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Abstract. The weighted vertex PI index of a graph G is defined by

PIw(G) =
∑

e=uv∈E(G)

(dG(u) + dG(v))(nu(e|G) + nv(e|G))

where dG(u) denotes the vertex degree of u and nu(e|G) denotes the number of vertices in G whose distance
to the vertex u is smaller than the distance to the vertex v. A graph is a cactus if it is connected and all
its blocks are either edges or cycles. In this paper, we give the upper and lower bounds on the weighted
vertex PI index of cacti with n vertices and s cycles, and completely characterize the corresponding extremal
graphs.

1. Introduction and background

Let G = (V,E) be a simple connected graph with vertex set V(G) and edge set E(G). For vertices u, v ∈ V,
the distance d(u, v) is defined as the length of the shortest path between u and v in G. The length of a path
or a cycle is the number of its edges. The minimum degree of a graph G is denoted by δ(G). For more
notations and terminologies that will be used, see [1].

A topological index is a real number related to a graph. It must be a structural invariant, i.e., it
is preserved by every graph automorphisms. Several topological indices have been defined and many
of them have found applications as means to model chemical, pharmaceutical and other properties of
molecules.

The Wiener index is the first topological index based on graph distances [41] which was proposed
in 1947. The Wiener index is defined as the sum of all distances between vertices of the graph under
consideration. For more information on the Wiener index, the chemical applications of the index and its
history, see [6, 7, 10, 11]. The PI index was proposed by Khadikar [16] in 2000. The PI index is the unique
topological index related to equidistance of vertices or parallelism of edges. It is very simple to calculate
and has discriminating power in some molecular graphs. The detailed applications of PI indices between
chemistry and graph theory are investigated in [5, 13, 17, 18, 21, 25–27, 30, 31, 37, 44].

For each edge e = uv ∈ E(G), let nu(e|G) be the number of vertices in G whose distance to the vertex u
is smaller than the distance to the vertex v, and similarly, let nv(e|G) be the number of vertices in G whose
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distance to the vertex v is smaller than the distance to the vertex u. The vertex PI index of a graph G,
proposed in [19], is defined as

PIv(G) =
∑

e=uv∈E(G)

[nu(e|G) + nv(e|G)].

There are nice results regarding vertex PI index in the study of computational complexity and the intersection
between graph theory and chemistry, see [3, 14, 19, 20, 22, 23, 32, 33, 36, 40]. One of the oldest degree-based
graph invariants are the first Zagreb index [4, 9, 42], defined as follows:

M1(G) =
∑

u∈V(G)

d 2
G (u),

where dG(u) denotes the vertex degree of u. The vertex PI index, Zagreb indices and their variants have
been used to study molecular complexity, chirality, in QSPR and QSAR analysis, see [9, 18].

In order to increase diversity for bipartite graphs, Ilić and Milosavljević [15] introduced the weighted
vertex PI index as follows:

PIw(G) =
∑

e=uv∈E(G)

(dG(u) + dG(v))(nu(e|G) + nv(e|G)).

For any edge e of a bipartite graph, nu(e|G) + nv(e|G) = n. Therefore the diversity of the vertex PI index is
not satisfying for bipartite graphs. The inequality PIv(G) ≤ n ·m holds for any graph G with n vertices and
m edges [19], with equality holds if and only if G is bipartite. This is why the weighted vertex PI index was
introduced. If G is a bipartite graph, then

PIw(G) = n
∑

u∈V(G)

d 2
G (u).

This means that the weighted vertex PI index is directly connected to the first Zagreb index.
In [15], the authors show that among all connected graphs with n vertices, PIw(G) ≥ n(4n − 6), with

equality holds if and only if G � Pn, and PIw(G) ≤ 8
27 n4, with equality holds if and only if 3|n and G � K n

3 ,
n
3 ,

n
3
.

In the same paper, the exact expressions for the weighted vertex PI index of the Cartesian product of
graphs are also given. In [43] and [28], bounds and the extremal graphs on the weighted vertex PI index of
connected unicyclic and bicyclic graph are given respectively. In [34], the exact formula for the weighted
vertex PI index of corona product of two connected graphs is obtained. In [35], the exact formulas for the
weighted vertex PI index of generalized hierarchical product and join of two graphs are obtained. In [29],
the weighted vertex PI index of (n,m)-graphs with given diameter was studied.

A graph is a cactus if it is connected and all its blocks are either edges or cycles, i.e. any two of its cycles
have at most one common vertex. Up to now, many results were obtained concerning the cacti between
chemistry and graph theory. Chen [2] gave the first three smallest Gutman indices among the cacti. Feng
and Yu [8] established the cacti with the smallest hyper-Wiener indices. Li et al. [24] determined sharp
upper and lower bounds of the cacti for Zagreb indices. Wang and Kang [38] found the bounds of Harary
index for the cacti. Wang and Tan [39] characterized the extremal cacti having the largest Wiener and
hyper-Wiener indices. In [40], Wang et al. determine the extremal graphs with greatest and smallest vertex
PI index among all cacti with a fixed number of vertices and pendent vertices.

Motivated by the results of chemical indices and their applications, it may be interesting to characterize
the cacti with greatest and smallest weighted vertex PI indices.

Denote by CA(n, s) the set of cacti of order n and with s cycles. Let Sn be the star of order n. Denote by
S+

n the graph obtained by inserting one new edge between the leaves of the star Sn. Let S+,s
n be the graph

of order n obtained by inserting s independent new edges between the leaves of a star Sn, see Figure 1. In
particular, S+

n is just S+,1
n .
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n-2s-1

Figure 1: The graph S+,s
n . It has s triangles and n − 2s − 1 pendent edges.

In the following theorem, among all the graphs in CA(n, s), the upper bound on the weighted vertex PI
index and the corresponding extremal graph are given.

Theorem 1.1. For any graph G ∈ CA(n, s) where n ≥ 2s + 1,

PIw(G) ≤ n3
− n2 + 6s

with the equality holds if and only if G � S+,s
n .

Let T (n, s) be the set of graphs such that T (n, s) ⊂ CA(n, s) and for any graph G ∈ T (n, s), it satisfy the
following four conditions: (1) for any vertex v ∈ V(G), dG(v) ∈ {2, 3}; (2) if dG(v) = 3 for some vertex v ∈ V(G),
v should be in some cycle of G; (3) all cycles of G are of odd length; (4) for a cycle C in G, if there are two or
more 3-vertices in C, the cycle C is a 3-cycle. See Figure 2.

Figure 2: Three graphs in T (14, 4).

In the following theorem, among all the graphs in CA(n, s), the lower bound on the weighted vertex PI
index and the corresponding extremal graph are given.

Theorem 1.2. For any graph G ∈ CA(n, s) where n ≥ 3s,

PIw(G) ≥ 4n2 + (5s − 8)n − s − 2

with the equality holds if and only if G ∈ T (n, s).

For any cut edge e = uv of a connected graph G where |G| = n, nu(e|G) + nv(e|G) = n. So the following
lemma, which is similar to the corresponding property of matching energy [12], can be got.



G. Ma et al. / Filomat 33:18 (2019), 5977–5989 5980

Lemma 1.3. Suppose that G is a connected graph and T an induced subgraph of G such that T is a tree and T is
connected to the rest of G only by a cut vertex v. If T is replaced by a star of the same order, centered at v, then the
weighted vertex PI index of G increases (unless T is already such a star). If T is replaced by a path of the same order,
with one end at v, then the weighted vertex PI index of G decreases (unless T is already such a path).

In Section 2, Theorem 1.1 is proved. In Section 3, Theorem 1.2 is proved.

2. The upper bound

In this section, the upper bound on the weighted vertex PI index of the graphs in CA(n, s) and the
corresponding extremal graphs are given, that is, Theorem 1.1 is proved.
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Figure 3: PIw(G1) < PIw(G2) < PIw(G3).

Lemma 2.1. Suppose that H1 and H2 are two graphs with vi ∈ V(Hi) for i = 1, 2. Suppose Pn,Tn,Sn are path, tree
and star of the same order n such that Tn � Pn and Tn � Sn. Let G1 be the graph obtained by identifying the vertex v1
with one end of Pn and identifying the vertex v2 with the other end of Pn. Let G2 be the graph obtained by identifying
the vertex v1 with one vertex of Tn and identifying the vertex v2 with another vertex of Tn. Let G3 be the graph
obtained by identifying the vertex v1 and v2 as a new vertex v, and then identifying the vertex v with the center of Sn.
See Figure 3. Then we have

PIw(G1) < PIw(G2) < PIw(G3).

Proof. Because Tn � Pn and Tn � Sn, n ≥ 4.
For any edge e = v1v′1 ∈ E(H1), nv1 (e|G1) + nv′1 (e|G1) = nv1 (e|G2) + nv′1 (e|G2) = nv1 (e|G3) + nv′1 (e|G3) and

dG1 (v1) + dG1 (v′1) ≤ dG2 (v1) + dG2 (v′1) < dG3 (v1) + dG3 (v′1). So∑
e=v1v′1∈E(H1)

(dG1 (v1) + dG1 (v′1))(nv1 (e|G1) + nv′1 (e|G1))

≤

∑
e=v1v′1∈E(H1)

(dG2 (v1) + dG2 (v′1))(nv1 (e|G2) + nv′1 (e|G2))

<
∑

e=v1v′1∈E(H1)

(dG3 (v1) + dG3 (v′1))(nv1 (e|G3) + nv′1 (e|G3)).

Similarly, for any edge e = v2v′2 ∈ E(H2), nv2 (e|G1) + nv′2 (e|G1) = nv2 (e|G2) + nv′2 (e|G2) = nv2 (e|G3) + nv′2 (e|G3)
and dG1 (v2) + dG1 (v′2) ≤ dG2 (v2) + dG2 (v′2) < dG3 (v2) + dG3 (v′2). So∑

e=v2v′2∈E(H2)

(dG1 (v2) + dG1 (v′2))(nv2 (e|G1) + nv′2 (e|G1))

≤

∑
e=v2v′2∈E(H2)

(dG2 (v2) + dG2 (v′2))(nv2 (e|G2) + nv′2 (e|G2))

<
∑

e=v2v′2∈E(H2)

(dG3 (v2) + dG3 (v′2))(nv2 (e|G3) + nv′2 (e|G3)).
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For any edge e = xy ∈ E(Pn), nx(e|G1) + ny(e|G1) = |G1|. Similarly, for any edge e = xy ∈ E(Tn),
nx(e|G2)+ny(e|G2) = |G2|, and for any edge e = xy ∈ E(Sn), nx(e|G3)+ny(e|G3) = |G3|. Note that |G1| = |G2| = |G3|.
So ∑

e=xy∈E(Pn)

(dG1 (x) + dG1 (y))(nx(e|G1) + ny(e|G1))

<
∑

e=xy∈E(Tn)

(dG2 (x) + dG2 (y))(nx(e|G2) + ny(e|G2))

<
∑

e=xy∈E(Sn)

(dG3 (x) + dG3 (y))(nx(e|G3) + ny(e|G3)).

It is now straightforward to show that PIw(G1) − PIw(G2) < 0.
Similarly, we can prove PIw(G2) < PIw(G3). The proof completes.
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Figure 4: PIw(G1) < PIw(G2).

Lemma 2.2. Suppose that H is a graph with v ∈ V(H) and Cr is a cycle of order r. Let H(v)Cr be the graph obtained
by identifying the vertex v with one vertex of Cr. Let G1 be the graph obtained from H(v)Cr by attaching at vertices of
Cr except v some pendent edges. Let G2 be the graph obtained from G1 by moving all pendent edges, which are rooted
on vertices of Cr except v, on v. Note that |G1| = |G2|. See Figure 4. Then we have

PIw(G1) < PIw(G2).

Proof. Suppose |G1| = |G2| = n. In G1 and G2, suppose the vertices of Cr are v0(v)v1v2 · · · vr−1 subsequently.
In G1, suppose there are ti pendent edges rooted on vi for 1 ≤ i ≤ r − 1 and

∑r−1
i=1 ti = t.

Note that dG1 (v) = dG2 (v) − t. For any edge e = vv′ ∈ E(H), dG1 (v) + dG1 (v′) < dG2 (v) + dG2 (v′) and
nv(e|G1) + nv′ (e|G1) = nv(e|G2) + nv′ (e|G2). So∑

e=vv′∈E(H)

(dG1 (v) + dG1 (v′))(nv(e|G1) + nv′ (e|G1)) −
∑

e=vv′∈E(H)

(dG2 (v) + dG2 (v′))(nv(e|G2) + nv′ (e|G2))

< 0.

In G1, for the pendent edge e = viv′i rooted on vi (1 ≤ i ≤ r − 1), dG1 (vi) + dG1 (v′i ) = ti + 2 + 1 = ti + 3 and
nvi (e|G1) + nv′i (e|G1) = n.

r−1∑
i=1

∑
e=viv′i∈E(G1)

(dG1 (vi) + dG1 (v′i ))(nvi (e|G1) + nv′i (e|G1)) = n
r−1∑
i=1

ti(ti + 3)
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In G2, for the pendent edge e = vv′ which is not in E(H) and rooted on v, dG2 (v) + dG2 (v′) = dG1 (v) + t + 1
and nv(e|G2) + nv′ (e|G2) = n.∑

e=vv′∈E(G2)\E(H),dG2 (v′)=1

(dG2 (v) + dG2 (v′))(nv(e|G2) + nv′ (e|G2)) = tn(dG1 (v) + t + 1).

First suppose r is even. For the edge e = vivi+1 (0 ≤ i ≤ r − 1) of Cr in G1, dG1 (vi) + dG1 (vi+1) = ti + ti+1 + 4
when 1 ≤ i ≤ r − 2, dG1 (v0) + dG1 (v1) = dG1 (v) + t1 + 2 when i = 0 and dG1 (vr−1) + dG1 (v0) = dG1 (v) + tr−1 + 2
when i = r − 1. Because r is even, nvi (e|G1) + nvi+1 (e|G1) = n.

r−1∑
i=0

(dG1 (vi) + dG1 (vi+1))(nvi (e|G1) + nvi+1 (e|G1))

= 2n(dG1 (v) + t + 2(r − 1)).

For the edge e = vivi+1 (0 ≤ i ≤ r − 1) of Cr in G2, dG2 (vi) + dG2 (vi+1) = 4 when 1 ≤ i ≤ r − 2, dG2 (v0) +
dG2 (v1) = dG2 (v) + 2 when i = 0 and dG2 (vr−1) + dG2 (v0) = dG2 (v) + 2 when i = r − 1. Because r is even,
nvi (e|G2) + nvi+1 (e|G2) = n.

r−1∑
i=0

(dG2 (vi) + dG2 (vi+1))(nvi (e|G2) + nvi+1 (e|G2))

= 2n(dG2 (v) + 2(r − 1))
= 2n(dG1 (v) + t + 2(r − 1)).

Now we are ready to compare PIw(G1) with PIw(G2).

PIw(G1) − PIw(G2) =
∑

e=vv′∈E(H)

(dG1 (v) + dG1 (v′))(nv(e|G1) + nv′ (e|G1))

+

r−1∑
i=1

∑
e=viv′i∈E(G1)

(dG1 (vi) + dG1 (v′i ))(nvi (e|G1) + nv′i (e|G1))

+

r−1∑
i=0

(dG1 (vi) + dG1 (vi+1))(nvi (e|G1) + nvi+1 (e|G1))

−

∑
e=vv′∈E(H)

(dG2 (v) + dG2 (v′))(nv(e|G2) + nv′ (e|G2))

−

∑
e=vv′∈E(G2)\E(H),dG2 (v′)=1

(dG2 (v) + dG2 (v′))(nv(e|G2) + nv′ (e|G2))

−

r−1∑
i=0

(dG2 (vi) + dG2 (vi+1))(nvi (e|G2) + nvi+1 (e|G2))

< 0.

When r is odd, PIw(G1) < PIw(G2) can be proved similarly since the only difference being that

nvi (e|G1) + nvi+1 (e|G1) = nvi (e|G2) + nvi+1 (e|G2) = n − 1.

The proof completes.
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Figure 5: PIw(G1) < PIw(G2).

Lemma 2.3. Suppose that H is a graph with v ∈ V(H) where dH(v) ≥ 2 and Cr is a cycle of order r where r ≥ 4. Let
G1 = H(v)Cr be the graph obtained by identifying the vertex v with one vertex of Cr. Let G2 be the graph obtained
from G1 by replacing Cr by C3 and r − 3 pendent edges. Note that |G1| = |G2|. See Figure 5. Then we have

PIw(G1) < PIw(G2).

Proof. Suppose |G1| = |G2| = n without of generality. Note that dG1 (v) = dG2 (v) − (r − 3). For any edge
e = vv′ ∈ E(H), dG1 (v) + dG1 (v′) < dG2 (v) + dG2 (v′) and nv(e|G1) + nv′ (e|G1) = nv(e|G2) + nv′ (e|G2). So∑

e=vv′∈E(H)

(dG1 (v) + dG1 (v′))(nv(e|G1) + nv′ (e|G1))

−

∑
e=vv′∈E(H)

(dG2 (v) + dG2 (v′))(nv(e|G2) + nv′ (e|G2))

< 0.

When r is odd, for the edges in Cr of G1,

r−1∑
i=0

(dG1 (vi) + dG1 (vi+1))(nvi (e|G1) + nvi+1 (e|G1))

= 4(r − 1) + (n − 1)[2(dG1 (v) + 2) + 4(r − 3)].

When r is even, for the edges in Cr of G1,

r−1∑
i=0

(dG1 (vi) + dG1 (vi+1))(nvi (e|G1) + nvi+1 (e|G1))

= n[2(dG1 (v) + 2) + 4(r − 2)].

For any pendent edge vv′ rooted on v in G2, dG2 (v) + dG2 (v′) = dG2 (v) + 1 = dG1 (v) + r − 2 and nv(e|G2) +
nv′ (e|G2) = n. So∑

e=vv′∈E(G2)\E(H),dG2 (v′)=1

(dG2 (v) + dG2 (v′))(nv(e|G2) + nv′ (e|G2)) = (r − 3)n(dG1 (v) + r − 2).

For the edges in C3 of G2,

2∑
i=0

(dG2 (vi) + dG2 (vi+1))(nvi (e|G2) + nvi+1 (e|G2))

= 4 × 2 + 2(dG2 (v) + 2)(n − 1)
= 8 + 2(dG1 (v) + r − 1)(n − 1).
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It is now straightforward to show that PIw(G2) − PIw(G1) > 0. The proof completes.
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Figure 6: PIw(G1) < PIw(G2).

Lemma 2.4. Suppose that H is a graph with v ∈ V(H) and Cr is a cycle of order r. Let H(v)Cr be the graph obtained
by identifying the vertex v with one vertex of Cr. Let G1 be the graph obtained from H(v)Cr by attaching at vertices of
Cr except v some triangles and (or) some pendent edges. Let G2 be the graph obtained from G1 by moving all triangles
and pendent edges, which are rooted on vertices of Cr except v, on v. Note that |G1| = |G2|. See Figure 6. Then we
have

PIw(G1) < PIw(G2).

We leave to the reader the proof of Lemma 2.4, since it is similar to the proof of Lemma 2.2.
Now we are ready to give the proof of Theorem 1.1.

Proof. [Proof of Theorem 1.1] Via Lemma 1.3, Lemma 2.1, Lemma 2.2, Lemma 2.3 and Lemma 2.4, for any
graph G ∈ CA(n, s), PIw(G) ≤ PIw(S+,s

n ) and the equality holds if and only if G � S+,s
n .

It is easy to compute that PIw(S+,s
n ) = n3

− n2 + 6s. The proof completes.

3. The lower bound

In this section the lower bound on the weighted vertex PI index of the graphs in CA(n, s) and the
corresponding extremal graphs are given, that is, Theorem 1.2 is proved.

H u v C
r

G
1

H u v C
r

G
2

Figure 7: PIw(G1) > PIw(G2).

Lemma 3.1. Suppose that H is a graph with u ∈ V(H) and Cr is a cycle of order r with v ∈ V(Cr). Let H(u)Ps+1(v)Cr
be the graph obtained by identifying the vertex u with one end of Ps+1 and identifying the vertex v with the other end
of Ps+1. Let G1 be the graph obtained from H(u)Ps+1(v)Cr by attaching at vertices of Cr except v some paths, and the



G. Ma et al. / Filomat 33:18 (2019), 5977–5989 5985

total length of these paths is t with t ≥ 1. Let G2 = H(u)Ps+t+1(v)Cr. Note that |G1| = |G2|. See Figure 7. Then we
have

PIw(G1) > PIw(G2).

Proof. Suppose |G1| = |G2| = n. Denote the vertices of Cr by v(v0), v1, v2, · · · , vr−1 subsequently. For simplicity,
suppose that s ≥ 1 and there is a path of length ti rooted on vi (1 ≤ i ≤ r − 1) where ti ≥ 1 and

∑r−1
i=1 ti = t.

In G1, we consider the edges in the paths rooted on vi (1 ≤ i ≤ r− 1) and the edges in Cr subsequently. In
G2, we consider the t new added edges in the path connecting H and Cr, and the edges in Cr subsequently.
When r is odd,

PIw(G1) − PIw(G2) = 4tn +

r−1∑
i=0

(dG1 (vi) + dG1 (vi+1))(nvi (e|G1) + nvi+1 (e|G1))

− 4tn −
r−1∑
i=0

(dG2 (vi) + dG2 (vi+1))(nvi (e|G2) + nvi+1 (e|G2))

= 6[
r−1∑
i=1

(ti + 1) +

r−1∑
i=1

(n − ti − 1)] − [4(r − 1) + (n − 1)(5 × 2 + 4(r − 3))]

> 0.

When r is even, PIw(G1) > PIw(G2) can be proved similarly. This completes the proof.

H u v C
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1

H u

v

G
2

r-3

Figure 8: PIw(G1) ≥ PIw(G2). The equality holds if and only if r is odd.

Lemma 3.2. Suppose that H is a graph with u ∈ V(H) where dH(u) ≥ 2 and Cr is a cycle of order r where r ≥ 4. Let
G1 be the graph such that one end of a path Ps+1 is connected with u of H and the other end of Ps+1 is connected with
one vertex of Cr. Let G2 be the graph such that one end of a path Ps+r−2 is connected with u of H and the other end of
Ps+r−2 is connected with one vertex of C3. Note that |G1| = |G2|. See Figure 8. Then we have

PIw(G1) ≥ PIw(G2),

with the equality holds if and only if s ≥ 1 and r is odd.

Proof. Suppose |G1| = |G2| = n. Denote the vertices of Cr in G1 by v0(v), v1, v2, · · · , vr−1 subsequently. Denote
the vertices of C3 in G2 by v0(v), v1, v2 subsequently.

First suppose s ≥ 1. In G1, we consider the edges in Cr. In G2, we consider the new added r− 3 edges in
the path connecting H and C3, and the edges in C3 subsequently.

PIw(G1) − PIw(G2) =

r−1∑
i=0

(dG1 (vi) + dG1 (vi+1))(nvi (e|G1) + nvi+1 (e|G1))

− 4(r − 3)n −
2∑

i=0

(dG2 (vi) + dG2 (vi+1))(nvi (e|G2) + nvi+1 (e|G2)).
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When r is even,

PIw(G1) − PIw(G2) = [2 × 5 + 4(r − 2)]n − 4(r − 3)n − 2 × 5(n − 1) − 4 × 2
> 0.

When r is odd,

PIw(G1) − PIw(G2) = [2 × 5 + 4(r − 3)](n − 1) + 4(r − 1) − 4(r − 3)n − 2 × 5(n − 1) − 4 × 2
= 0.

When s = 0, H and Cr share a common vertex u. PIw(G1) > PIw(G2) can be proved similarly in this case. The
proof completes.

H

u
0

v

G
1

C
r

H

u
0

v

G
2

C
r

x x

Figure 9: PIw(G1) > PIw(G2).

Lemma 3.3. Let Cr be a cycle with r ≥ 4 and u0,u1, · · · ,ur−1 are the vertices of Cr subsequently. Let H0 be a cactus
graph such that δ(H0) ≥ 2 and all cycles in H0 are triangles. Suppose v, x are two vertices of V(H0) such that v, x are
in some triangles of H0 and dH0 (v) = dH0 (x) = 2. Let G1 be the graph obtained by connecting u0 and v via a path (the
length of the path ≥ 0), and identifying ui where i , 0 with one vertex of a graph H. Let G2 be the graph obtained
from G1 by deleting the edge uiw for any w ∈ V(H) and adding the edge xw. See Figure 9. Then we have

PIw(G1) > PIw(G2).

Proof. Suppose |G1| = |G2| = n. In G1, suppose 1 < i < r − 1 and the other vertices of Cr except u0,ui are
of degree 2 for simplicity. Suppose H0 be a triangle for simplicity and v, x, y are the three vertices of H0.
Suppose the path connecting u0 and v is of length ≥ 1 for simplicity. Note that dG1 (ui) = dG2 (x).

Suppose the number of vertices which are equidistant with v, y in G2 is t1 and the number of vertices
which are equidistant with x, y in G2 is t2. Note that t1 = |H| and t1 + t2 = n − 1.

When r is even, we consider the edges uiui−1,uiui+1, vx, vy, xy respectively.

PIw(G1) − PIw(G2) = 2n[(dG1 (ui) + 2)] + 5(n − 1) + 5(n − 1) + 4 × 2
− [2n(2 + 2) + (dG2 (x) + 3)(n − 1) + 5(n − t1) + (dG2 (x) + 2)(n − t2)]
= 2ndG1 (ui) + 14n − 2 − [2ndG2 (x) + 13n − dG2 (x) + 2 − (dG2 (x) − 3)t2]
= n + dG2 (x) + (dG2 (x) − 3)t2 − 4
> 0.

When r is odd and i < { r−1
2 ,

r+1
2 }, we consider the edges uiui−1,uiui+1,u r−1

2
u r+1

2
, the edge in Cr whose two
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vertices have the same distance to ui, vx, vy, xy respectively.

PIw(G1) − PIw(G2)
= 2[dG1 (ui) + 2](n − 1) + 4(n − 4) + 4(n − |H|) + 5(n − 1) + 5(n − 1) + 4 × 2
− [2 × 4(n − 1) + 4(n − |H| − 3) + 4(n − 1) + (dG2 (x) + 3)(n − 1) + 5(n − t1)
+ (dG2 (x) + 2)(n − t2)]
= 2ndG1 (ui) + 14n − 2dG1 (ui) − 6 − [2ndG2 (x) + 13n − dG2 (x) − 6 − (dG2 (x) − 3)t2]
= n − dG2 (x) + (dG2 (x) − 3)t2

> 0.

When r is odd and i ∈ { r−1
2 ,

r+1
2 }, suppose i = r−1

2 . We consider the edges u r−1
2

u r−3
2

, u r−1
2

u r+1
2

, u0ur−1, vx, vy, xy
respectively. Note that n − t2 = |H| + 1.

PIw(G1) − PIw(G2)
= [dG1 (ui) + 2](n − 1) + [dG1 (ui) + 2](n − 4) + 5(n − |H|) + 5(n − 1) + 5(n − 1) + 4 × 2
− [4(n − 1) + 4(n − |H| − 3) + 5(n − 1) + (dG2 (x) + 3)(n − 1) + 5(n − t1)
+ (dG2 (x) + 2)(n − t2)]
= n − |H| + 7 + (t2 − 4)dG2 (x) − 3t2

> 0.

The last inequality holds since t2 > 4. The proof completes.

In Lemma 3.3, for the cycle Cr in G1 or G2, if there is a graph connecting with Cr via u j (1 ≤ j ≤ r− 1 and
j , i) where u j is a cut vertex, the conclusion is still correct.

( )a

( )b

( )c

Figure 10: PIw(G1) ≥ PIw(G2). The equality holds if and only if r = 3.

Now we are ready to give the proof of Theorem 1.2.

Proof. [Proof of Theorem 1.2] Let G ∈ CA(n, s). From Lemma 2.1, Lemma 3.1, Lemma 3.2 and Lemma 3.3,
we can assume that δ(G) ≥ 2 and all cycles of G are triangles. If G ∈ T (n, s), nothing needs to be proved. If
G < T (n, s), G can be dealt with via the following transformations:
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(1) If there are two triangles share a common vertex in G, borrow an edge from other place of G and
then insert the edge between the two triangles. See (a) of Figure 10.

(2) If there are t (t ≥ 3) triangles share a common vertex in G, move one triangle to a 2-vertex of one
triangle and then repeat the above step t − 3 times. Now for any vertex which is shared by two triangles,
repeat (1). See (b) of Figure 10.

(3) If there is a t-vertex (t ≥ 3) in G which is not in any triangle, move the first edge, which is adjacent to
the above vertex, to a 2-vertex of one triangle and then repeat the above step t − 3 times. See (c) of Figure
10.

Other cases not mentioned can be dealt with similarly.
It is easy to see that PIw(G) decreases after the above transformations and G ∈ T (n, s) at last.
For any graph G ∈ T (n, s), It is easy to compute that PIw(G) = 4n2 + (5s − 8)n − s − 2. The proof

completes.
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