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Abstract. In this paper, using the concept of w-distance on a metric space, we prove some new best
proximity point results for the mappings of Meir-Keeler type. As an application, we derive some recent
best proximity point results of the aforementioned type.

1. Introduction and preliminaries

In 1996 Kada, Suzuki and Takahashi [10] introduced and studied the concept of w-distance in fixed point
theory. They gave examples of the w-distance and, among other things, generalized Caristi’s fixed point
theorem, Ekeland’s variational principle and the nonconvex minimization theorem by Takahashi. For more
recent, related results on w-distance see [3, 5–8].

Definition 1.1. Let (X, d) be a metric space. Then a function p : X × X → [0,∞) is called a w-distance on X if the
following are satisfied:

(P1) p(x, z) ≤ p(x, y) + p(y, z), for any x, y, z ∈ X,
(P2) for any x ∈ X, function p(x, ·) : X→ [0,∞) is lower semicontinuous,
(P3) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ε.

Let us recall that a real-valued function f defined on a metric space X is said to be lower semicontinuous
at a point x0 in X if either lim infxn→x0 f (xn) = ∞ or f (x0) ≤ lim infxn→x0 f (xn), whenever xn ∈ X and xn → x0.
The following, very useful lemma is proved in [10].

Lemma 1.2. Let (X, d) be a metric space and let p be a w-distance on X. Let {xn} and {yn} be sequences in X, let {αn}

and {βn} be sequences in [0,+∞) converging to 0, and let x, y, z ∈ X. Then the following hold:

(i) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then y = z. In particular, if p(x, y) = 0 and p(x, z) = 0, then
y = z;

(ii) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈N, then yn converges to z;
(iii) if p(xn, xm) ≤ αn for any n,m ∈N with m > n, then {xn} is a Cauchy sequence.
(iv) if p(y, xn) ≤ αn for any n ∈N, then {xn} is a Cauchy sequence.
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In 1969, Meir and Keeler [14] have proven the following very interesting fixed point theorem, which has
been widely discussed recently due to its peculiar nature as well as many useful applications.

Theorem 1.3. Let (X, d) be a complete metric space, and let T be a self-mapping on X. Suppose that for any ε > 0
there exists a δ = δ(ε) > 0 such that for every x, y ∈ X, the condition

ε ≤ d(Tx,Ty) < ε + δ⇒ d(x, y) < ε

holds. Then T has a unique fixed point x ∈ X, and for every x0 ∈ X the sequence {Tnx0} converges to x.

Let (X, d) be a metric space, A and B two nonempty subsets of X and T : A→ B a non-self-mapping.
The following notations will be used throughout the paper (see e.g. [1, 2, 4, 9, 11–13, 15]):

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}
d(y,A) = inf{d(x, y) : x ∈ A} = d({y},A)
A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B}
B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}

In this paper, firstly we introduce the notions of MK-p-proximal contractions by using the concept of
w-distance. Then we prove some new best proximity point results for MK-p-proximal contractions on
complete metric spaces. As an application, we derive the recent best proximity point results due to Jleli et
al. [9].

2. Main results

In this section we prove our main results. Among other things, we introduce the notions of MK-p-
proximal contractions.

Let (X, d) be a metric space, p : X × X → [0,∞) a w-distance on X, and let A and B be two nonempty
subsets of X (which need not be equal). We introduce the following notation (see e.g. [13, 15]) :

GA,p = {1 : A→ A : p(x, y) ≤ p(1x, 1y), ∀x, y ∈ A}
T1,p = {T : A→ B : p(Tx,Ty) ≤ p(T1x,T1y), ∀x, y ∈ A}.

Definition 2.1. A non-self-mapping T : A→ B is said to be an MK-p-proximal contraction of the first kind if for all
ε > 0 there exists δ = δ(ε) > 0 such that

d(u,Tx) = d(A,B)
d(v,Ty) = d(A,B)

}
⇒ (p(x, y) < ε + δ⇒ p(u, v) < ε)

for every u, v, x, y ∈ A.

Definition 2.2. A non-self mapping T : A→ B is said to be an MK-p-proximal contraction of the second kind if for
all ε > 0 there exists δ = δ(ε) > 0 such that

d(u,Tx) = d(A,B)
d(v,Ty) = d(A,B)

}
⇒ (p(Tx,Ty) < ε + δ⇒ p(Tu,Tv) < ε)

for all u, v, x, y ∈ A.

The next two auxiliary statements will be used to prove our main results.

Lemma 2.3. If T : A→ B is an MK-p-proximal contraction of the first kind, then

d(u,Tx) = d(A,B)
d(v,Ty) = d(A,B)

}
⇒ p(u, v) ≤ p(x, y)

for every u, v, x, y ∈ A.
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Proof. Take ε = p(x, y) + λ and δ = δ(ε) > 0, where λ > 0 is arbitrary. Then the inequality

p(x, y) < p(x, y) + λ + δ

is true, which implies

p(u, v) < ε = p(x, y) + λ (1)

since T is an MK-p-proximal contraction of the first kind. Taking λ→ 0 in (1) yields p(u, v) ≤ p(x, y).

Lemma 2.4. If T : A→ B is an MK-p-proximal contraction of the second kind, then

d(u,Tx) = d(A,B)
d(v,Ty) = d(A,B)

}
⇒ p(Tu,Tv) ≤ p(Tx,Ty)

for every u, v, x, y ∈ A.

Proof. Take ε = p(Tx,Ty) + λ and δ = δ(ε) > 0, where λ > 0 is arbitrary. Then the inequality

p(Tx,Ty) < p(Tx,Ty) + λ + δ

is true, which implies

p(Tu,Tv) < ε = p(Tx,Ty) + λ (2)

since T is an MK-p-proximal contraction of the second kind. Taking λ → 0 in (2) yields p(Tu,Tv) ≤
p(Tx,Ty).

Now we state and prove our main results.

Theorem 2.5. Let A and B be two nonempty subsets of a complete metric space (X, d) with a w-distance p, such that
A0 is nonempty and closed. Suppose that the mappings 1 : A→ A and T : A→ B satisfy the following conditions:

1. T is an MK-p-proximal contraction of the first kind;
2. 1 ∈ GA,p;
3. A0 ⊆ 1(A0);
4. T(A0) ⊆ B0.

Then there exists a unique element x ∈ A0 such that d(1x,Tx) = d(A,B) and p(x, x) = 0. Moreover, for any initial
x0 ∈ A0 there exists a sequence {xn} ⊆ A0 converging to x, such that d(1xn+1,Txn) = d(A,B) for all n ∈N ∪ {0}.

Proof. Let x0 ∈ A0. Since T(A0) ⊆ B0 and A0 ⊆ 1(A0) there exists x1 ∈ A0 such that

d(1x1,Tx0) = d(A,B).

Similarly, for x1 ∈ A0 there exists x2 ∈ A0 such that

d(1x2,Tx1) = d(A,B).

Continuing this process, for any xn ∈ A0 we can find xn+1 ∈ A0 such that

d(1xn+1,Txn) = d(A,B).

If there exists n0 ∈N ∪ {0} such that

p(xn0 , xn0+1) = 0, (3)
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by Lemma 2.3 we have p(1xn0+1, 1xn0+2) = 0, so that

p(xn0 , xn0+2) ≤ p(xn0 , xn0+1) + p(xn0+1, xn0+2)
≤ p(xn0 , xn0+1) + p(1xn0+1, 1xn0+2) = 0

implies p(1xn0 , 1xn0+2) = 0. Since 1 ∈ GA,p, we get

p(xn0 , xn0+2) = 0. (4)

But by Lemma 1.2 (i), (3) and (4) imply that xn0+2 = xn0+1, so d(1xn0+2,Txn0+1) = d(1xn0+1,Txn0+1) = d(A,B).
Hence, we can assume that p(xn, xn+1) > 0 for all n ∈ N ∪ {0}. Since T is an MK-proximal contraction of

the first kind, using Lemma 2.3 we obtain

p(1xn+1, 1xn+2) ≤ p(xn, xn+1) ≤ p(1xn, 1xn+1) (5)

for any n ∈ N ∪ {0} , which means that the sequence {p(1xn, 1xn+1)} ⊆ (0,∞) is decreasing. Hence, there
exists r ≥ 0 such that

p(1xn, 1xn+1)→ r as n→∞. (6)

Suppose that r > 0. Now choose δ = δ(r) > 0, so by (6) there exists m ∈ N ∪ {0} such that p(xm, xm+1) ≤
p(1xm, 1xm+1) < r+δ. Since T is an MK-p-proximal contraction of the first kind, then we get p(1xm+1, 1xm+2) < r,
a contradiction. Hence, we have r = 0 which implies that

lim
n→∞

p(1xn, 1xn+1) = 0. (7)

Let ε > 0 be arbitrary. Without loss of generality, we can assume that δ = δ(ε) < ε. By (7) there exists
N = N(ε) ∈N ∪ {0} such that

p(1xn, 1xn+1) < δ for all n ≥ N. (8)

We will show that for all n ≥ N and every k ∈N

p(1xn, 1xn+k) < ε + δ (9)

by induction with respect to k. Fix n ≥ N. By (8), (9) holds for k = 1. Suppose that (9) holds for some k ∈N,
i.e.

p(xn, xn+k) ≤ p(1xn, 1xn+k) < ε + δ.

But then
p(1xn+1, 1xn+k+1) < ε

since T is an MK-p-proximal contraction of the first kind. Thus by (8),

p(1xn, 1xn+k+1) ≤ p(1xn, 1xn+1) + p(1xn+1, 1xn+k+1) < δ + ε.

In (9) δ < ε, so we have

p(1xn, 1xn+k) < 2ε (10)

for all n ≥ N and k ∈N. In other words, we have proven that

lim
n→∞

sup
m>n

p(1xn, 1xm) = 0,

so by Lemma 1.2 (iii), {1xn} is a Cauchy sequence in A0. Since (X, d) is a complete metric space and A0 is a
closed subset of X, there exists limn→∞ 1xn = 1x for some x ∈ A0. Since 1xn ∈ A0 for all n ∈ N ∪ {0} and A0
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is closed, we also have 1x ∈ A0. On the other hand, since 1x ∈ A0 and T(A0) ⊆ B0, for x there exists z ∈ A0
such that d(z,Tx) = d(A,B).

Let us prove that z = 1x.
From (10), for any ε > 0, there exists N = N(ε) ∈N ∪ {0} such that for a fixed n ≥ N we obtain

p(1xn, 1x) ≤ lim inf
k→∞

p(1xn, 1xn+k) < 2ε

which implies that

lim
n→∞

p(1xn, 1x) = 0. (11)

Since T is an MK-p-proximal contraction of the first kind, by Lemma 2.3 we have

p(1xn+1, z) ≤ p(xn, x) ≤ p(1xn, 1x)

for any n ≥ N, which combined with (11) yields

lim
n→∞

p(1xn+1, z) = 0. (12)

Finally, from (11) and (12) we conclude that z = 1x by Lemma 1.2 (i). Since d(z,Tx) = d(A,B) we get
d(1x,Tx) = d(A,B).

To prove the uniqueness, let y be in A0 such that

d(1y,Ty) = d(A,B).

Assume that p(1x, 1y) ≥ p(x, y) > 0. Take ε = p(x, y) and δ = δ(ε), so that p(x, y) < ε + δ. Since T is an
MK-p-proximal contraction of the first kind, we obtain p(1x, 1y) < ε = p(x, y) which is a contradiction.
Hence

p(x, y) = 0 (13)

and symmetrically, we can show that also p(y, x) = 0, which implies p(x, x) ≤ p(x, y) + p(y, x) = 0, i.e.

p(x, x) = 0. (14)

By Lemma 1.2 (i), from (13) and (14) we conclude that x = y.
By a similar argument we prove p(x, x) = 0.

Analogously to the Theorem 2.5, we can prove the following best proximity point result for MK-p-proximal
contractions of the second kind.

Theorem 2.6. Let (X, d) be a complete metric space with w-distance p, and let A and B be two nonempty subsets of
X such that A0 is nonempty and closed. Assume that the mappings T : A→ B and 1 : A→ A satisfy the following
conditions:

1. T is an MK-p-proximal contraction of the second kind;
2. T ∈ T1,p;
3. A0 ⊆ 1(A0);
4. T(A0) ⊆ B0.

Then there exists a point x ∈ A0 such that d(1x,Tx) = d(A,B), and p(Tx,Tx)=0. Moreover, for any x0 ∈ A0 there
exists a sequence {xn} ⊆ A0 which converges to x such that d(1xn+1,Txn) = d(A,B) for all n ∈N ∪ {0} .

If, additionally, T is an injective mapping on A, then the best proximity point x described in the previous paragraph
is unique.
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Proof. Analogously to the proof of Theorem 2.5, we conclude that for an arbitrary x0 ∈ A0 there exists a
sequence {xn} ⊆ A0 such that d(1xn+1,Txn) = d(A,B) for all n ∈N ∪ {0}, which converges to the point x ∈ A0
such that

d(1x,Tx) = d(A,B)

and

p(Tx,Tx) = 0. (15)

Now suppose that y ∈ A0 is another point such that

d(1y,Ty) = d(A,B).

Again, using the similar reasoning to that in the proof of Theorem 2.5, we obtain that

p(Tx,Ty) = 0. (16)

By (15) and (16) and using the Lemma 1.2 we have Tx = Ty, which implies that x = y, since T is an injective
mapping on A.

3. Conclusions

In this section, we prove the results of Jleli et al. [9] under weaker assumptions as consequences of our
main results. To this end, let us first recall the notions of MK-proximal contractions introduced by Jleli et
al. [9]:

Definition 3.1. A non-self-mappping T : A→ B is said to be an MK-proximal contraction of the first kind if, for all
ε > 0, there exists δ = δ(ε) > 0 such that

d(u,Tx) = d(A,B)
d(v,Ty) = d(A,B)

}
⇒ (ε ≤ d(x, y) < ε + δ⇒ d(u, v) < ε)

for every u, v, x, y ∈ A.

Definition 3.2. A non-self-mappping T : A→ B is said to be an MK-proximal contraction of the second kind if, for
all ε > 0, there exists δ = δ(ε) > 0 such that

d(u,Tx) = d(A,B)
d(v,Ty) = d(A,B)

}
⇒ (ε ≤ d(Tx,Ty) < ε + δ⇒ d(Tu,Tv) < ε)

for every u, v, x, y ∈ A.

Now we prove the first main result of Jleli et al. ([9, Theorem 3.1]):

Theorem 3.3. Let A and B be closed subsets of a complete metric space (X, d) such that A0 is nonvoid and the pair
(A,B) satisfies the weakly P-property. Suppose that the mappings 1 : A → A and T : A → B satisfy the following
conditions:

(a) T is an MK-proximal contraction of the first and second kinds;

(b) T(A0) ⊆ B0;

(c) 1 is an isometry (i.e. d(1x, 1y) = d(x, y) for all x, y ∈ X);

(d) A0 ⊆ 1(A0);

(e) T preserves the isometric distance with respect to 1 (i.e. d(T1x,T1y) = d(Tx,Ty) for all x, y ∈ X).
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Then, there exists a unique element x∗ ∈ A such that d(1x∗,Tx∗) = d(A,B). Further, for any fixed element x0 ∈ A0,
the iterative sequence {xn}, defined by d(1xn+1,Txn) = d(A,B) converges to x∗.

Proof. Notice that all the conditions of Theorem 2.5 are satisfied if we take p = d. Hence, the same conculsion
holds.

Analogously, we can also show the second main result of Jleli et al. ([9, Theorem 3.5]):

Theorem 3.4. Let A and B be closed subsets of a complete metric space (X, d) such that A0 is nonvoid, the pair (A,B)
satisfies the weakly P-property, and B is approximatively compact with respect to A. Suppose that the mappings
1 : A→ A and T : A→ B satisfy the following conditions:

(a) T is an MK-proximal contraction of the first kind;

(b) T(A0) ⊆ B0;

(c) 1 is an isometry;

(d) A0 ⊆ 1(A0).

Then, there exists a unique element x∗ ∈ A such that d(1x∗,Tx∗) = d(A,B). Further, for any fixed element x0 ∈ A0,
the iterative sequence {xn}, defined by d(1xn+1,Txn) = d(A,B) converges to x∗.

Remark 3.5. Let A and B be two nonempty subsets of a metric space (X, d) with A0 , ∅. Then the pair (A,B) is said
to have the weakly P-property ([1, 2, 9]) if and only if

d(x1, y) = d(A,B)
d(x2, y) = d(A,B)

}
⇒ x1 = x2.

Also, B is said to be approximatively compact ([9]) with respect to A if every sequence {yn} of B satisfying the condition
that d(x, yn)→ d(x,B) for some x ∈ A has a convergent subsequence. Notice that Jleli et al. [9] make use of the weakly
P-property and the approximative compactness property in order to furnish their results. Thus we have shown here
that these conditions are redundant. Moreover, our main results hold in a more general setting, while the proofs are
significantly simpler.
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