda))\mathcal{H} = \mathcal{H}_0(T - \lambda) = \mathcal{H}_0(T^2 - \lambda^2) = E_T((\lambda))\mathcal{H} = \ker(T^2 - \lambda^2) = \ker(T^2 - \lambda^2).$$

Since $(T + \lambda)^*\mathcal{H}$ is invertible, we get

$$E_T((\lambda))\mathcal{H} = \ker(T - \lambda) = \ker((T - \lambda)^*).$$

Thus, λ is a pole of the resolvent of T, the order of λ is not greater than 2 and $E_T((\lambda))\mathcal{H}$ is self-adjoint by Lemma 3.12.

Let D be a bounded open subset of C and $L^2(D, \mathcal{H})$ be the Hilbert space of measurable function $f : D \rightarrow \mathcal{H}$ such that

$$\|f\| = \left(\int_D \|f(z)\|^2 \, d\mu(z) \right)^{\frac{1}{2}} < \infty,$$

where μ is the planar Lebesgue measure. Let $W^2(D, \mathcal{H})$ be the Sobolev space with respect to ∂_0 and of order 2 whose derivatives ∂f and $\partial^2 f$ in the sense of distributions belong to $L^2(D, \mathcal{H})$. The norm $\|f\|_{W^2}$ is given by

$$\|f\|_{W^2} = \left(\|f\|^2 + \|\partial f\|^2 + \|\partial^2 f\|^2 \right)^{\frac{1}{2}} \quad \text{for } f \in L^2(D, \mathcal{H}).$$

In [4], Alzuraqi and Patel proved the following.

Proposition 3.14. (Alzraqi and Patel [4], Theorem 2.37) Let D be an arbitrary bounded disk in C. If $T \in B(\mathcal{H})$ is 2-normal with the assumption $\sigma(T) \cap (-\sigma(T)) = \emptyset$, then the operator

$$z - T : W^2(D, \mathcal{H}) \rightarrow L^2(D, \mathcal{H})$$

is one to one for every $z \in C$.

We would like to prove this result as follows.

Theorem 3.15. Let D be an arbitrary bounded disk in C and $T \in B(\mathcal{H})$ be square hyponormal with (\ast). Then the operator

$$z - T : W^2(D, \mathcal{H}) \rightarrow L^2(D, \mathcal{H})$$

is one to one for every $z \in C$.

Proof. Let $f \in W^2(D, \mathcal{H})$, $S = z - T$ and $Sf = 0$. We show $f = 0$. Then

$$\|f\|_{W^2} = \|f\|_{L^2,D}^2 + \|\partial f\|_{L^2,D}^2 + \|\partial^2 f\|_{L^2,D}^2$$

$$= \int_D \|f(z)\|^2 \, d\mu(z) + \int_D \|\partial f(z)\|^2 \, d\mu(z) + \int_D \|\partial^2 f(z)\|^2 \, d\mu(z) < \infty,$$

and

$$\|Sf\|_{W^2} = \|(z - T)f\|_{W^2}$$

$$= \|(z - T)f\|_{L^2,D}^2 + \|\partial((z - T)f)\|_{L^2,D}^2 + \|\partial^2((z - T)f)\|_{L^2,D}^2$$

$$= \|(z - T)f\|_{L^2,D}^2 + \|(z - T)\partial f\|_{L^2,D}^2 + \|(z - T)^2 f\|_{L^2,D}^2 = 0.$$
Hence,
\[\|(z - T)^i f\|_{2,D}^2 = \int_D \|(z - T)^i f(z)\|^2 d\mu(z) = 0 \quad (i = 0, 1, 2). \]

Let \(i \) be \(i = 0, 1, 2 \). Since \((z - T)^i f(z) = 0\) for \(z \in D \), if \(z \in D \setminus \sigma(T) \), then \((z - T)^i f(z) = 0\) because \(z - T \) is invertible. This implies
\[\|(z - T)^i f\|_{2,D\setminus\sigma(T)}^2 = \int_{D\setminus\sigma(T)} \|(z - T)^i f(z)\|^2 d\mu(z) = 0. \]

Since
\[\|(z^2 - T^2)^i f\|_{2,D}^2 = \int_D \|(z^2 - T^2)^i f(z)\|^2 d\mu(z) \]
\[\leq \left(\sup_{z \in D} |z + T| \right)^2 \int_D \|(z - T)^i f(z)\|^2 d\mu(z) \]
\[= \left(\sup_{z \in D} |z + T| \right)^2 \|(z - T)^i f\|_{2,D}^2 = 0, \]
we have \((z^2 - T^2)^i f(z) = 0\) for \(z \in D \). Because \(T^2 \) is hyponormal, then
\[\int_D \|(z^2 - T^2)^i f(z)\|^2 d\mu(z) = \|(z^2 - T^2)^i f\|_{2,D}^2 \leq \|(z^2 - T^2)^i f\|_{2,D}^2 = 0. \]
So,
\[0 = (z^2 - T^2)^i f(z) = (z + T)^i(z - T)^i f(z) \quad \text{for} \quad z \in D. \]

If \(z \in D \cap (\sigma(T) \setminus (-\sigma(T))) \), then \(z + T \) and \((z + T)^i \) are invertible. Hence, \((z - T)^i f(z) = 0\) for \(z \in D \cap (\sigma(T) \setminus (-\sigma(T))) \). Since \(D \) is bounded, \(\|(z^2 - T^2)^i f\|_{2,D}^2 < \infty \) and the planar Lebesgue measure of \(\sigma(T) \cap (-\sigma(T)) \) is 0, we have
\[\|(z - T)^i f\|_{2,D}^2 = \int_{\sigma(T)} \|(z - T)^i f(z)\|^2 d\mu(z) \]
\[+ \int_{\sigma(T)^c} \|(z - T)^i f(z)\|^2 d\mu(z) \]
\[= 0 + \max_{z \in D} \|(z - T)^i f(z)\|^2 \int_{\sigma(T)^c} \|f(z)\|^2 d\mu(z) = 0. \]

By [9, Proposition 2.1], we obtain \(\|(I - P)f\|_{2,D} = 0 \). Thus, \(f(z) = (Pf)(z) \) for \(z \in D \). From \(Sf = 0 \), we have \((Sf)(z) = (z - T)f(z) = (z - T)(Pf)(z) = 0\) for \(z \in D \).

Since \(T \) has the single-valued extension property by Corollary 3.4 and \(Pf \) is analytic, it follows that \(0 = (Pf)(z) = f(z) \) for \(z \in D \). Hence, \(f = 0 \) and \(S \) is one to one.

An operator \(T \in B(H) \) is said to be polaroid if every isolated point of the spectrum of \(T \) is a pole of the resolvent. In [1], Aiena showed that if \(T \) is algebraically paranormal on a Banach space, then the following results hold.

(1) \(T \) is polaroid (Theorem 1.3).
(2) If \(T \) is quasinilpotent, then \(T \) is nilpotent (Lemma 1.2).

Hence, it is clear that if \(T \in B(H) \) is square hyponormal, then \(T \) is polaroid.
4. nth hyponormal operators

We now introduce and study nth hyponormal operators.

Definition 4.1. For \(n \in \mathbb{N} \) and an operator \(T \in \mathcal{B}(\mathcal{H}) \), \(T \) is said to be nth hyponormal if \(T^n \) is hyponormal.

As Theorem 2.3, we can verify the following result.

Theorem 4.2. Let \(n \in \mathbb{N} \), \(T \in \mathcal{B}(\mathcal{H}) \) be nth hyponormal and \(M \) be an invariant closed subspace for \(T \). Then \(T|_M \) is nth hyponormal.

For an nth hyponormal operator \(T \in \mathcal{B}(\mathcal{H}) \), we consider the following property:

\[
\sigma(T) \cap \left(\bigcup_{j=1}^{n-1} e^{\frac{2\pi i j}{n}} \sigma(T) \right) \subset \{0\}.
\]

Theorem 4.3. Let \(n \in \mathbb{N} \), \(T \in \mathcal{B}(\mathcal{H}) \) be nth hyponormal with \((**)\) and \(M \) be an invariant subspace for \(T \). If \(\sigma(T|_M) = \{z\} \), then the following assertions hold.
1. If \(z = 0 \), then \((T|_M)^n = 0 \).
2. If \(z \neq 0 \), then \(T|_M = z \).

Proof. (1) By Theorem 4.2, \(T|_M \) is nth hyponormal. Since \(\sigma((T|_M)^n) = \{0\} \), by Putnam’s theorem, we conclude that \((T|_M)^n = 0 \).
(2) Because \(\sigma((T|_M)^n) = \{z^n\} \), then \((T|_M)^n = z^n \) and so

\[
0 = (T|_M)^n - z^n = (T|_M - e^{\frac{2\pi i}{n}} z)(T|_M - e^{\frac{2\pi i 2}{n}} z) \cdots (T|_M - e^{\frac{2\pi i (n-1)}{n}} z)(T|_M - z).
\]

From \(z \neq 0 \) and \((**)\), there exists \((T|_M - e^{\frac{2\pi i j}{n}} z)^{-1} \), for every \(j = 1, \ldots, n-1 \), and thus \(T|_M - z = 0 \).

Theorem 4.4. Let \(n \in \mathbb{N} \) and \(T \in \mathcal{B}(\mathcal{H}) \) be an nth hyponormal operator. If \(T \) satisfies \((**)\), then \(\sigma(T) = \{z \in \sigma_a(T^n)\} \).

Proof. Because \(\sigma(T) = \sigma_a(T) \cup \sigma_r(T) \), we verify that \(\sigma_a(T) \subset \{z \in \sigma_a(T^n)\} \).
1. If \(0 \in \sigma_a(T) \), then \(0 \in \sigma_a(T^n) \) and, because \(T^n \) is hyponormal, we can get \(0 \in \sigma_a(T^n) \).
2. For \(z \in \sigma_a(T) \) and \(z \neq 0 \), there exists a sequence \(\{x_m\} \) of unit vectors such that \((T - z)x_m \to 0 \) as \(m \to \infty \). We observe that \((T^n - z^n)x_m = (T^{n-1} - z^{n-1})(T - z)x_m \to 0 \) as \(m \to \infty \) and \(T^n \) is hyponormal, which gives \((T^n - z^n)x_m \to 0 \) as \(m \to \infty \). By the hypothesis \((**)\) and \(z \) is non-zero, all operators \((T^n - e^{\frac{2\pi i j}{n}} z), (T^n - e^{\frac{2\pi i j}{n}} z), \ldots, (T^n - e^{\frac{2\pi i (n-1)}{n}} z) \) are invertible. Hence, by \(T^n - z^n = (T^n - e^{\frac{2\pi i j}{n}} z)(T^n - e^{\frac{2\pi i j}{n}} z) \cdots (T^n - e^{\frac{2\pi i (n-1)}{n}} z) \), we find that \((T^n - z^n)x_m \to 0 \) as \(m \to \infty \), that is, \(z \in \sigma_a(T^n) \), which completes the proof.

Theorem 4.5. Let \(n \in \mathbb{N} \) and \(T \in \mathcal{B}(\mathcal{H}) \) be nth hyponormal satisfying \((**)\).
1. If \(z \) and \(w \) are distinct eigen-values of \(T \) and \(x, y \in \mathcal{H} \) are corresponding eigen-vectors, respectively, then \(\langle x, y \rangle = 0 \).
2. If \(z, w \) are distinct values of \(\sigma_a(T) \) and \(\{x_m\}, \{y_m\} \) are sequences of unit vectors in \(\mathcal{H} \) such that \((T - z)x_m \to 0 \) and \((T - w)y_m \to 0 \) as \(m \to \infty \), then \(\lim_{m \to \infty} \langle x_m, y_m \rangle = 0 \).

Proof. Since (1) follows from (2), we will only prove (2). From \((T - z)x_m \to 0 \) and \((T - w)y_m \to 0 \) as \(m \to \infty \), we get \((T^n - z^n)x_m \to 0 \) and \((T^n - w^n)y_m \to 0 \). Further, because \(T^n \) is hyponormal, \((T^n - w^n)y_m \to 0 \). Therefore,

\[
\lim_{m \to \infty} z^n(x_m, y_m) = \lim_{m \to \infty} \langle z^n x_m, y_m \rangle = \lim_{m \to \infty} \langle T^n x_m, y_m \rangle = \lim_{m \to \infty} \langle x_m, T^n y_m \rangle = \lim_{m \to \infty} w^n(x_m, y_m).
\]

In the case that \(z^n = w^n \), by \(0 = z^n - w^n = (z - w)(z - e^{\frac{2\pi i}{n}} w)(z - e^{\frac{2\pi i 2}{n}} w) \cdots (z - e^{\frac{2\pi i (n-1)}{n}} w) \), \(z \neq w \) and \((**)\), we deduce that \(z = w = 0 \). So, \(z^n \neq w^n \) and \(\lim_{m \to \infty} \langle x_m, y_m \rangle = 0 \).
Corollary 4.6. Let \(n \in \mathbb{N} \) and \(T \in B(H) \) be \(n \)th hyponormal satisfying \((**)\). If \(z \) and \(w \) are distinct eigen-values of \(T \), then \(\ker(T - z) \perp \ker(T - w) \).

Corollary 4.7. Let \(n \in \mathbb{N} \) and \(T \in B(H) \) be \(n \)th hyponormal satisfying \((**)\). Then \(T \) has SVEP.

In a similar manner as Theorem 3.10, we prove the next result.

Theorem 4.8. Let \(n \in \mathbb{N} \) and \(T \in B(H) \) be \(n \)th hyponormal satisfying \((**)\). If \(z \) is a non-zero eigen-value of \(T \), then \(\ker(T - z) = \ker(T^n - z^n) \subset \ker(T^n - z^n) = \ker(T^n - z^n) \) and hence \(\ker(T - z) \) is a reducing subspace for \(T \).

As Theorem 3.13 and Theorem 3.15, we can verify the following theorems.

Theorem 4.9. Let \(n \in \mathbb{N} \) and \(T \in B(H) \) be \(n \)th hyponormal satisfying \((**)\). Let \(\lambda \) be an isolated point of spectrum of \(T \). Then the following statements hold.

(i) If \(\lambda = 0 \), then \(\mathcal{H}_0(T) = \ker(T^n) = \ker(T^n), \ E_T(\{0\}) \) is self-adjoint and the order of pole \(\lambda \) is not greater than \(n \).

(ii) If \(\lambda \neq 0 \), then \(\mathcal{H}_0(T - \lambda) = \ker(T - \lambda) = \ker((T - \lambda)^n), \ E_T(\{\lambda\}) \) is self-adjoint and the order of pole \(\lambda \) is 1.

Theorem 4.10. Let \(D \) be an arbitrary bounded disk in \(\mathbb{C} \), \(n \in \mathbb{N} \) and \(T \in B(H) \) be \(n \)th hyponormal satisfying \((**)\). Then the operator

\[
z - T : W^2(D; \mathcal{H}) \longrightarrow L^2(D; \mathcal{H})
\]

is one to one for every \(z \in \mathbb{C} \).

Acknowledgment. Authors would like to express their thanks to Prof. K. Tanahashi for his important suggestion of Theorem 3.15.

References

