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Affine Spheres with Prescribed Blaschke Metric
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Abstract. It is proved that the equality ∆ ln |κ−λ| = 6κ, where κ is the Gaussian curvature of a metric tensor
1 on a 2-dimensional manifold is a sufficient and necessary condition for local realizability of the metric as
the Blaschke metric of some affine sphere. Consequently, the set of all improper local affine spheres with
nowhere-vanishing Pick invariant can be parametrized by harmonic functions.

1. Introduction

Affine spheres are still a mysterious class, even in the 2-dimensional case. It is a big contrast with the
Riemannian or the pseudo-Riemannian case. It is known that the class of affine spheres is huge and only
very few subclasses have been classified. Therefore the results, which allow at least to estimate the amount
of affine spheres within some geometrically described subclasses are desirable. In this respect we prove
that the set of all improper local affine spheres with nowhere-vanishing Pick invariant can be parametrized
by harmonic functions, see Corollary 1.3 and Remark 1.4.

The following fact has been known since Blaschke’s times, [1]. For an affine sphere in R3 whose Pick
invariant nowhere vanishes the following equality is satisfied

∆ ln |J| = 6κ, (1)

where κ is the Gaussian curvature of the Blaschke metric and J is the Pick invariant. The Laplacian is taken
relative to the Blaschke metric. The affine theorema egregium says that J = κ−ρ, where ρ is the affine scalar
curvature. For an affine sphere with the shape operator S = λ id the scalar curvature is equal toλ. Therefore,
the equality (1) can be written as ∆ ln |κ − λ| = 6κ. It has not been noticed, however, that this equality is
also a sufficient condition for local realizability of a metric as the Blaschke metric on an affine sphere in
R3. Realizability of prescribed objects on submanifolds belongs to fundamental problems in all types of
geometries of submanifolds. Each fundamental theorem have the existence and the uniqueness part. The
existence part says, roughly speaking, that having some objects on an abstract manifold, one can realize
them as the induced objects on some types of submanifolds in a fixed ambient space (usually a homogeneous
one) if the given objects satisfy some conditions – differential equations, called the fundamental equations.
The set of the given objects should be optimal, that is, the objects should give one realization up to a
specified group of transformations of the ambient space and they should be independent (except for the
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relations given by the fundamental equations). The basic version of the fundamental theorem in the theory
of affine hypersurfaces says about three prescribed objects (a connection, a symmetric bilinear form and a
(1, 1)-tensor field) and four fundamental equations. The so called Radon’s type theorems need two objects,
but with additional assumptions about the rank of the bilinear form, see e.g. [3]. The main work on
fundamental theorems in affine differential geometry was done in the last two decades of the last century,
although the founders of affine differential geometry, e.g. J. Radon [7], proved their versions of fundamental
theorems much earlier. The new attempt to affine differential geometry proposed by K. Nomizu allowed
to formulate old theorems in a better way and to improve them significantly. By a realization problem we
mean a question whether, or under which conditions, a given object can be a component of some geometric
structure, for instance, it can be realized as an induced object on some specified type of submanifolds.
Usually the realization is not unique. We also want that the conditions imposed on the given object which
are sufficient for the realizability are as elegant as possible. In fact, it is quite unusual that such a theorem
can be formulated, especially in a simple way. In [6] the realization problem was studied for connections
in affine differential geometry. Another example of the realization problem is a recently studied question
whether a given tensor field can be realized as the Ricci tensor of some types of connections and how many
realizations exist, see e.g. [2], [5].

In this paper we consider the question when a metric tensor field can be realized as the Blaschke metric
on an affine sphere. It turns out that only one linear differential equation is needed for formulating the
sufficient and necessary condition for the realizability, if we restrict to surfaces with nowhere-vanishing
Pick invariant.

Note that the 2-dimensional affine sphere with vanishing Pick invariant are classified. Namely, by the
affine theorema egregium we know that if an affine sphere has vanishing Pick invariant then the Gaussian
curvature of the Blaschke metric is constant. A complete classification of such affine spheres in R3 is given,
for instance, in Section 5 of Chapter III in [3].

The main aim of this paper is to prove the following result

Theorem 1.1. Let 1 be a metric tensor field on a 2-dimensional manifold M. It can be locally realized as the Blaschke
metric on an affine sphere with nowhere-vanishing Pick invariant if and only if

∆ ln |κ − λ| = 6κ (2)

for some constant λ such that κ − λ , 0 everywhere.

This is a local result. In the compact case there is no realization problem. Indeed, any compact affine
sphere is an ellipsoid with the Blaschke metric being the standard metric of constant curvature on a sphere.
Also in the case where a metric is positive definite and complete the realization problem on elliptic or
parabolic spheres is trivial, because complete elliptic affine spheres are ellipsoids and complete parabolic
affine spheres are elliptic paraboloids.

As corollaries of Theorem 1.1 we shall prove

Corollary 1.2. An improper locally strongly convex affine sphere in R3 with nowhere-vanishing Pick invariant is
analytic.

Not all improper affine spheres are analytic. For instance, the surface given by the equation z = xy+Φ(x),
where Φ a smooth but non-analytic function is an affine sphere. This sphere has vanishing Pick invariant
and its Blaschke metric is indefinite, see [3].

In the following corollary 10 stands for the canonical metric tensor field in R2 and the harmonicity is
relative to 10.

Corollary 1.3. Let 1 = eL10 be a metric tensor of constant Gaussian curvature ±2 defined in a neighborhood U of
p ∈ R2. Let h be a harmonic function defined on U. Then 1 = e

h−L
2 10 can be locally realized as the Blaschke metric in

a neighborhood of p on some improper affine sphere.
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Remark 1.4. Since metric structures of the same constant Gaussian curvature are locally isometric, the
above theorem says, roughly speaking, that local improper affine spheres with nowhere-vanishing Pick
invariant can be parametrized by harmonic functions.

2. Affine spheres

Let f : M → Rn+1 be a hypersurface in Rn+1. At the beginning, for simplicity, we assume that M is
connected and oriented. On Rn+1 we have the volume form given by the standard determinant. The
standard flat connection on Rn+1 will be denoted by ∇̃. Let ξ be a transversal vector field for f (consistent
with the orientation on M). The induced volume form on M is given by

νξ(X1, ...,Xn) = det ( f∗X1, ..., f∗Xn, ξ). (3)

We have the following Gauss formula

∇̃X( f∗Y) = f∗(∇XY) + 1(X,Y)ξ, (4)

for vector fields X,Y on M. It is known that ∇ is a torsion-free connection and 1 is a symmetric bilinear form
on M. The connection ∇ is called the induced connection and 1 - the second fundamental form of f . The
conformal class of 1 is independent of the choice of a transversal vector field ξ. A hypersurface is called
non-degenerate if 1 is non-degenerate at each point of M.

From now on we shall consider only non-degenerate hypersurfaces. Hence the second fundamental
form 1 on M is a metric tensor field (maybe indefinite). The induced volume form on M is, in general,
different than the volume form ν1 determined by 1. If νξ = ν1 we say that the apolarity condition is satisfied.
A transversal vector field ξ is called equiaffine if ∇νξ = 0 on M. If a transversal vector field is equiaffine
then ∇1 as a cubic form (that is, ∇1(X,Y,Z) = (∇Z1)(Y,Z)) is totally symmetric.

The following theorem is central in the classical affine differential geometry, see [4],[3].

Theorem 2.1. Let f : M → Rn+1 be a non-degenerate hypersurface. There exists a unique equiaffine transversal
vector field ξ such that νξ = ν1.

The unique transversal vector field is called the affine normal vector field. If the affine lines determined
by the affine normal vector field meet at one point or are parallel then the hypersurface is called an affine
sphere - proper in the first case and improper in the second one.

Affine spheres are also described by the affine shape operator. Namely, let ξ be the affine normal vector
field for a hypersurface immersion f . By differentiating ξ relative to ∇̃we get

∇̃Xξ = − f∗(SX) (5)

for some (1, 1)-tensor field S on M. The tensor field S is called the affine shape operator. The fact that f is an
affine sphere is equivalent to the condition S = λ id , where λ is a real number, non-zero for a proper sphere
and zero for an improper sphere.

We have the following fundamental theorem for equiaffine hypersurfaces, see [4], [3].

Theorem 2.2. Let ∇ be a torsion-free connection on a simply connected manifold M, 1 be a symmetric bilinear
non-degenerate form and S is a (1, 1)-tensor field on M such that the following fundamental equations are satisfied:

R(X,Y)Z = 1(Y,Z)SX − 1(X,Z)SY − Gauss, (6)

1(X,SY) = 1(SX,Y) − Ricci, (7)

∇1(X,Y,Z) = ∇1(Y,X,Z) − I Codazzi, (8)
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∇S(X,Y) = ∇S(Y,X) − II Codazzi (9)

for every X,Y,Z ∈ TxM, x ∈M, where R is the curvature tensor for ∇. There is an immersion f : M→ Rn+1 and its
equiaffine transversal vector field ξ such that ∇, 1, S are the induced connection, the second fundamental form and
the shape operator for the immersion f equipped with the transversal vector field ξ. The immersion is unique up to an
equiaffine transformation of Rn+1. If moreover ∇ν1 = 0 then ξ is the affine normal (up to a constant) for f .

For an affine sphere with S = λ id the fundamental equations reduce to the two equations

R(X,Y)Z = λ{1(Y,Z)X − 1(X,Z)Y},
(∇1)(X,Y,Z) = (∇1)(Y,X,Z). (10)

As a consequence of the fundamental theorem we have

Corollary 2.3. Let M be a manifold equipped with a metric tensor field 1, a torsion-free connection ∇ such that the
equations (10) are satisfied for some constant real number λ and∇ν1 = 0. For each point x of M there is a neighborhood
U of x and an immersion f : U→ Rn+1 which is an affine sphere whose shape operator is equal to λid .

Proof. It is sufficient to define S = λ id .

From now on we shall deal with the 2-dimensional case. For a connection on a 2-dimensional manifold
the curvature tensor is determined by its Ricci tensor. Namely we have

R(X,Y)Z = Ric (Y,Z)X − Ric (X,Z)Y (11)

for any vectors X,Y,Z ∈ TxM, x ∈M. Therefore the Gauss equation for a 2-dimensional sphere is equivalent
to the condition Ric = λ1. Hence we have

Corollary 2.4. Let a metric tenor 1 and a torsion-free connection ∇ be given on a two-dimensional manifold M. They
can be locally realized on an affine sphere if and only if the cubic form ∇1 is totally symmetric, Ric = λ1 for some
constant real number λ and ∇ν1 = 0.

3. Affine connections, volume forms and the Ricci tensor

All connections considered in this paper are torsion-free. For any connection ∇ and a metric tensor field
1we denote by K the difference tensor, that is, KXY = ∇XY − ∇̂XY, where ∇̂ the Levi-Civita connection of 1.
Set K(X,Y) = KXY. Since both connections ∇ and ∇̂ are without torsion, K is symmetric for X,Y. The cubic
form ∇1 is symmetric if and only if K is symmetric relative to 1, i.e. 1(K(X,Y),Z) = 1(K(X,Z),Y) for every
X,Y,Z. Indeed, we have

(∇X1)(Y,Z) = (KX1)(Y,Z) = −1(K(X,Y),Z) − 1(Y,K(X,Z)).

Assume that the cubic form ∇1 is symmetric. Since

2∇Xν1 = tr 1(∇X1)(·, ·)ν1, (12)

the condition ∇ν = 0 is equivalent to the condition

tr 1(∇X1)(·, ·) = 0 (13)

for every X ∈ TM. Since

∇1(X,Y,Z) = −21(K(X,Y),Z), (14)

we have ∇ν1 = 0 if and only if and only if tr KX = 0 for every X.
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Recall that the divergence of X ∈ X(M) relative to a connection ∇ is defined as div ∇X = tr {Y → ∇YX}.
Recall also that for a torsion-free connection ∇ there is (locally) a volume form ν such that ∇ν = 0 if and
only if the Ricci tensor of ∇ is symmetric. A pair (∇, ν) is then called an equiaffine structure. For a fixed
coordinate system we have

(∇∂iν)(∂1, ..., ∂n) = ∂i(ν(∂1, ..., ∂n)) − ν(∇∂i∂1, ..., ∂n) − ... − ν(∂1, ...,∇∂i∂n)
= ∂i(ν(∂1, ..., ∂n)) − ν(∇∂1∂i, ..., ∂n) − ... − ν(∂1, ...,∇∂n∂i)
= ∂i(ν(∂1, ..., ∂n)) − (div ∇∂i)ν(∂1, ..., ∂n).

It follows that ∇ν = 0 if and only if ∂i(ln(ν(∂1, ..., ∂n))) = div ∇∂i. Assume now that ν1 is a volume form
determined by a metric tensor 1 (not necessarily positive definite). Then

ν1(∂1, ..., ∂n)2 = G,

where G = |det [1kl]| and 1kl = 1(∂k, ∂l) for 1 ≤ k, l ≤ n. Hence ∇ν1 = 0 if and only if div ∇∂i = (ln G)i/2 for
i = 1, ...,n.

Let Γi j be the Christoffel symbols of a connection ∇. In general, we have the following formula for the
Ricci tensor Ric of ∇

Ric (∂i, ∂ j) =

n∑
k=1

(Γk
i j)k − (D j)i + Λi j (15)

where Di = div ∇∂i and

Λi j =

n∑
k,l=1

[Γl
k jΓ

k
il − Γl

i jΓ
k
kl]. (16)

Since the connection is torsion-free, Λi j is symmetric for i, j. From now on we assume that M is 2-dimensional
and Ric is symmetric. Let ri j be the components of the Ricci tensor in a coordinate system. Then we have

Λ11 = Γ2
11Γ

1
12 + (Γ2

12)2
− Γ1

11Γ
2
12 − Γ2

11Γ
2
22,

Λ12 = Γ1
22Γ

2
11 − Γ1

12Γ
2
12,

Λ22 = (Γ1
21)2 + Γ2

12Γ
1
22 − Γ1

22Γ
1
11 − Γ2

22Γ
1
12,

(17)

(Γ2
12)1 = (Γ2

11)2 −Λ11 − r11,
(Γ1

12)1 = −(Γ2
12)2 + Λ12 + (D1)2 + r12,

(Γ1
22)1 = −(Γ2

22)2 + Λ22 + (D2)2 + r22,
(18)

D1 = Γ1
11 + Γ2

21,
D2 = Γ1

12 + Γ2
22.

(19)

Let 1 be a metric tensor field on M and ∇̂ its Levi-Civita connection. Let (x1, x2) be an isothermal
coordinate system for 1, that is, 122 = ε111, 111 = eϕ and 112 = 0 for some function ϕ and ε = ± depending
on the signature of 1. For an isothermal coordinate system we have

∇̂∂1∂1 =
ϕ1

2 ∂1 − ε
ϕ2

2 ∂2,
∇̂∂1∂2 =

ϕ2

2 ∂1 +
ϕ1

2 ∂2,
∇̂∂2∂2 = −ε

ϕ1

2 ∂1 +
ϕ2

2 ∂2.
(20)

The curvature κ of 1 is given by

κ = −
∆ϕ

2
. (21)
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Recall that for any function α we have

∆α =
α11 + εα22

eϕ
. (22)

Assume ∇ is a connection on M such that the cubic form ∇1 is totally symmetric. The difference tensor
K = ∇ − ∇̂ is symmetric relative to 1. For the isothermal coordinate system the symmetry is equivalent to
the conditions

K2
21 = εK1

22, K1
12 = εK2

11. (23)

Assume moreover that ∇ν1 = 0. Then div ∇∂1 = ϕ1 and div ∇∂2 = ϕ2. Since

ϕ1 = div ∇∂1 = Γ̂1
11 + K1

11 + Γ̂2
21 + K2

21,

ϕ2 = div ∇∂2 = Γ̂1
12 + K1

12 + Γ̂2
22 + K2

22,

we get

K1
11 = −K2

21, K2
2 = −K1

12. (24)

We see that among the functions Ki
jk, i, j, k = 1, 2, only two functions are independent. We choose the

functions K1
12 and K2

21. Using (17), (24) and (23), by a straightforward computation, one gets

Λ11 = ϕ1K2
21 − εϕ2K1

12 + 2[(K2
21)2 + ε(K1

12)2],
Λ12 = −ϕ1K1

12 − ϕ2K2
21,

Λ22 = ϕ2K1
12 − εϕ1K2

21 + 2[(K1
12)2 + ε(K2

21)2].
(25)

We have

1(K,K) =
4
eϕ

[ε(K1
12)2 + (K2

21)2]. (26)

In the theory of affine surfaces, the function 1
21(K,K) is called the Pick invariant and it is usually denoted

by J.
Formulas (18) for the Ricci tensor Ric = ri j of the connection ∇, after using (25), receive the following

form:

(K2
21)1 = −

ϕ11+εϕ22

2 + ε(K1
12)2

−ϕ1K2
21 + εϕ2K1

12 − 2[ε(K1
12)2 + (K2

21)2] − r11,
(K1

12)1 = −(K2
21)2 − ϕ1K1

12 − ϕ2K2
21 + r12,

(K2
21)1 =

ϕ11+εϕ22

2 + ε(K1
12)2

+εϕ2K1
12 − ϕ1K2

21 + 2ε[ε(K1
12)2 + (K2

21)2] + εr22.

(27)

When adding and subtracting the first and the last equalities we get the following system of equalities
equivalent to (27)

r11 + εr22 = −(ϕ11 + εϕ22) − 4[ε(K1
12)2 + (K2

21)2],
(K2

21)1 = ε(K1
12)2 + εϕ2K1

12 − ϕ1K2
21 + −r11+εr22

2 ,
(K1

12)1 = −(K2
21)2 − ϕ1K1

12 − ϕ2K2
21 + r12.

(28)

The first equality is the affine theorema egregium, that is, the equality

λ = κ − J, (29)

where λ = (tr 1Ric )/2.
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4. Proof of Theorem 1.1

Direct proofs of necessity of the condition (2) can be found, for instance, in [3] or [4]. The proof below
also gives the necessity, but we focus on the sufficiency of the condition. Assume that for a given 1 and
some constant λ the equality (2) is satisfied. By the fundamental theorem we are looking for a connection ∇
such that the cubic form ∇1 is symmetric, the Ricci tensor of ∇ is equal to λ1 and ∇ν1 = 0. Let ∇ = ∇̂+ K. As
in the previous section we will carry considerations for a fixed isothermal coordinate system for 1. Instead
of looking for a connection ∇ we will look for a tensor field K satisfying appropriate symmetry conditions
and the system of differential equations (28), where λ = r11+εr22

2eϕ . It will turn out that (2) is the integrability
condition for the system.

Since 1(K,K) should be non-zero, the tensor K should be non-zero. Suppose that K2
21 , 0. Set

L = ε(K1
12)2 + (K2

21)2, l =
K1

12

K2
21

. (30)

The two functions L and l determine the difference tensor K up to sign. This is sufficient for our
consideration because affine spheres go in pairs. More precisely, if 1, ∇ = ∇̂ + K, S = λ id constitute the
induced structure on an affine sphere then 1, ∇ = ∇̂ − K, S = λ id form the induced structure on another
affine sphere. It follows from the fact that for an affine sphere R = R, where R and R are the curvature
tensors for ∇ and ∇.

We now have

(K2
21)2 =

L
εl2 + 1

. (31)

Set r = λ1. The system (28) now becomes

2 L
eϕ = κ − λ,

(K2
21)1 = ε(K1

12)2 + εϕ2K1
12 − ϕ1K2

21,
(K1

12)1 = −(K2
21)2 − ϕ1K1

12 − ϕ2K2
21.

(32)

Note that the denominator in (31) is different than 0 if and only if L , 0, that is, by the first equality from
(32), if and only if κ − λ = 2L/eϕ , 0. Of course, we should define L =

(κ−λ)eϕ

2 . The function L is now given.
We want to prove that the system of the last two equations from (32) relative to unknown functions K1

12,
K2

21 has a solution. Using (30) and(32) we obtain

L1 = 2{ε(K1
12)1K1

12 + (K2
21)1K2

21}

= 2{ε[−(K2
21)2 − ϕ1K1

12 − ϕ2K2
21]K1

12
+[ε(K1

12)2 + εϕ2K1
12 − ϕ1K2

21]K2
21}

= 2{εl2(K2
21)2
− ϕ1L}

(33)

and consequently

L1

2L
=

l2
l2 + ε

− ϕ1. (34)

Similarly, using (30) and (32), we get

l1 =
(K1

12)1K2
21−(K2

21)1K1
12

(K2
21)2

=
[−(K2

21)2−ϕ1K1
12−ϕ2K2

21]K2
21−[ε(K1

12)2+[εϕ2K1
12−ϕ1K2

21]K1
12]

(K2
21)2

=
−

L2
2 −ϕ2L

(K2
21)2

(35)
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and consequently (by (31))

l1
l2 + ε

= −ε
L2

2L
− εϕ2. (36)

We have got the following system of differential equations relative to l

l1
l2+ε = −ε( 1

2 ln |L| + ϕ)2,
l2

l2+ε = ( 1
2 ln |L| + ϕ)1.

(37)

We have l1
l2+ε = F1 and l2

l2+ε = F2, where F = arc t1 l or F = ln | l−1
l+1 | depending on whether ε = 1 or −1. The

integrability condition for (37) is

−ε
(1

2
ln |L| + ϕ

)
22

=
(1

2
ln |L| + ϕ

)
11
,

which is equivalent to
(ln |L|)11 + ε(ln |L|)22

4eϕ
= −

ϕ11 + εϕ22

2eϕ
,

that is,
∆ ln |L| = 4κ.

The last condition is equivalent to

∆ ln
2|L|
eϕ

= 6κ, (38)

which is the desired condition (2).
Thus the system (37) has a solution l around any fixed point p ∈ M. As the initial condition we take

l(p) = β, where β can be any real number if ε = 1 and β2 , 1 if ε = −1 (which again is the condition J , 0).
From (31) and (30) we get K1

12 and K2
21. The other components of the tensor K are defined by using formulas

(23) and (24).
We shall now check that the obtained functions K1

12, K2
21 satisfy the last two equations of (32) if L =

ε(K1
12)2 + (K2

21)2. Using also the definition of l one gets

L1 = 2{ε(K1
12)1K1

12 + (K2
21)1K2

21}

(K2
21)2l1 = (K1

12)1K2
21 − (K2

21)1K1
12.

(39)

We have already checked that if we substitute the quantities (K1
12)1, (K2

21)1 by the right hand sides of the last
two formulas of (32), then we get the equalities. We shall now regard (39) as a system of algebraic linear
equations with unknowns (K1

12)1, (K2
21)1. The main determinant of (39) is equal to −2L , 0, hence the system

of equations has only one solution. It means that the functions K1
12, K2

21 satisfy the last two equations of (32).
It follows (by (28)) that the Ricci tensor of ∇ = ∇̂ + K satisfies the conditions Ric (∂1, ∂1) = εRic (∂2, ∂2) and
Ric (∂1, ∂2) = 0. Since the scalar curvature, say ρ, of ∇ satisfies the equality J + ρ = κ and we have J + λ = κ,
we see that Ric = λ1.

Remark 4.1. It is clear from the above proof that an affine sphere whose Blaschke metric is prescribed (and
satisfies the condition (2)) is not unique. First of all the function l can be prescribed at a point p. Different
functions l give different (non-equivalent modulo the affine special group acting on R3) affine spheres. Of
course, the difference tensors K and −K also give two different spheres if K , 0.
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5. Proofs of Corollaries 1.2 and 1.3

Assume first that 1 satisfies (1) and (x1, x2) is an isothermal coordinate system for 1 as in the previous
sections. Denote by ∆0 the Laplacian for the coordinate system, that is, ∆0α = α11 + εα22 for a function α.
This is the Laplacian for the flat metric tensor field 10 adapted to the coordinate system, that is, 10(∂1, ∂1) = 1,
10(∂1, ∂2) = 0, 10(∂2, ∂2) = ε, where ε = ±1. The equality (1) is equivalent to the equality

∆0[ln |κ − λ| + 3ϕ] = 0. (40)

Hence

ln |κ − λ| + 3ϕ = h (41)

for some ∆0-harmonic function h. Thus κ − λ = ±eh−3ϕ. Since κ = −
∆0ϕ
2eϕ (by (21) and (22)), the last equality

is equivalent to the equality

−
∆0c
2ec = ∓2 − 2λe

h−3c
2 , (42)

where c = h − 2ϕ. If λ = 0 then the last equality becomes

−
∆0c
2ec = ±2. (43)

It means, by (21) and (22), that c is such a function that that the metric 1 = ec10 has constant Gaussian
curvature ±2. Note that the metric 1 is defined only locally, that is, an a domain of an isothermal coordinate
map.

Proof of Corollary 1.2. Let f : M→ R3 be an improper locally strongly convex affine sphere with nowhere-
vanishing Pick invariant, equivalently, with nowhere vanishing curvature κ of the Blaschke metric 1. The
atlas of isothermal coordinates is analytic. The Levi-Civita connection for 1 is locally symmetric and
therefore analytic. It follows that its curvature tensor is analytic and so is its Ricci tensor. The Ricci tensor
is equal to ±21. Hence 1 is analytic and c is analytic. If 1 is definite then a 1o-harmonic function is analytic.
It follows that ϕ = h−c

2 is analytic and consequently 1 = e
h−3c

2 1 = e
h−c

2 10 is analytic.
We have proved that the Blaschke metric 1 is analytic. An improper affine sphere can be locally regarded

as a graph of some function and its affine normal is a constant vector. More precisely, f is, up to an affine
transformation of R3, given locally by

R2
⊃ U 3 (x1, x2)→ (x1, x2,Ψ(x1, x2)) ∈ R3,

where Ψ is a smooth function and its affine normal is equal to (0, 0, 1). We have

1(∂i, ∂ j) = Ψi j.

Since 1 is analytic, so is Ψ. The proof of Corollary 1.2 is completed.

Proof of Corollary 1.3. Assume now that h is an arbitrary harmonic function on some open set U ⊂ R2 and
c is such a function on U that 1 = ec10 has constant Gaussian curvature 2 or −2. Of course, such a function
exists because there exist metrics of any constant Gaussian curvature. Set ϕ = h−c

2 . By the consideration
from the beginning of this section one sees that the equality (41) is satisfied for κ = −

∆0ϕ
2eϕ .
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