Further Results on Hybrid \((b, c)\)-Inverses in Rings

Long Wang

\(^{a}\text{School of Mathematics, Yangzhou University, Yangzhou, 225002, P. R. China}\)

Abstract. Let \(R\) be a ring and \(b, c \in R\). In this paper, the absorption law for the hybrid \((b, c)\)-inverse in a ring is considered. Also, by using the Green’s preorders and relations, we obtain the reverse order law of the hybrid \((b, c)\)-inverse. As applications, we obtain the related results for the \((b, c)\)-inverse.

1. Introduction

Core inverse, dual core inverse, and Mary inverse, as well as classical generalized inverses, are special types of outer inverses. In [2], Drazin introduced a new class of outer inverse and called it \((b, c)\)-inverse, which encompasses the above-mentioned generalized inverses.

Definition 1.1. Let \(R\) be an associative ring and let \(b, c \in R\). An element \(a \in R\) is \((b, c)\)-invertible if there exists \(y \in R\) such that

\[y \in (bRy) \cap (yRc), \quad yab = b, \quad cay = c.\]

If such \(y\) exists, it is unique and is denoted by \(a \parallel (b \triangleleft c)\). Drazin [2] also presented an equivalent characterization for the \((b, c)\)-inverse \(y\) of \(a\) as \(yay = y, \ yR = bR\) and \(Ry = Rc\).

As generalizations of \((b, c)\)-inverses, hybrid \((b, c)\)-inverses and annihilator \((b, c)\)-inverses were introduced in [2]. The symbols \(\text{lann}(a) = \{g \in R : ga = 0\}\) and \(\text{rann}(a) = \{h \in R : ah = 0\}\) denote the sets of all left annihilators and right annihilators of \(a\), respectively.

Definition 1.2. Let \(a, b, c, y \in R\). We say that \(y\) is a hybrid \((b, c)\)-inverse of \(a\) if

\[yay = y, \quad yR = bR, \quad \text{rann}(y) = \text{rann}(c).\]

If such \(y\) exists, it is unique. In this article, we use the symbol \(a \parallel (b \{a\} c)\) to denote the hybrid \((b, c)\)-inverse of \(a\).

Definition 1.3. Let \(a, b, c, y \in R\). We say that \(y\) is an annihilator \((b, c)\)-inverse of \(a\) if

\[yay = y, \quad \text{lann}(y) = \text{lann}(b), \quad \text{lann}(y) = \text{lann}(c).\]
2. Absorption law for the hybrid (b, c)-inverse

Let $a, b \in R$ be two invertible elements. It is well known that

$$a^{-1} + b^{-1} = a^{-1}(a + b)b^{-1}.$$

The above equality is known as the absorption law of invertible elements. In general, the absorption law does not hold for generalized inverses (see [9, 10]). In this section, the absorption laws for the hybrid (b, c)-inverse are obtained. For future reference we state some known results.

Lemma 2.1. ([14, Proposition 2.1]) Let $a, b, c, y \in R$. Then the following conditions are equivalent:

(i) a is hybrid (b, c)-invertible and y is the hybrid (b, c)-inverse of a.

(ii) $yab = b$, $cay = c$, $yR \subseteq bR$ and $rann(c) \subseteq rann(y)$.

Lemma 2.2. ([2, P.1992]) Let $a, b, c \in R$. Then a has a hybrid (b, c)-inverse if and only if $c \in cabR$ and $rann(cab) \subseteq rann(b)$.

Lemma 2.3. Let $a, b, c, d \in R$. If $a^{(b, c)}$ is the hybrid (b, c)-inverse of a and $d^{(b, c)}$ is the hybrid (b, c)-inverse of d, then $a^{(b, c)} + d^{(b, c)} = a^{(b, c)} + d^{(b, c)}$.

Proof. Let $x = a^{(b, c)}$ and $y = d^{(b, c)}$. Then by Lemma 2.1, we have $y \in bR$ and $xab = b$. This gives that $y = bs$ for some $s \in R$, and $sab = s$ and $y = y$. Moreover, by Lemma 2.1, we have $c = cax = cdy$, which means that $ax - dy \in rann(c)$. Note that since $rann(c) \subseteq rann(y)$, it follows $y(ax - dy) = 0$ and $yax = ydy = y$. Here, we prove that $d^{(b, c)} = d^{(b, c)} + d^{(b, c)}$. Similarly, we can also get $d^{(b, c)} = d^{(b, c)} + d^{(b, c)}$. □

Next, we will consider when d is hybrid (b, c)-invertible if $a^{(b, c)}$ exists. In fact, whether we discuss about the absorption law or the reverse order law for the hybrid (b, c)-inverse, we always assume that a and d are both hybrid (b, c)-invertible first. Moreover, this kind of problems frequently were studied in optimization theory. It is of interest to know that, in C^{s} algebras, if a contains some properties, wether d and $a + \epsilon$ also contains the similar properties when $\epsilon \to 0$. In the following, we will give existence criteria for the hybrid (b, c)-inverse of d, when a is hybrid (b, c)-invertible. By Lemma 2.1, it is easy to conclude that if a is hybrid (b, c)-invertible, then b is regular. An element $a \in R$ is called (von Neumann) regular if there exists $x \in R$ such that $a = axa$. Such an x is called an inner inverse of a and is denoted by a^{-}. Before we investigate the existence criteria for the hybrid (b, c)-inverse, the following lemma is necessary.

Lemma 2.4. ([8]) Let $a, e \in R$ with $c^{2} = e$. Then the following statements are equivalent:

(i) $e \in eaeR \cap Reae$.

(ii) $eae + 1 - e$ is invertible (or $ae + 1 - e$ is invertible).
Theorem 2.5. Let $a, b, c, d \in R$. Assume that $a^{||b, c||}$ exists. Let b^- be any inner inverses of b and set $e = bb^-$. Then the following statements are equivalent:

(i) d has a hybrid (b, c)-inverse.
(ii) $e \in e^{||b, c||}dR \cap R^{-1}e^{||b, c||}de$.
(iii) $a^{||b, c||}d e + 1 - e$ is invertible.

In this case, $d^{||b, c||} = (a^{||b, c||}d e + 1 - e)^{-1}a^{||b, c||}$.

Proof. (i) \Rightarrow (ii) Suppose that $d^{||b, c||}$ exists. Let $x = a^{||b, c||}$ and $y = d^{||b, c||}$. It follows from Lemma 2.3 that $x = x a y$ and $y = y a x$. As $a^{||b, c||}$ exists, we have $x \in bR$, $y \in bR$ and $b = x a b$ by Lemma 2.1. Therefore $b = x a b = e(x a y) a b = e x a y$ since $e y = y$. Multiplying on the right by b^- gives $e = e x a y e d e$ and $e \in e x d e R$. Moreover, as $d^{||b, c||}$ exists we have $y \in bR$ and $b = y d b$. Therefore $b = y d b = e(y a x) d b = e y a x d b$ since $e x = x$. Multiplying on the right by b^- we obtain $e = e y a x d e$ and $e \in e R x e d$.

(ii) \Rightarrow (i) See Lemma 2.4.

(iii) \Rightarrow (i) Set $x = a^{||b, c||}$. Firstly we note that $e x = x b R$. Set $u = e x d e + 1 - e$. It is clear that $e u = u e$ and $e u r^{-1} = u^{-1} e$. Write $y = u^{-1} x$. Next, we verify that y is the hybrid (b, c)-inverse of d.

Step 1. $y d y = y$. Indeed, using $e x = x$ and $e u r^{-1} = u^{-1} e$, we can check that

$$y d y = u^{-1} x = u^{-1} e x d e u^{-1} x$$
$$= u^{-1} (e x d e + 1 - e) e u^{-1} x$$
$$= e u^{-1} x = u^{-1} x = y.$$

Step 2. $b R = y R$. Indeed, from $(1 - e) b = 0$ and $x = e x$, we have

$$b = u^{-1} u b = u^{-1} (e x d e + 1 - e) b = u^{-1} e x d e b = u^{-1} x d e b = y d b \in y R$$

Meanwhile, $y = u^{-1} x = u^{-1} e x \in e u r^{-1} e x = b R$. This shows that $b R = y R$.

Step 3. $\text{rann}(c) = \text{rann}(y)$. Since u is invertible element in R, we have $\text{rann}(y) = \text{rann}(x)$. Moreover, from Lemma 2.1, we have $\text{rann}(x) = \text{rann}(c)$. This leads to $\text{rann}(c) = \text{rann}(y)$.

Next, the absorption law for the hybrid (b, c)-inverse is given when a and d are both hybrid (b, c)-invertible.

Theorem 2.6. Let $a, b, c, d \in R$. If a is hybrid (b, c)-invertible and d is hybrid (b, c)-invertible, then $a^{||b, c||} + d^{||b, c||} = a^{||b, c||}(a + d)^{||b, c||}$.

Proof. Let $x = a^{||b, c||}$ and $y = d^{||b, c||}$. It follows from Lemma 2.3 that $x a y = y$ and $x d y = x$, and consequently $x(a + d)y = x a y + x d y = y + x$.

By Theorem 2.6, we have the following corollary.

Corollary 2.7. Let $a, b, c, d \in R$. If a is (b, c)-invertible and d is (b, c)-invertible, then $a^{||b, c||} + d^{||b, c||} = a^{||b, c||}(a + d)^{||b, c||}$.

Proof. If a is hybrid (b, c)-invertible and d is hybrid (b, c)-invertible, then a is hybrid (b, c)-invertible and d is hybrid (b, c)-invertible. Let $x = a^{||b, c||}$ and $y = d^{||b, c||}$. Then we have $x = a^{||b, c||}$ and $y = d^{||b, c||}$. It follows from Theorem 2.6 that $x + y = x(a + d)y$, and consequently $a^{||b, c||} + d^{||b, c||} = a^{||b, c||}(a + d)^{||b, c||}$.

Let $a, b, c, d \in R$. If a and d are both hybrid (b, c)-invertible, then the absorption law for the hybrid (b, c)-inverse holds by Theorem 2.6. If a is hybrid (b, c)-invertible and d is hybrid (u, v)-invertible for some $u, v \in R$, does the absorption law for $a^{||b, c||}$ and $d^{||b, c||}$ hold?

Example 2.8. Let $\mathbb{C}^{2 \times 2}$ denote the set of all 2×2 complex matrices over the complex field \mathbb{C}. Consider $a = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$,

$$d = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad b = c = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad u = v = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Then it is easy to check that $a^{||b, c||} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $d^{||b, c||} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. It is clear that $a^{||b, c||} + d^{||b, c||} = a^{||b, c||}(a + d)^{||b, c||}$.

4943–4950
Following Green [7], Green’s preorders and relations in a semigroup are defined. Similarly, we say the Green’s preorder and relations in rings as

\[a \leq_L b \iff Ra \subseteq Rb \iff \text{there exists } x \in R \text{ such that } a = xb. \]
\[a \leq_R b \iff aR \subseteq bR \iff \text{there exists } x \in R \text{ such that } a = bx. \]
\[a \leq_H b \iff a \leq_L b \text{ and } a \leq_R b. \]
\[a \mathcal{L} b \iff Ra = Rb \iff \text{there exist } x, y \in R \text{ such that } a = xb \text{ and } b = ya. \]
\[a \mathcal{R} b \iff aR = bR \iff \text{there exist } x, y \in R \text{ such that } a = bx \text{ and } b = ay. \]
\[a \mathcal{H} b \iff a \mathcal{L} b \text{ and } a \mathcal{R} b. \]

Before investigate the absorption law for \(d^{(l)} \) and \(d^{(u)} \) by using Green’s preorders and relations, the following lemma is given.

Lemma 2.9. Let \(a, b, c, u, v \in R \). If \(bRu \) and \(cLu \), then \(a \) is hybrid \((b,c)\)-invertible if and only if \(a \) is hybrid \((u,v)\)-invertible. In this case, we have \(d^{(l)} = d^{(u)} \).

Proof. We present a proof of the necessity. As \(bRu \), then we have \(u = by \) and \(b = u\delta \) for some \(\gamma, \delta \in R \). Moreover, by \(cLu \), it gives that \(v = ac \) and \(c = \beta v \) for some \(a, \beta \in R \). Since \(a \) is hybrid \((b,c)\)-invertible, by Lemma 2.2, there is \(w \in R \) such that \(c = cabw \). It follows that \(v = ac = a(cabw) = (ac)abw = cabw = c\beta uv \), and consequently \(vR = vauR \). For any \(x \in rann(vau) \), by \(c = \beta v \), then \(vux = 0 \) and \(caux = (\beta v)aux = \beta vaux = 0 \). Note that \(u = by \), then \(caux = cabyx = 0 \). Again, from Lemma 2.2, it follows \(\gamma xv \in rann(cab) = rann(b) \). This implies that \(byx = 0 \) and \(uax = 0 \), which gives \(rann(vau) \subseteq rann(u) \). So, by Lemma 2.1, one can see that \(a \) is hybrid \((u,v)\)-invertible. Moreover, from Lemma 2.1, it is not difficult to directly check that \(a^{(l)} = a^{(u)} \). \(\square \)

Theorem 2.10. Let \(a, b, c, u, v \in R \) with \(bRu \) and \(cLu \). If \(d^{(l)} \) and \(d^{(u)} \) exist, then \(d^{(l)} + d^{(u)} = d^{(l)}(a + d)\).

Proof. Since \(bRu \) and \(cLu \), by Lemma 2.9 we have \(d^{(u)} = d^{(l)} \). Therefore, by Theorem 2.6, one can see that

\[
\begin{align*}
\quad d^{(l)} + d^{(u)} & = d^{(l)} + d^{(u)} \\
& = d^{(l)}(a + d) + d^{(u)} \\
& = d^{(l)}(a + d) + d^{(u)} (a + d).
\end{align*}
\]

\(\square \)

An involutory ring \(R \) means that \(R \) is a unital ring with involution, i.e., a ring with unity 1, and a mapping \(a \mapsto a^\dagger \) from \(R \) to \(R \) such that \((a^\dagger)^\dagger = a \), \((ab)^\dagger = b^\dagger a^\dagger\) and \((a + b)^\dagger = a^\dagger + b^\dagger\), for all \(a, b \in R \). Let \(R \) be an involutory ring and \(a \in R \). By [2, P.1910] and [12, Theorem 3.10], we have that \(a \) is Moore-Penrose invertible if and only if \(a \) is \((a, a^\dagger)\)-invertible if and only if \(a \) is hybrid \((a, a^\dagger)\)-invertible. Let \(R \) be an associative ring and \(a \in R \). \(a \) is Drazin invertible if and only if there exists \(k \in \mathbb{N} \) such that \(a^{(k)} \) is \((a, a^\dagger)\)-invertible if and only if there exists \(k \in \mathbb{N} \) such that \(a \) is \((a^k, a^k)\)-invertible, where the positive integer \(k \) is the Drazin index of \(a \), denoted by \(\text{ind}(a) \). \(a \) is group invertible if and only if there exists \(k \in \mathbb{N} \) such that \(a \) is \((a, a^k)\)-invertible, where the positive integer \(k \) is the Drazin index of \(a \), denoted by \(\text{ind}(a) \). \(a \) is Moore-Penrose inverse, the group inverse and the Drazin inverse of \(a \).

Corollary 2.11. Let \(a, b \in R \). Then

(i) If \(a^\dagger \) and \(b^\dagger \) exist with \(a\mathcal{H}b \), then \(a^\dagger + b^\dagger = a^\dagger(a + b)b^\dagger \).

(ii) If \(a^\dagger \) and \(b^\dagger \) exist with \(a\mathcal{H}b \), then \(a^\dagger + b^\dagger = a^\dagger(a + b)b^\dagger \).

(iii) If \(a^D \) and \(b^D \) exist with \(a\mathcal{H}b^m \), where \(\text{ind}(a) = n \) and \(\text{ind}(b) = m \), then \(a^D + b^D = a^D(a + b)b^D \).
3. Reverse order law for the hybrid \((b,c)\)-inverse

Let \(a, b \in R\) be two invertible elements. It is well known that
\[
(ab)^{-1} = b^{-1}a^{-1}.
\]
The above equality is known as the reverse order law of invertible elements. In general, the reverse order law does not hold for generalized inverses (see [1, 11]). In this section, the reverse order laws for the hybrid \((b,c)\)-inverse are obtained.

Theorem 3.1. Let \(a, b, c, d \in R\) such that \(a^{{(b,c)}}\) and \(d^{{(b,c)}}\) exist. If \(ad^{{(b,c)}} = a^{{(b,c)}}d\), then \(ad\) is hybrid \((b,c)\)-invertible and \((ad)^{{(b,c)}} = d^{{(b,c)}}a^{{(b,c)}}\).

Proof. Let \(x = a^{{(b,c)}}, y = d^{{(b,c)}}\) and \(z = yx\). We verify that \(z\) is the hybrid \((b,c)\)-inverse of \(ad\).

Step 1. \(zad = z\). Indeed, by Lemma 2.3, we know that \(xay = x\), \(y = y\), which give that \(z(ad)z = yx\) \(\in x\). Hence, as \(xt = b\), then we have \(zR = yxR \subseteq bR = yR = yxR = yxR \subseteq yxR = zR\), which gives \(zR = bR\).

Step 2. \(z = bR\). Indeed, as \(yR = bR\), then \(zR = xR \subseteq bR = yR = yxR = xzR \subseteq yxR = zR\), which gives \(zR = bR\).

Step 3. \(rann(z) = rann(c)\). It is easy to get \(rann(c) = rann(x) \subseteq rann(y) = rann(z)\).

Next, we claim that \(rann(z) \subseteq rann(c)\). Given any \(t \in rann(z)\), then \(xt = 0\), i.e., \(xt \in rann(y) = rann(c)\).

Remark 3.2. By [12, Proposition 3.3], we know that if \(a\) is \((b, c)\)-invertible, then \(b\) and \(c\) are both regular. Moreover, from Theorem 3.1, if \(a^{{(b,c)}}\) and \(d^{{(b,c)}}\) exist with \(ad^{{(b,c)}} = a^{{(b,c)}}d\), then \(z = d^{{(b,c)}}a^{{(b,c)}}\) is regular and \(rann(z) = rann(c)\).

Lemma 3.3. [12, Lemma 3.2] Let \(a \in R\) be regular. Then \(lann(rann(a)) = Ra\).

In view of Remark 3.2 and Lemma 3.3, we obtain the following result.

Corollary 3.4. Let \(a, b, c, d \in R\) such that \(a^{{(b,c)}}\) and \(d^{{(b,c)}}\) exist. If \(a^{{(b,c)}}d = a^{{(b,c)}}d\) then \(ad\) is \((b,c)\)-invertible and \((ad)^{{(b,c)}} = d^{{(b,c)}}a^{{(b,c)}}\).

Proof. From Theorem 3.1 and Remark 3.2, one can see \(z = d^{{(b,c)}}a^{{(b,c)}}\) is regular and \(rann(z) = rann(c)\). As \(a^{{(b,c)}}\) exists, it follows from [12, Proposition 3.3] that \(c\) is regular. Then, we obtain \(Rz = lann(rann(z)) = lann(rann(c)) = Rc\). On account of [2, Proposition 6.1], we conclude that \(ad\) is \((b,c)\)-invertible and \((ad)^{{(b,c)}} = d^{{(b,c)}}a^{{(b,c)}}\).

Lemma 3.5. Let \(a, b, c \in R\) with \(ab \leq R\) and \(ca \leq c\). If \(a^{{(b,c)}}\) exists, then \(a^{{(b,c)}} = a^{{(b,c)}}a\).

Proof. Let \(x = a^{{(b,c)}}\). Since \(ab \leq R\) and \(ca \leq c\), there is \(ab = ba\mu\) and \(ca = vac\) for some \(\mu, v \in R\).

Hence, it follows from \(\mu = v\) that \(ca = vac = vac\mu = vac\mu = vac\mu = vca\mu = vac\mu = vac\mu = vca\mu = vac\mu = vca\mu\) and consequently \(a \leq R\) \(\in rann(c) = rann(x),\) which implies \(xa = xa\mu\).

Moreover, by \(R = bR\), we have \(x = bs\) for some \(s \in R\). On account of \(b = xab\), we conclude that \(ax = a(bs) = (ab)s = (b\mu)s = (xab\mu)s = xab\mu s = xa(bs) = xa\mu\). Thus, \(ax = xa\mu\), as required.

In view of Theorem 3.1 and Lemma 3.5, we obtain the following result.

Theorem 3.6. Let \(a, b, c, d \in R\) with \(ab \leq R\) and \(ca \leq c\). If \(a^{{(b,c)}}\) and \(d^{{(b,c)}}\) exist, then \(ad\) is hybrid \((b,c)\)-invertible and \((ad)^{{(b,c)}} = d^{{(b,c)}}a^{{(b,c)}}\).

Corollary 3.7. Let \(a, b, c, d \in R\) such that \(ab = ba\) and \(ca = ca\). If \(a^{{(b,c)}}\) and \(d^{{(b,c)}}\) exist, then \(ad\) is hybrid \((b,c)\)-invertible and \((ad)^{{(b,c)}} = d^{{(b,c)}}a^{{(b,c)}}\).
In view of Lemma 3.3 and Corollary 3.7, we obtain the following result.

Corollary 3.8. Let \(a, b, c, d \in R \) such that \(ab = ba \) and \(ac = ca \). If \(ad \) and \(d \) exist, then \(ad \) is \((b, c)\)-invertible and \((ad)\) is \((b, c)\)-invertible.

Theorem 3.9. Let \(a, b, c, d \in R \) with \(bd \leq b \) and \(ca \leq c \). If \(a \) and \(d \) exist, then \(ad \) is hybrid \((b, c)\)-invertible and \((ad)\) is hybrid \((b, c)\)-invertible.

Proof. Let \(x = a \), \(y = d \), and \(z = yx \). Since \(db \leq b \) and \(ca \leq c \), there is \(db = bd \) and \(ca = vac \). Therefore, \(z = yx \) and \(ca = vac \). Since \(yxR \leq R \) and \(bR = z \), we have \(z = a \) and \(bR \leq R \). Note that \(zR = a \) and \(c = c \). Then \(bR \leq R \). On account of [14, Proposition 2.1] we conclude that \(ad \) is hybrid \((b, c)\)-invertible and \((ad)\) is hybrid \((b, c)\)-invertible.

Corollary 3.10. Let \(a, b, c, d \in R \) such that \(bd = db \) and \(ac = ca \). If \(a \) and \(d \) exist, then \(ad \) is hybrid \((b, c)\)-invertible and \((ad)\) is hybrid \((b, c)\)-invertible.

In view of Lemma 3.3 and Corollary 3.10, we obtain the following result.

Corollary 3.11. Let \(a, b, c, d \in R \) such that \(bd = db \) and \(ac = ca \). If \(a \) and \(d \) exist, then \(ad \) is \((b, c)\)-invertible and \((ad)\) is \((b, c)\)-invertible.

Since \(a \) is an outer inverse of \(a \) when it exists, both \(a \) and \(a \) are idempotents. These will be referred to as the hybrid \((b, c)\)-idempotents associated with \(a \). We are interested in finding characterizations of those elements in the ring with equal hybrid \((b, c)\)-idempotents. In fact, it is also closely related to the reverse order law. We use the symbol \(R^2 \) to denote the set of all group invertible elements.

Theorem 3.12. Let \(a, b, c, d \in R \) such that \(a \) and \(d \) exist. Then the following statements are equivalent:

(i) \(a \) and \(d \) exist.

(ii) \(ad = da \).

(iii) \(a \) and \(d \) exist.

(iv) \(ad = da \).

(v) \(ad \) and \(da \) exist.

Proof. (i) \(\iff \) (ii). Let \(x = a \) and \(y = d \). From Lemma 2.3 we obtain

\[
\begin{align*}
x &= yx \quad \Rightarrow \quad xdy = dyx, \\
y &= xay \quad \Rightarrow \quad aydx = dxy.
\end{align*}
\]

Hence,

\[
\begin{align*}
ax &= dy \quad \Leftrightarrow \quad axdy = dyax \\
&\quad \Leftrightarrow \quad aydx = dxy.
\end{align*}
\]

(iii) \(\iff \) (iv). Set \(g = da \). We will prove that \(x \) is the group inverse of \(ad \). Using (iii) and Lemma 2.3, we get

\[
\begin{align*}
gad &= dxay = aydx = ad \\
adg &= a(ydx)y = a(xay) = ay = ad \\
g &= g(yax) = ga(ydx) = g(ax) = dxax = dx = g.
\end{align*}
\]

This implies that \(ad \) and \(ad \) exist. Conversely, if the latter holds, then \(gad = adg \) i.e., \(ad = ad \) and \(ad = ad \).

Proof. (i) \(\iff \) (ii). The proof is similar to the previous equivalence.
Next, we consider conditions under which the reverse order law for the hybrid \((b, c)\)-inverse of the product \(ad\), \((ad)\^H\) holds.

Theorem 3.13. Let \(a, b, c, d \in R\) such that \(a\^H\) and \(d\^H\) exist. Then the following statements are equivalent:

(i) \(ad\) has a hybrid \((b, c)\)-inverse of the form \((ad)\^H = d\^H a\^H\).

(ii) \(d\^H a\) has a hybrid \((b, c)\)-inverse of the form \((d\^H a)\^H = d\^H a\^H\).

(iii) \(a\^H d\) has a hybrid \((b, c)\)-inverse of the form \((a\^H d)\^H = d\^H a\^H\).

Proof. (i) \(\iff\) (ii). Suppose that \(ad\) has a hybrid \((b, c)\)-inverse, and \((ad)\^H = d\^H a\^H\). Then Lemma 2.3 is true for \((ad)\^H\) in place of \(a\^H\). It follows that

\[d\^H a\] \(\Rightarrow\) \(d\^H a\^H = d\^H a\^H\] yields

\[d\^H a\] \(\Leftarrow\) \(d\^H a\) such that \((ad)\^H = d\^H a\^H\).

Conversely, if the latter identities hold, we claim that \(z = d\^H a\) is the hybrid \((b, c)\)-inverse of \(ad\). Write \(x = a\) and \(y = d\). Indeed, it is clear that \(z = yx \in yR = bR\). Moreover, it is also easy to find \(rann(c) = rann(xy) \subseteq rann(z)\). On account of \(yd\) in the condition (ii), we conclude that

\[zad = yxady = yxdy = x = b\.

Similarly, in view of \(y = yd\) in the condition (ii) and \(cdy = c\), one can see that

\[cad = cadx = cdx\] \(\Leftarrow\) \(cdy = c\).

Then \(ad\) has a hybrid \((b, c)\)-inverse of the form \((ad)\^H = d\^H a\^H\) by [14, Proposition 2.1].

(ii) \(\Rightarrow\) (iii). By Lemma 2.3 we have \(x = xdy = ydx\). From the condition (ii), one can see that

\[x = xdy = xdyad\] \(\Leftarrow\) \(xady = ydx\).

That is, \(a\^H d\) has a hybrid \((b, c)\)-inverse of the form \((a\^H d)\^H = d\^H a\^H\). Moreover, again from the condition (ii), it follows

\[x = ydx = ydxady = ydxady\] \(\Leftarrow\) \(xady = ydx\).

That is, \(a\^H d\) has a hybrid \((b, c)\)-inverse of the form \((a\^H d)\^H = d\^H a\^H\).

(iii) \(\Rightarrow\) (ii). The proof is similar to (ii) \(\Rightarrow\) (iii).

We close this section with the characterization of \(a\^H d\) in rings.

Theorem 3.14. Let \(a, b, c, d \in R\) such that \(a\^H\) and \(d\^H\) exist. Then the following statements are equivalent:

(i) \(a\^H \cdot a = d\^H\).

(ii) \(a\^H d\) has a hybrid \((b, c)\)-inverse of the form \((a\^H d)\^H = d\^H a\^H\).

(iii) \(d\^H a\) has a hybrid \((b, c)\)-inverse of the form \((d\^H a)\^H = a\^H d\^H\).

(iv) \(a\^H d\) has a hybrid \((b, c)\)-inverse of the form \((a\^H d)\^H = d\^H a\^H\).

If any of the previous statements is valid, then \((ad)\^H = d\^H a\^H\).

Proof. Let \(x = a\) and \(y = d\). From Lemma 2.3 we obtain (3.1), that is,

\[x = xdy = ydx;\]

\[y = ydx = xady.\]

(i) \(\iff\) (ii) \(\iff\) (iii). By (1), it is clear that

\[xa = xady = ydx;\]

\[dy = dyax = dxy.\]
Hence, it follows that
\[xa = dy \iff xdya = dyax \iff ydxa = dxay. \]

(i) \iff (iv). The necessary condition is immediate. Next, we assume that \(x = dyx \) and \(y = yxa \). Then we have \(xa = dxyax \) and \(dy = dyxa \), consequently \(xa = dy \), as desired.

(v) \iff (i). The proof is similar to the above.

Finally, we will prove that \(dy = xa \) implies that \(ad \) has a hybrid \((b,c)\)-inverse given by \((ad)_{[b\parallel c]} = \left(d^{[b\parallel c]}a_{[b\parallel c]} \right) \). From \(y = ydy \) and \(dy = xa \), it gives \(y = yxa \), and consequently \(y = ydy = (yxa)dy \). Moreover, note that \(y = yax \) and \(dy = xa \), it follows that \(y = yax = (yax)ax = ya(dy)x \). By Theorem 3.13 (ii) our assertion is proved. \(\square \)

acknowledge

The author is highly grateful to the editors and the referees for their valuable comments and suggestions which greatly improved this paper.

References