The (Signless Laplacian) Spectral Radius (Of Subgraphs) of Uniform Hypergraphs

Cunxiang Duana,b, Ligong Wanga,b, Peng Xiaoa,b, Xihe Lia,b

aDepartment of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P.R. China
bXi’an-Budapest Joint Research Center for Combinatorics, Northwestern Polytechnical University,, Xi’an, Shaanxi 710072, P.R. China

Abstract. Let $\lambda_1(G)$ and $q_1(G)$ be the spectral radius and the signless Laplacian spectral radius of a k-uniform hypergraph G, respectively. In this paper, we give the lower bounds of $d - \lambda_1(H)$ and $2d - q_1(H)$, where H is a proper subgraph of a f(-edge)-connected d-regular (linear) k-uniform hypergraph. Meanwhile, we also give the lower bounds of $2\Delta - q_1(G)$ and $\Delta - \lambda_1(G)$, where G is a nonregular f(-edge)-connected (linear) k-uniform hypergraph with maximum degree Δ.

1. Introduction

A hypergraph $G = (V, E)$ is a pair consisting of a vertex set $V = \{1, 2, \ldots, n\}$, and an edge set $E = \{e_1, e_2, \ldots, e_m\}$, where e_i $(1 \leq i \leq m)$ is a subset of V. A hypergraph is called k-uniform if every edge contains precisely k vertices. We will use the term k-graphs in place of k-uniform hypergraphs. A hypergraph G is called linear provided that each pair of the edges of G has at most one common vertex [1]. Given two k-graphs $G = (V, E)$ and $H = (V', E')$, if $V' \subseteq V$ and $E' \subseteq E$, then H is said to be a subgraph (sub-hypergraph) of G. If H is a subgraph of a k-graph G, and $H \neq G$, then H is called a proper subgraph of G [11]. A tensor \mathcal{A} with order k and dimension n over the complex field \mathbb{C} is a multidimensional array

$$\mathcal{A} = (a_{i_1i_2\cdots i_k}), \ 1 \leq i_1, i_2, \ldots, i_k \leq n.$$

The tensor \mathcal{A} is called symmetric if its entries are invariant under any permutation of their indices. For a vector $x = (x_1, x_2, \ldots, x_n)^T \in \mathbb{C}^n$, \mathcal{A}^{k-1} is a vector in \mathbb{C}^n whose i-th component is the following

$$(\mathcal{A}^{k-1})_i \ = \ \sum_{i_2, \ldots, i_k=1}^{n} a_{i_2i_3\cdots i_k}x_{i_2}\cdots x_{i_k}, \ \forall \ i \in [n].$$

Keywords. spectral radius, signless Laplacian spectral radius, f-edge-connected, f-connected, linear hypergraph.

Received: 10 April 2019; Accepted: 24 July 2019

Corresponding author: Ligong Wang

Email addresses: cxduanmath@163.com (Cunxiang Duan), lgwangmath@163.com (Ligong Wang), xiaopeng@sust.edu.cn (Peng Xiao), lxhdhr@163.com (Xihe Li)
Let $x^{[k-1]} = (x_1^{k-1}, x_2^{k-1}, \ldots, x_n^{k-1})^T \in \mathbb{R}^n$. If $Ax^{[k-1]} = \lambda x^{[k-1]}$ has a solution $x \in \mathbb{R}^n \setminus \{0\}$, then λ is called an eigenvalue of A and x is an eigenvector associated with λ. And the spectral radius of A is defined as $\lambda_1(A) = \max\{|\lambda|\}$ λ is an eigenvalue of A. Also, a tensor A of order k and dimension n uniquely determines a k-th degree homogeneous polynomial function x^k, which is

$$x^T (Ax^{[k-1]}) = \sum_{i=1}^{\delta} a_{i_1i_2i_k} x_{i_1}x_{i_2} \cdots x_{i_k}.$$

The adjacency tensor $[6]$ of a k-graph G with n vertices, denoted by $A(G)$, is an order k dimension n symmetric tensor with entries $a_{i_1i_2i_k}$ such that

$$a_{i_1i_2i_k} = \begin{cases} \frac{1}{(n-1)!}, & \text{if } \{i_1, i_2, \ldots, i_k\} \in E(G), \\ 0, & \text{otherwise}. \end{cases}$$

Let λ be an eigenvalue of a k-graph G with eigenvector x. Since $A(G)x^{[k-1]} = \lambda x^{[k-1]}$, we know that cx is also an eigenvector of λ for any nonzero constant c. So we can choose x such that $\sum_{i=1}^{n} x_i = 1$. In this case, we have [6, 9]

$$\lambda = x^T (A(G)x^{[k-1]}) = k \sum_{e \in E(G)} x^e,$$

where $x^e = x_{i_1}x_{i_2} \cdots x_{i_k}$, $e = \{i_1, i_2, \ldots, i_k\}$.

For a k-graph G, we denote $N_G(v)$ as the set of neighbours of v in G, and $E_G(v)$ as the set of edges containing v in G. The degree of a vertex v in G, denoted by $d_v = d_G(v)$, is $|E_G(v)|$. Let $\delta = \delta(G)$ and $\Delta = \Delta(G)$ denote the minimum degree and the maximum degree of G, respectively. If all vertices of G have the same degree, then G is called regular. Let $D = D(G)$ be a k-th order n-dimensional diagonal tensor with its diagonal element $d_{i,i}$ being d_i, the degree of vertex i of G, for all $i \in [n]$. Then $Q(G) = D(G) + A(G)$ is the signless Laplacian tensor of the hypergraph G [16]. The signless Laplacian eigenvalues refer to the eigenvalues of the signless Laplacian tensor. Let $q_1(G)$ be the signless Laplacian spectral radius of G.

In a k-graph G, a path of length l is defined to be an alternating sequence of vertices and edges $u_1, e_1, u_2, \ldots, u_l, e_l, u_{l+1}$, where u_1, \ldots, u_{l+1} are distinct vertices of G, e_1, \ldots, e_l are distinct edges of G and $u_i, u_{i+1} \in e_i$ for $i = 1, \ldots, l$. For any two vertices u and v of G, if there exists a path connecting u and v, then G is called connected. A hypergraph G is called f-edge-connected if $G - U$ is connected for any edge subset $U \subseteq E(G)$ satisfying $|U| < f$. A hypergraph G is called f-connected if there exist f paths connecting u and v in G, where no pair of them have any other elements in common except u and v, for any $u, v \in V(G)$ [27].

Spectral graph theory has a long history behind its development [2, 7]. It is natural to generalize spectral theory of graphs to hypergraphs. Recently, there are many work about the spectral theory of hypergraphs [8, 12, 14, 16, 17, 21–23]. In [20], Stevanović proposed a question: How small $\Delta - \lambda_1(G)$ can be when G is an irregular graph with maximum degree Δ and spectral radius $\lambda_1(G)$? Ciobă et al. [5] gave a lower bound on $\Delta - \lambda_1(G)$ for irregular graphs, which improved previous bounds of Stevanović [20] and of Zhang [26]. Ciobă [4] obtained a lower bound on $\Delta - \lambda_1(G)$ for an irregular graph G with maximum degree Δ and diameter D. Nikiforov [13] presented a lower bound on $\lambda_1(G) - \lambda_1(H)$ for a proper subgraph H of a connected regular graph G. Shi [18] obtained a lower bound on $\Delta - \lambda_1(G)$ for a connected irregular graph G in terms of its diameter and average degree. Ning et al. [15] gave a lower bound on $2\Delta - q_1(G)$ for a connected irregular graph G in terms of the diameter. Shui et al. [19] gave a lower bound on $2\Delta - q_1(G)$ and $2\Delta - q_1(H)$ for a k-connected irregular graph G and a proper spanning subgraph H of a k-regular k-connected graph, respectively. Li et al. [10] obtained the lower bounds on $\lambda_1(G)$ for irregular connected k-graphs in terms of vertex degrees, the diameter, and the number of vertices and edges. Yuan et al. [25] gave some bounds on $\lambda_1(G)$ and $q_1(G)$ for a k-graph G in terms of its degrees of vertices. Chen et al. [3] presented several upper bounds on $\lambda_1(G)$ and $q_1(G)$ for a k-graph G in terms of degree sequences. We are inspired by two articles of Shui et al. [19] and Li et al. [10]. In this paper, we give the bounds of (signless Laplacian) spectral radius of subgraphs of $(f$-edge-connected d-regular (linear) k)-graphs. We also give the bounds of (signless Laplacian) spectral radius of connected nonregular (linear) k-graphs.
2. Preliminaries

In this section, we give some useful lemmas.

Let G be a connected k-graph. By Perron-Frobenius theorem of nonnegative tensors [24], $\lambda_1(G)$ (resp., $q_1(G)$) is an eigenvalue of $A(G)$ (resp., $Q(G)$), and there exists a unique positive eigenvector $x = (x_1, \ldots, x_n)^T$ corresponding to $\lambda_1(G)$ (resp., $q_1(G)$) with $\sum_{i=1}^{n} x_i = 1$, and x is called the principal eigenvector of $A(G)$ (resp., $Q(G)$).

The following Lemma 2.1 is from the proof of Theorem 4.1 in [10].

Lemma 2.1. ([10]) Let G be a connected k-graph with n vertices and minimum degree δ. Then $x_u = \max_{i \in V(G)} |x_i|$ and $x_v = \min_{i \in V(G)} |x_i|$. Let $P : u = u_0, e_1, u_1, \ldots, u_r = v$ be a path from u to v, where e_i is an edge containing vertices u_{i-1} and u_i. Then

$$\sum_{w_{r_i} \in E(P)} (x_w^2 - x^2) \geq \frac{k}{2} (x_u^2 - x_v^2).$$

Lemma 2.2. ([18]) Let a_1, \ldots, a_n be nonnegative real numbers. Then

$$\frac{a_1 + \cdots + a_n}{n} - (a_1 \cdots a_n)^{\frac{1}{n}} \geq \frac{1}{n(n-1)} \sum_{1 \leq i < j \leq n} (\sqrt[n]{a_i} - \sqrt[n]{a_j})^2,$$

equality holds if and only if $a_1 = a_2 = \ldots = a_n$.

Lemma 2.3. ([18]) Let a, b, y_1, y_2 be positive numbers. Then

$$a(y_1 - y_2)^2 + b y_2^2 \geq \frac{ab}{a+b} y_1^2,$$

equality holds if and only if $y_2 = \frac{ay_1}{a+b}$.

Two paths P_1, P_2 are called edge-disjoint if the edges of P_1 have no common with the edges of P_2.

Lemma 2.4. ([27]) A hypergraph G is f-edge-connected if and only if there are f mutual edge-disjoint paths between each pair of vertices.

Lemma 2.5. ([27]) If a hypergraph G is f-connected, then there are f mutual vertex-disjoint paths between each pair of vertices.

Lemma 2.6. ([10]) Let G be a connected k-graph with n vertices, minimum degree δ and maximum degree Δ, and let $x = (x_1, \ldots, x_n)^T$ be the principal eigenvector of $A(G)$. Then $x_{\max} \geq ((\frac{k}{\Delta} + 1) n - 1)^{\frac{1}{k}}$, where $x_{\max} = \max_{1 \leq i \leq n} |x_i|$.

In fact, we can prove similarly that Lemma 2.6 also holds for the principal eigenvector of $Q(G)$, where G is a connected k-graph with n vertices.

3. The (signless Laplacian) spectral radius of subgraphs of f-edge-connected d-regular k-graphs

In this section, we will give a bound of the spectral radius and the signless Laplacian spectral radius of a subgraph of a f-edge-connected d-regular k-graph G, respectively. And we will give a bound on the the spectral radius and the signless Laplacian spectral radius of a subgraph of a f-connected d-regular linear k-graph G, respectively.
Lemma 3.1. Let H be a maximal proper subgraph of a f-edge-connected d-regular k-graph G such that $f \geq 2$, and $\lambda_1(H)$ be the spectral radius of H with the principal eigenvector $x = (x_1, x_2, \ldots, x_n)^T$. Then

$$d - \lambda_1(H) = \sum_{i=1}^{n} (d - d_i)x_i^k + \sum_{e=\{v_i,v_{i+1},\ldots,v_n\}} (x_{v_i}^k + \cdots + x_{v_n}^k - kx^e),$$

where d_i is the degree of the vertex i of H.

Proof. Let $V(H) = V(G)$ and H differs from G in a single edge $\{u_1, u_2, \ldots, u_k\}$. We know that H is connected since $f \geq 2$. Let $x_u = \max_{v \in V(H)}[x_v]$ and $x_v = \min_{v \in V(H)}[x_v]$. We claim $u \not= u_i$ for any $1 \leq i \leq k$. Indeed, if $u = u_i$ for some $1 \leq i \leq k$, then

$$\lambda_1(H)x_{u_i}^{k-1} = \sum_{e = \{u_i,u_{i+1},\ldots,u_k\} \in E(H)} a_{u_i,u_{i+1},\ldots,u_k}x_{u_{i+1}} \cdots x_{u_k} \leq (d - 1)x_{u_i}^{k-1},$$

and thus $\lambda_1(H) \leq d - 1$, contradicting the fact that $\lambda_1(H) > \frac{|E(H)|}{n} = d - \frac{k}{n} > d - 1$. We also find that

$$d - \lambda_1(H) = d \sum_{i=1}^{n} x_i^k - k \sum_{e \in E(H)} x^e$$

$$= d \sum_{i=1}^{n} x_i^k - d \sum_{i=1}^{n} d_i x_i^k + \sum_{e \in E(H)} d_i x_i^k - k \sum_{e \in E(H)} x^e$$

$$= \sum_{i=1}^{n} (d - d_i)x_i^k + \sum_{e = \{v_i,v_{i+1},\ldots,v_n\} \in E(H)} (x_{v_i}^k + \cdots + x_{v_n}^k - kx^e).$$

□

Lemma 3.2. Let H be a maximal proper subgraph of a f-edge-connected d-regular k-graph G such that $f \geq 2$ and $q_1(H)$ be the signless Laplacian spectral radius of H with the principal eigenvector $x = (x_1, x_2, \ldots, x_n)^T$. Then

$$2d - q_1(H) = 2d \sum_{i=1}^{n} (d - d_i)x_i^k + \sum_{e = \{v_i,v_{i+1},\ldots,v_n\} \in E(H)} (x_{v_i}^k + \cdots + x_{v_n}^k - kx^e),$$

where d_i is the degree of the vertex i of H.

Proof. Similarly, let $V(H) = V(G)$ and H differs from G in a single edge $\{u_1, u_2, \ldots, u_k\}$. We know that H is connected since $f \geq 2$. Let $x_u = \max_{v \in V(H)}[x_v]$ and $x_v = \min_{v \in V(H)}[x_v]$. We claim $u \not= u_i$ for any $1 \leq i \leq k$. Indeed, if $u = u_i$ for some $1 \leq i \leq k$, then

$$q_1(H)x_{u_i}^{k-1} = d_{u_i}x_{u_i}^{k-1} + \sum_{e = \{u_i,u_{i+1},\ldots,u_k\} \in E(H)} a_{u_i,u_{i+1},\ldots,u_k}x_{u_{i+1}} \cdots x_{u_k} \leq 2(d - 1)x_{u_i}^{k-1},$$

and thus $q_1(H) \leq 2d - 2$, contradicting the fact that $q_1(H) \geq 2\lambda_1(H) > 2\frac{|E(H)|}{n} = 2d - \frac{2k}{n} > 2d - 2$. We also find that

$$2d - q_1(H) = 2d \sum_{i=1}^{n} x_i^k - d \sum_{i=1}^{n} d_i x_i^k - k \sum_{e \in E(H)} x^e$$

$$= 2 \sum_{i=1}^{n} (d - d_i)x_i^k + \sum_{e \in E(H)} d_i x_i^k - k \sum_{e \in E(H)} x^e$$

$$= 2 \sum_{i=1}^{n} (d - d_i)x_i^k + \sum_{e = \{v_i,v_{i+1},\ldots,v_n\} \in E(H)} (x_{v_i}^k + \cdots + x_{v_n}^k - kx^e).$$

□
Thus, we have u connecting subgraph of G. If f, then H be a maximal proper subgraph of G, i.e., $V(H) = V(G)$ and H differs from G in a single edge $[u_1, u_2, \ldots, u_k]$. Let $\lambda_1(H)$ be the spectral radius of H with the principal eigenvector $x = (x_1, x_2, \ldots, x_n)^T$. Let $x_u = \max_{v \in V(H)} \{x_v\}$ and $x_v = \min_{v \in V(H)} \{x_v\}$. By Lemmas 2.2 and 3.1, we have

$$d - \lambda_1(H) > \frac{k(f - 1)^2}{2(k - 1)(m - 1) + (f - 1)^2)}.$$

Proof. Let H be a maximal proper subgraph of G, with n vertices and $m(= \frac{d}{k})$ edges, and H' be a proper subgraph of G. If $f, k \geq 2$, then

$$d - \lambda_1(H') > \frac{k(f - 1)^2}{2(k - 1)(m - 1) + (f - 1)^2)}.$$

By (3.1) and (3.2), we have

$$d - \lambda_1(H) > \frac{k(f - 1)^2}{2(k - 1)(m - 1) + (f - 1)^2)}(x^k_u - x^k_v)^2.$$

Thus, we have

$$\sum_{w, w' \in E(H)} (x^k_{w'} - x^k_w)^2 \geq \sum_{t=1}^{f - 1} \sum_{w, w' \in E(P_t)} (x^k_{w'} - x^k_w)^2$$

$$\geq \sum_{t=1}^{f - 1} \frac{k}{2r_t} (x^k_{w'} - x^k_w)^2$$

$$\geq \frac{k(f - 1)^2}{\sum_{t=1}^{f - 1} 2r_t} (x^k_{w'} - x^k_w)^2$$

$$\geq \frac{k(f - 1)^2}{2(m - 1)} (x^k_{w'} - x^k_w)^2.$$

By (3.1) and (3.2), we have

$$d - \lambda_1(H) > \frac{k(f - 1)^2}{2(k - 1)(m - 1) + (f - 1)^2)} x^k_u.$$
Theorem 3.5. Let \(G \) be a \(f \)-edge-connected \(d \)-regular \(k \)-graph with \(n \) vertices and \(m(=\frac{dn}{k}) \) edges, and \(H' \) be a proper subgraph of \(G \). If \(f, k \geq 2 \), then

\[
d - \lambda_1(H') > \frac{2k(f - 1)^2}{[4k(m - 1) + (f - 1)^2](\frac{d - 1}{2})\frac{m}{d} + n - 1}.
\]

\(\square \)

Theorem 3.4. Let \(G \) be a \(f \)-edge-connected \(d \)-regular \(k \)-graph with \(n \) vertices and \(m(=\frac{dn}{k}) \) edges, and \(H' \) be a proper subgraph of \(G \). If \(f, k \geq 2 \), then

\[
2d - q_1(H') > \frac{2k(f - 1)^2}{[4k(m - 1) + (f - 1)^2](\frac{d - 1}{2})\frac{m}{d} + n - 1}.
\]

Proof. Let \(H \) be a maximal proper subgraph of \(G \), i.e., \(V(H) = V(G) \) and \(H \) differs from \(G \) in a single edge \(\{u_1, u_2, \ldots, u_k\} \). Let \(q_1(H) \) is the signless Laplacian spectral radius of \(H \) with a principal eigenvector \(x \). Let \(x_u = \max_{v \in V(H)} \{x_v\} \) and \(x_v = \min_{v \in V(H)} \{x_v\} \). By Lemmas 2.2 and 3.2, we have

\[
2d - q_1(H) > 2(x_u^2 + x_v^2 + \cdots + x_u^2) + \frac{1}{k-1} \sum_{v \in V(G) \setminus V(H)} (x_v^2 - x_u^2)^2 \geq 2kx_u^2 + \frac{1}{k-1} \sum_{v \in V(G) \setminus V(H)} (x_v^2 - x_u^2)^2. \tag{3.3}
\]

Since \(G \) is a \(f \)-edge-connected \(d \)-regular \(k \)-graph, there are at least \(f - 1 \) edge disjoint paths connecting \(u \) and \(v \) in \(H \). By (3.2) and (3.3), then we have

\[
2d - q_1(H) > 2kx_u^2 + \frac{k(f - 1)^2}{2k(m - 1) + (f - 1)^2}(x_u^2 - x_v^2)^2.
\]

The right hand side of the above inequality is a quadratic function of \(x_u^2 \). By Lemma 2.3, we have

\[
2d - q_1(H) > \frac{2k(f - 1)^2}{4k(m - 1) + (f - 1)^2} x_u^2.
\]

By Lemma 2.6, we have

\[
2d - q_1(H) > \frac{2k(f - 1)^2}{[4k(m - 1) + (f - 1)^2][\frac{d - 1}{2}]\frac{m}{d} + n - 1} = \frac{2k(f - 1)^2}{[4k(m - 1) + (f - 1)^2][\frac{d - 1}{2}]\frac{m}{d} + n - 1}.
\]

Therefore, we have

\[
2d - q_1(H') > \frac{2k(f - 1)^2}{[4k(m - 1) + (f - 1)^2][\frac{d - 1}{2}]\frac{m}{d} + n - 1}.
\]

\(\square \)

Theorem 3.5. Let \(G \) be a \(f \)-connected \(d \)-regular linear \(k \)-graph with \(n \) vertices, and \(H' \) be a proper subgraph of \(G \). If \(f, k \geq 2 \), then

\[
d - \lambda_1(H') > \frac{2k(f - 1)^2}{(2n + d(k^2 - k - 2) + 4)(f - 1)^2 + h'}
\]

where \(h = k(k - 1)(n - k - d + 2)((n + 2(f - 2)^2 - (f - 1)). \)
Proof. Let H be a maximal proper subgraph of G, i.e., $V(H) = V(G)$ and H differs from G in a single edge $\{u_1, u_2, \ldots, u_k\}$. We know that H is connected since $f \geq 2$. Let $\lambda_1(H)$ be the spectral radius of H with the principal eigenvector $x = (x_1, x_2, \ldots, x_n)^T$. Let $x_u = \max_{i \in V(H)} |x_i|$ and $x_v = \min_{i \in V(H)} |x_i|$. By the proof of Lemma 3.1, we claim $u \neq u_i$ for $1 \leq i \leq k$. By Lemmas 2.2 and 3.1, we have

$$d - \lambda_1(H') \geq d - \lambda_1(H)$$

$$> x_{u_1}^k + x_{u_2}^k + \cdots + x_{u_k}^k + \frac{1}{k-1} \sum_{v, w_j \in E(H)} (x_v^{\frac{k}{2}} - x_w^{\frac{k}{2}})^2$$

$$\geq kx_v^k + \frac{1}{k-1} \sum_{v, w_j \in E(H)} (x_v^{\frac{k}{2}} - x_w^{\frac{k}{2}})^2.$$ \hfill (3.4)

Since G is a f-connected d-regular k-graph, by Lemma 2.5, there are at least $f - 1$ vertex disjoint paths $P_1, P_2, \ldots, P_{f-1}$ connecting u and v in H. Thus, we have

$$\sum_{i=1}^{f-1} |V(P_i)| \leq n + 2(f - 2).$$

Since G is a linear k-graph, we have $|V(P_i)| \geq |E(P_i)| + 1$. Hence, $\frac{2|E(P_i)|}{k} \leq \frac{|V(P_i)||V(P_i)|-1}{2}$. By Lemma 2.1, we have

$$\sum_{v, w_j \in E(H)} (x_v^{\frac{k}{2}} - x_w^{\frac{k}{2}})^2 \geq \sum_{i=1}^{f-1} \sum_{v, w_j \in E(P_i)} (x_v^{\frac{k}{2}} - x_w^{\frac{k}{2}})^2$$

$$\geq \sum_{i=1}^{f-1} \frac{k}{2 |E(P_i)|} (x_v^{\frac{k}{2}} - x_w^{\frac{k}{2}})^2$$

$$\geq \sum_{i=1}^{f-1} \frac{2}{|V(P_i)| - 1} (x_v^{\frac{k}{2}} - x_w^{\frac{k}{2}})^2$$

$$\geq \frac{2(f - 1)^2}{\sum_{i=1}^{f-1} |V(P_i)| - 1} (x_v^{\frac{k}{2}} - x_w^{\frac{k}{2}})^2$$

$$\geq \frac{2(f - 1)^2}{(\sum_{i=1}^{f-1} |V(P_i)| - 1)^2} (x_v^{\frac{k}{2}} - x_w^{\frac{k}{2}})^2$$

$$\geq \frac{2(f - 1)^2}{(n + 2(f - 2))^2} (x_v^{\frac{k}{2}} - x_w^{\frac{k}{2}})^2.$$ \hfill (3.5)

So by (3.4) and (3.5), we have

$$d - \lambda_1(H') > kx_v^k + \frac{2(f - 1)^2}{(k - 1)(n + 2(f - 2))^2 - (f - 1))} (x_v^{\frac{k}{2}} - x_w^{\frac{k}{2}})^2.$$ \hfill (3.6)

Define

$$C = \frac{2k(f - 1)^2}{(2n + d(k^2 - k - 2) + 4(f - 1)^2 + h'}$$

where $h = k(k - 1)(n - k - d + 2)((n + 2(f - 2))^2 - (f - 1)).$
Let G be a f-connected d-regular linear k-graph with n vertices, and H be a maximal proper subgraph of G. From (3.6), we obtain
\[d - \lambda_1(H') > (x^k_{u_1} + x^k_{u_2} + \cdots + x^k_{u_{d^2}}) + \frac{1}{k-1} \sum_{w,v \in E(H)} (x^k_w - x^k_v)^2 \]
\[> C + \frac{1}{k-1} \sum_{w,v \in E(H)} (x^k_w - x^k_v)^2 \]
\[\geq C. \]

Case 1. If $\sum_{i=1}^k x^k_{u_i} > C$, then from (3.4), we have
\[d - \lambda_1(H') > \frac{2}{k-1} x^k_{u_1} + \frac{1}{k-1} \sum_{i=1}^{d^2} (x^k_i - x^k_i)^2 \]
\[= \frac{1}{k-1} \sum_{i=1}^{d^2} \left(\frac{2}{d^2 - 2} x^k_i + (x^k_i - x^k_i)^2 \right) \]
\[\geq \frac{1}{k-1} \sum_{i=1}^{d^2} \frac{2}{d^2 - 2} x^k_i \]
\[\geq \frac{1}{k-1} \frac{2(dk - 1)}{C} \]
\[= C. \]

Case 2. Let $x_{u_i} = \min_{1 \leq i \leq k}[x_{u_i}]$. Since $d_H(u_1) = d - 1$, it is possible to choose at least $d - 2$ distinct vertices $\{v_1, v_2, \ldots, v_{d-2}\}$ from $N_H(u_1)$ such that $u \notin \{v_1, v_2, \ldots, v_{d-2}\}$. If $\sum_{i=1}^{d-2} x^k_i \geq \frac{dk - 1}{2} C$, by (3.4) again and Lemma 2.3, then we have
\[d - \lambda_1(H') > \frac{2(dk - 1)}{k(k-1)} \frac{2k(f-1)^2}{(n + d(k^2 - k - 1) + 2)(f-1)^2 - (f-1)} \]
\[= C. \]

Case 3. Since G is a linear k-graph, we have $v_i \neq u_i$ for $1 \leq i \leq d - 2$, $2 \leq i \leq k$. If $\sum_{i=1}^k x^k_{u_i} \leq C$ and $\sum_{i=1}^{d-2} x^k_i < \frac{dk - 1}{2} C$, then
\[x^k_{u_i} \geq \frac{1 - \sum_{i=1}^k x^k_{u_i} - \sum_{i=1}^{d-2} x^k_i}{n - k - (d - 2)} \]
\[> \frac{1}{n - k - d + 2} (1 - \frac{dk - 1}{2} C) = \frac{1}{n - k - d + 2} (1 - \frac{dk - d + 2}{2} C), \]
and from (3.6) and Lemma 2.3, we obtain
\[d - \lambda_1(H') > \frac{2k(f-1)^2}{k(k-1)(n + 2(f-2))^2 - (f-1)} \]
\[x^k_{u_i} = C. \]

\[\square \]

Theorem 3.6. Let G be a f-connected d-regular linear k-graph with n vertices, and H' be a proper subgraph of G. If $f, k \geq 2$, then
\[2d - q_1(H') > \frac{2k(f-1)^2}{(n + d(k^2 - k - 1) + 2)(f-1)^2 + h'}, \]
where $h = k(k-1)(n - k - d + 2)((n + 2(f-2))^2 - (f-1))$.

Proof. Let H be a maximal proper subgraph of G, i.e., $V(H) = V(G)$ and H differs from G in a single edge $\{u_1, u_2, \ldots, u_k\}$. We know that H is connected since $f \geq 2$. Let $q_1(H)$ be the signless Laplacian spectral radius of H with a principal eigenvector $x = (x_1, x_2, \ldots, x_n)^T$. Let $x_u = \max_{v \in V(H)}[x_v]$ and $x_v = \min_{v \in V(H)}[x_v]$. By Lemmas 2.2 and 3.2, we have
\[2d - q_1(H') \geq 2d - q_1(H) > 2(x^k_{u_1} + x^k_{u_2} + \cdots + x^k_{u_k}) + \frac{1}{k-1} \sum_{w,v \in E(H)} (x^k_w - x^k_v)^2. \]
By (3.5) and (3.7), similarly, we have
\[
2d - q_1(H') > 2kx^k + \frac{2(f - 1)^2}{(k - 1)((n + 2)(f - 2)^2 - (f - 1))}(x^1_t - x^1_u)^2. \tag{3.8}
\]
Define
\[
C = \frac{2k(f - 1)^2}{(n + d(k^2 - k - 1) + 2)(f - 1)^2 + h'},
\]
where \(h = (k - 1)(n - k - d + 2)((n + 2)(f - 2)^2 - (f - 1)). \)

Case 1. If \(\sum_{i=1}^{k} x^k_{u_i} > \frac{C}{2}, \) then from (3.7), we have
\[
2d - q_1(H') > 2(x^k_{u_1} + x^k_{u_2} + \cdots + x^k_{u_{2k}}) + \frac{1}{k - 1} \sum_{v_i, v_j \in E(I)} (x_{u_{2i}}^1 - x_{u_{2i}}^1)^2
\]
\[
> 2\frac{C}{2} + \frac{1}{k - 1} \sum_{v_i, v_j \in E(I)} (x_{u_{2i}}^1 - x_{u_{2i}}^1)^2
\]
\[
\geq C.
\]

Case 2. Let \(x_{u_i} = \min_{1 \leq i \leq k} \{x_{u_i}\}. \) Since \(d_H(u_1) = d - 1, \) it is possible to choose at least \(d - 2 \) distance vertices \(\{v_1, v_2, \ldots, v_{d-2}\} \) from \(N_H(u_1) \) such that \(u \notin \{v_1, v_2, \ldots, v_{d-2}\}. \) If \(\sum_{i=1}^{d-2} x^k_{v_i} \geq \frac{d(k-1)}{2} C, \) by (3.7) again and Lemma 2.3, then we have
\[
2d - q_1(H') > \frac{2}{k - 1} x^k_{u_1} + \frac{1}{k - 1} \sum_{i=1}^{d-2} (x_{v_i}^1 - x_{u_i}^1)^2
\]
\[
= \frac{1}{k - 1} \sum_{i=1}^{d-2} \left(\frac{2}{d - 2} x^k_{u_1} + (x_{v_i}^1 - x_{u_i}^1)^2 \right)
\]
\[
\geq \frac{1}{k - 1} \sum_{i=1}^{d-2} \frac{2}{d - 2} \left(1 + \frac{2}{d - 2} x^k_{v_i} \right)
\]
\[
\geq \frac{1}{k - 1} \frac{2(d(k - 1))}{(d - 2)} C
\]
\[
= C.
\]

Case 3. Since \(G \) is a linear \(k \)-graph, we have \(v_i \neq u_i, \) for \(1 \leq t \leq d - 2, \) \(2 \leq i \leq k. \) If \(\sum_{i=1}^{k} x^k_{u_i} \leq \frac{C}{2} \) and \(\sum_{i=1}^{d-2} x^k_{v_i} \leq \frac{d(k-1)}{2} C, \) then
\[
x^k_u \geq \frac{1 - \sum_{i=1}^{k} x^k_{u_i} - \sum_{i=1}^{d-2} x^k_{v_i}}{n - k - (d - 2)} > \frac{\frac{d(k-1)}{2} C}{n - k - d + 2 (1 - \frac{C}{2})} = \frac{\frac{d(k-1)}{2} C}{n - k - d + 2 (1 - \frac{dk - d + 1}{2} \frac{C}{2})}.
\]
and from (3.8) and Lemma 2.3, we obtain
\[
2d - q_1(H') > \frac{2k(f - 1)^2}{k(k - 1)((n + 2)(f - 2)^2 - (f - 1)) + (f - 1)^2 x^k_u} = C.
\]
\[\square\]
4. The signless Laplacian spectral radius of connected nonregular (linear) k-graphs

In this section, we mainly study the upper bounds of the (signless Laplacian) spectral radius of a f-(edge)-connected nonregular k-graph G with maximum degree δ, respectively.

Theorem 4.1. Let G be a nonregular f-edge-connected k-graph with n vertices, m edges, minimum degree δ and maximum degree δ. Then

\[2\Delta - q_1(G) > 2k(n\Delta - km) \frac{f^2}{[4m(k - 1)(n\Delta - km) + kf^2](\frac{k}{\delta})^{\frac{1}{m(n - 1)}} + n - 1}. \]

Proof. Let \(q_1(G) \) be the signless Laplacian spectral radius of G with the principal eigenvector \(x = (x_1, x_2, \ldots, x_n)^T \). Let \(x_u = \max_{v \in V(G)}(x_i) \) and \(x_v = \min_{v \in V(G)}(x_i) \). We also find that

\[2\Delta - q_1(G) = 2\sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} \sum_{e \in E(G)} d_e x_i^2 - k \sum_{e \in E(G)} x^e \]

\[= 2 \sum_{i=1}^{n} (\Delta - d_i) x_i^2 + \sum_{i=1}^{n} \sum_{e \in E(G)} d_e x_i^2 - k \sum_{e \in E(G)} x^e \]

\[= 2 \sum_{i=1}^{n} (\Delta - d_i) x_i^2 + \sum_{e \in \{u_1, u_2, \ldots, u_k\} \in E(G)} x^e, \]

where \(d_i \) is the degree of the vertex \(i \). By Lemma 2.2, we have

\[2\Delta - q_1(G) > 2(n\Delta - km)x_v^2 + \frac{1}{k - 1} \sum_{u,v \in E(G)} (x_u^2 - x_v^2)^2. \] (4.1)

Let \(P_i : u = u_0, e_1, u_1, \ldots, u_n = v \) be a path from \(u \) to \(v \). By Lemma 2.1, we have

\[\sum_{u,v \in E(P_i)} (x_u^2 - x_v^2)^2 \geq \frac{k}{2r_i} (x_u^2 - x_v^2)^2. \]

Since \(G \) is f-edge-connected, similar to (3.2), we have

\[\sum_{u,v \in E(G)} (x_u^2 - x_v^2)^2 \geq \sum_{i=1}^{f} \frac{k}{2r_i} (x_u^2 - x_v^2)^2 \geq \frac{k f^2}{2m} (x_u^2 - x_v^2)^2. \] (4.2)

By (4.1) and (4.2), we have

\[2\Delta - q_1(G) > 2(n\Delta - km)x_v^2 + \frac{f^2}{2m(k - 1)} (x_u^2 - x_v^2)^2. \]

The right hand side of the above inequality is a quadratic function of \(x_u^2 \). By Lemma 2.3, we have

\[2\Delta - q_1(G) > \frac{2k(n\Delta - km)f^2}{4m(k - 1)(n\Delta - km) + kf^2} x_u^2. \]

By Lemma 2.6, we have

\[2\Delta - q_1(G) > \frac{2k(n\Delta - km)f^2}{[4m(k - 1)(n\Delta - km) + kf^2](\frac{k}{\delta})^{\frac{1}{m(n - 1)}} + n - 1}. \]

\[\square \]
Theorem 4.2. Let G be a nonregular f-connected linear k-graph with n vertices, m edges and maximum degree Δ. Then
\[
2\Delta - q_1(G) > \frac{2(n\Delta - km) f^2}{(n + 2k - 1)(n\Delta - km) + (k - 2)(f - 1))^2 + h'}
\]
where $h = (n - f)(k - 1)(n\Delta - km)((n + 2f - 2)^2 - f)$.

Proof. Let $q_1(G)$ be the signless Laplacian spectral radius of G with the principal eigenvector $x = (x_1, x_2, \ldots, x_n)^T$. Let $x_u = \max_{v \in V(G)}|x_v|$ and $x_v = \min_{v \in V(G)}|x_v|$. Consider the following two cases:

Case 1. Suppose $d_u \leq \Delta - 1$. Since $Qx^{k-1} = q_1 x^{k-1}$, we have
\[
q_1(G)x_u^{k-1} = d_u x_u^{k-1} + \sum_{e=\{u,v_1,\ldots,v_{k-1}\} \in E(G)} x_{v_1}x_{v_2} \cdots x_{v_{k-1}} \leq 2(\Delta - 1)x_u^{k-1}.
\]
Thus, we have $q_1(G) \leq 2\Delta - 2$. Consequently,
\[
2\Delta - q_1(G) \geq 2 > \frac{2(n\Delta - km) f^2}{(n + 2k - 1)(n\Delta - km) + (k - 2)(f - 1))^2 + h'}
\]
where $h = (n - f)(k - 1)(n\Delta - km)((n + 2f - 2)^2 - f)$.

Case 2. Suppose $d_u = \Delta$. Since G is a f-connected k-graph, there are at least f vertex disjoint paths P_1, P_2, \ldots, P_f connecting u and v in G. By Lemma 2.5, we have
\[
\sum_{i=1}^f |V(P_i)| \leq n + 2(f - 1).
\]
Thus, we have
\[
2\Delta - q_1(G) = 2\Delta \sum_{i=1}^n x_i^k - \sum_{i=1}^n d_i x_i^k - k \sum_{e \in E(G)} x_e = 2 \sum_{i=1}^n (\Delta - d_i) x_i^k + \sum_{i=1}^n d_i x_i^k - k \sum_{e \in E(G)} x_e = 2 \sum_{i=1}^n (\Delta - d_i) x_i^k + \sum_{e=\{v_1,v_2,\ldots,v_k\} \in E(G)} x_{v_1}^k + \cdots + x_{v_k}^k - kx_e,
\]
where d_i is the degree of the vertex i. By Lemma 2.2, we have
\[
2\Delta - q_1(G) > 2(n\Delta - km)x_u^k + \frac{1}{k - 1} \sum_{v \in V(G)} (x_v^k - x_u^k)^2. \tag{4.6}
\]
Similar to the proof of (3.5), we have
\[
\sum_{v \in V(G)} (x_v^k - x_u^k)^2 > \frac{2f^2}{(n + 2f - 2)^2 - f} (x_u^k - x_v^k)^2. \tag{4.7}
\]
By (4.6), (4.7) and Lemma 2.3, we have
\[
2\Delta - q_1(G) > 2(n\Delta - km)x_u^k + \frac{2f^2}{(k - 1)((n + 2f - 2)^2 - f)} (x_u^k - x_v^k)^2 \geq \frac{2(n\Delta - km) f^2}{(k - 1)(n\Delta - km)((n + 2f - 2)^2 - f) + f^2 x_u^k}. \tag{4.8}
\]
Define
\[
C = \frac{2(n\Delta - km) f^2}{(n + 2(k - 1)(n\Delta - km) + (k - 2)(f - 1))^2 + h'}
\]
where \(h = (n - f)(k - 1)(n\Delta - km)((n + 2f - 2)^2 - f)\).

Case 2.1. Suppose \(f = 1\), we have
\[
2\Delta - q_1(G) > \frac{2(n\Delta - km)}{(k - 1)(n\Delta - km)(n^2 - 1) + 1} x_v^k
\]
and
\[
C = \frac{2(n\Delta - km)}{(n + 2(k - 1)(n\Delta - km)) + h'}
\]
where \(h = (n - 1)(k - 1)(n\Delta - km)(n^2 - 1)\).

Case 2.1.1. If \(x_v^k \geq \frac{C}{2(n\Delta - km)}\), then from (4.6) and (4.7), we obtain
\[
2\Delta - q_1(G) > 2(n\Delta - km) \frac{C}{2(n\Delta - km)} + \frac{2f^2}{(k - 1)((n + 2f - 2)^2 - f)} (x_v^k - x_v^i)^2 > C.
\]

Case 2.1.2. If \(x_v^k < \frac{C}{2(n\Delta - km)}\), then since \(\sum_{i=1}^{n} x_i^k = 1\), we have
\[
x_u^k \geq \frac{1 - x_v^k}{n - 1} > \frac{1}{n - 1} \left(1 - \frac{C}{2(n\Delta - km)}\right).
\]
Thus, by (4.9), we have
\[
2\Delta - q_1(G) > C.
\]

Case 2.2. Suppose \(f \geq 2\).

Case 2.2.1. If \(x_v^k \geq \frac{C}{2(n\Delta - km)}\), then the result can be obtained using a similar argument of the case 2.1.1.

Case 2.2.2. Since \(G\) is a \(f\)-connected linear \(k\)-graph, we have \(d_v \geq f\). We can choose at least \(f - 1\) vertices from \(N_G(v)\), denoted by \(\{v_1, v_2, \ldots, v_{f-1}\}\), such that \(u \notin \{v_1, v_2, \ldots, v_{f-1}\}\). If \(\sum_{i=1}^{f-1} x_v^k > C(k - 1)(1 + \frac{f - 1}{2(n\Delta - km)})\), by (4.6), we have
\[
2\Delta - q_1(G) > 2(n\Delta - km)x_v^k + \frac{1}{k - 1} \sum_{i=1}^{f-1} (x_v^k - x_v^i)^2 \\
\geq 2(n\Delta - km)x_v^k + \frac{1}{k - 1} \sum_{i=1}^{f-1} (x_v^k - x_v^i)^2.
\]
Similar to the proof of the case 2 of Theorem 3.6, we have
\[
2\Delta - q_1(G) > C.
\]

Case 2.2.3. If \(x_v^k < \frac{C}{2(n\Delta - km)}\) and \(\sum_{i=1}^{f-1} x_v^k \leq C(k - 1)(1 + \frac{f - 1}{2(n\Delta - km)})\), by \(\sum_{i=1}^{n} x_i^k = 1\), then we have
\[
x_u^k \geq \frac{1}{n - f} (1 - x_v^k) \sum_{i=1}^{f-1} x_v^i > \frac{1}{n - f} (1 - \frac{2(k - 1)(n\Delta - km) + (k - 1)(f - 1) + 1}{2(n\Delta - km)} C).
\]
Thus, by (4.8), we have
\[
2\Delta - q_1(G) > C.
\]
\(\square\)
Theorem 4.3. Let G be a nonregular f-connected linear k-graph with n vertices, m edges and maximum degree Δ. Then

$$\Delta - \lambda_1(G) > \frac{2(n\Delta - km)}{2(n + (k-1)(n\Delta - km) + (k-2)(f-1)) f^2 + h'},$$

where $h = (n-f)(k-1)(n\Delta - km)((n+2f-2)^2 - f)$.

Proof. The result can be obtained by using a similar argument of Theorem 4.2. □

Acknowledgements
The authors would like to thank an anonymous referee for his or her valuable comments and suggestions to improve the quality of the article.

References