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Abstract. In this paper, we investigate the weighted B-distances of infinite sequences. The general
neighbourhood sequences were introduced for measuring distances in digital geometry (Zn), and the
theory was recently extended for application to sequences. By assigning various weights to the elements
of the sequences the concept is further generalized. An algorithm is presented which provides a shortest
path between two sequences. Formula is also provided to calculate the weighted B-distance of any two
sequences with a neighbourhood sequence B and a weight sequence. There are several neighbourhood
sequences, which do not generate metrics. We prove a necessary and sufficient condition for a B-distance to
define a generalized metric space above the sequences. Moreover, our results can be applied if the elements
of the sequences used with various weights. In case of weight functions used B-distances we present also
the metric conditions.

1. Introduction

Finite and infinite sequences are widely used in mathematical analysis, calculus and in various other
fields, see, e.g., [6].

The Hamming-distance (H-distance) of two same-length sequences can be extended to infinite sequences
over infinite alphabets (Z, or R), see [11]. Other possibilities are the supremum norm (sup-distance) (see
[7]) and the inf-distance, but this latter is rarely used.

The so-called L-distances are widely used in functional analysis, measure theory and in statistical
methods also [1, 2, 5]. In most cases for finite sequences (or with other terminology, for points in finite,

let us say, n dimension), they are defined as d(p, q) = (
n∑

i=1
|p(i) − q(i)|l)

1
l , depending on the value of l. For

infinite sequences they are not pleasant, but using a weight-sequence we can use them [2]. (The used weight
sequence is usually non-negative, monotonous decreasing and its sum is finite in this case.) There is also a
possibility to use the weighted sup-distance.

In this paper, we mainly work with distances with integer values, they are based on neighbour relations
among the sequences and various neighbourhood sequences (B).
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The theory of neighbourhood sequences (n-sequences, for short) comes from digital geometry, but they
can also be applied for infinite sequences [11] and for (formal) languages [8]. In digital geometry, finite
integer sequences are used according to the dimension of the used digital space. The neighbourhood
relations are natural; there are various neighbours of a point (sequence). The theory is, then, extended to
infinite dimension in [4, 9, 10]. By dropping the criteria of usage of integer values in a sequence, the theory
is further extended from digital spaces to (infinite) sequences [11].

By the help of an n-sequence B = (b(i))∞i=1 the B-distance of sequences p, q is defined as follows [11]. The
length of a shortest path from p to q is taken, such that at the i-th step, we may move from a sequence to
another if and only if they are b(i)-neighbours.

In [9] we have presented an algorithm which provides a shortest path between digital points, both in
case of finite and infinite dimensional spaces. It is easy to find an n-sequence B, even a periodic one, such
that the B-distance does not provide (generalized) metrics on the set of sequences. In [9] we have proved
a necessary and sufficient condition for distance functions based on n-sequences to define a generalized
metric in Z∞. One of the purposes of this paper to generalize these concepts from Z∞ to R∞.

In this paper, we generalize the concept of B-distances of sequences of [11] by the following reasons:
Our previous theory works very well if the elements of the sequences play equal roles. However, in some
cases, for instance, the tails have less important role than the first elements of the sequences. In these cases,
the weighted sup-distance or generally, the weighted L-distances were used [2]. We show here that the
theory of B-distances can also be extended. The structure of this paper is as follows. In the next section,
we give our notation and we recall the basic concepts. In the third section, we present our new definitions
by extending and generalizing the previous ones: we introduce the weighted Bc-distances by using non-
negative weight-sequences c. In section four, an algorithm is presented to solve the shortest path problem
between any two sequences. In section five, a formula is provided to compute weighted B-distances and
in section six we describe some properties of weighted B-distances including a proof for necessary and
sufficient conditions for the n-sequence B to define a (generalized) metric over the set (i.e., the space) of
sequences using also a weight sequence. In the last section we summarize our results.

2. Preliminaries

In this section we recall some basic concepts and our notations (that is similar to [11]).
Throughout the paper R∞ will denote the set of all sequences.
In this paper, similarly to [11], we use generalized types of convergence: k-convergences and k-sequences.

Definition 2.1. A sequence p ∈ R∞ is k-convergent (for a fixed non-negative value k), if there exists n ∈ N such
that for all i, j with i > n and j > n we have |p(i) − p( j)| ≤ k.

Definition 2.2. A sequence p ∈ R∞ is k-sequence (for a fixed positive value of k) if there exists a natural number n
such that for all i ∈N if i > n then |p(i)| < k.

From here we will use the terms k-convergence and k-sequence with arbitrary non-negative integer
values of k, however our definition works for all (not necessary integer) non-negative value of k.

Now, for sake of completeness, we recall some basic definitions about distance functions.

Definition 2.3. A function d : R∞×R∞ → R∪{∞} is called a generalized metric onR∞, if it satisfies the following
conditions:

a) ∀p, q ∈ R∞: d(p, q) ≥ 0, and d(p, q) = 0 if and only if p = q (positive definiteness),

b) ∀p, q ∈ R∞: d(p, q) = d(q, p), (symmetry)

c) ∀p, q, r ∈ R∞: d(p, q) + d(q, r) ≥ d(p, r) (triangle inequality).
Moreover, if for every possible pair of p, q ∈ R∞ the distance d(p, q) is finite, then it is a metric.
If instead of point a) we have only
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a′) ∀p, q ∈ R∞: d(p, q) ≥ 0, and d(p, p) = 0,
then the function d : R∞ ×R∞ → R ∪ {∞} is a semi-metric on R∞.

For measuring distances of sequences, the supremum norm is used in [7]. The Hamming-distance could
also be an option (mostly when the two sequences differ only in finitely many places). The H-distance is a
discrete distance.

Definition 2.4. The sup-distance of the sequence p and q is given by

d(p, q; sup) = sup(|p(i) − q(i)|).

The Hamming-distance of p and q is
d(p, q; H) =

∑
p(i),q(i)

1.

The inf-distances of p and q is
d(p, q; in f ) = in f (|p(i) − q(i)|).

The discrete metric over the set of sequences is the following:

d(p, q; disc) =

{
0, if p = q
1, if p , q.

Both d(p, q; sup) and d(p, q; H) are generalized metrics over R∞. The inf-distance is rarely used since only
properties b) and a’) of Definition 2.3 hold. The discrete metric is the simplest metric.

One of our most important investigations is introducing the neighbourhood relation among sequences.

Definition 2.5. Let p and q be two sequences in R∞. Let k be a non-negative integer. The sequences p and q are
k-neighbours, if the following two conditions hold:

• |p(i) − q(i)| ≤ 1 for all i ∈N, and

•
∑

i∈N,p(i),q(i)
1 ≤ k.

Definition 2.6. The infinite sequence B = (b(i))∞i=1 (b(i) ∈ N ∪ {∞}) is called a neighbourhood sequence (or shortly
n-sequence.). If for some l ∈N, b(i) = b(i + l) holds for every i ∈N, then B is called periodic (with period l).

For investigating distances of sequences, we will use their difference sequences in the following way.

Notation 2.7. Let p and q be two sequences. Put w(i) =
∣∣∣p(i) − q(i)

∣∣∣ for all i, and w = (w(i))∞i=1. The sequence w is
called the (absolute) difference of p and q.

The up-integer-difference-sequence (uids) u of p and q is defined by the top (i.e., ceiling) of the elements of their
absolute difference as u(i) = dw(i)e = d|p(i) − q(i)|e, where dxe is the upper integer part of the real number x, i.e.
dxe = inf{k|k ∈ Z, k ≥ x}.

Definition 2.8. Let p and q be two sequences and B = (b(i))∞i=1 be an n-sequence. A finite sequence of sequences
Π(p, q; B) of the form p = p0, p1, . . . , pm = q, where pi−1, pi ∈ R∞ are b(i)-neighbours for 1 ≤ i ≤ m, is called a B-path
from p to q. We write m = |Π(p, q; B)| for the length of the path.

We should note the following about the existence of B-paths.

Remark 2.9. It is possible that there are no B-paths between two sequences. For example, if the set {|p(i)−q(i)| : i ∈N}
–, i.e. the set of elements of the difference sequence of them – is unbounded, then there are no neighbourhood sequence
B, for which a B-path would exist between the sequences p = (p(i))∞i=1 and q = (q(i))∞i=1.

Now, we recall the B-distance of two sequences.
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Definition 2.10. Let p, q ∈ R∞ and B be an n-sequence. If there is no B-path between p and q, then we put
d(p, q; B) = ∞. Otherwise, denote by Π∗(p, q; B) a shortest path (i.e., a B-path with minimal length) from p to q, and
set d(p, q; B) = |Π∗(p, q; B)|. We call d(p, q; B) the B-distance of the sequences p and q.

It is evident that using the definition of B-distance above, it is positive definite (point a) of Definition
2.3) for any n-sequence B.

Definition 2.11. Let B1 and B2 be two neighbourhood sequences. We say that B1 is faster than B2, if

d(p, q; B1) ≤ d(p, q; B2) for all p, q ∈ R∞.

We denote this relation by B1 w
∗ B2.

Originally, the relation w∗ was introduced by Das [3] in the two dimensional digital space, and by
Fazekas et al. in [4] for higher dimensions. We will use it for infinite sequences (R∞).

For later use we need to introduce some further notations.

Definition 2.12. Let m ∈N and B = (b(i))∞i=1 an n-sequence. Put

b(m)(i) = min(b(i),m) and B(m) =
(
b(m)(i)

)∞
i=1
.

The sequence B(m) is called the m-limited sequence of B. Denote by fk(i) the i-th subsums of the k-limited sequence of
B, i.e., put

fk(i) =


i∑

j=1
b(k)( j), if i ≥ 1,

0, if i = 0.

Definition 2.13. Let B = (b(i))∞i=1 an n-sequence. The sequence B( j) = (b(i))∞i= j is called the j-shifted n-sequence of
B.

In the next section we generalize the concept of B-distances.

3. Definition of weighted B-distances

In this section, by introducing weight sequences, we generalize the notion of B-distances. Note that
in our description, we do not use every restriction for the elements of the weight sequence that is usually
used.

Definition 3.1. The sequence c = (c(i))∞i=1 is called a weight sequence if c(i) ∈ R ∪ {∞}, and c(i) ≥ 0 for all i ∈N.

Observe that we can use non-descending sequences and/or we allow that the sum of the sequences go
to infinity, moreover we allow the symbol ∞ in our weight-sequence. (Our restriction is only that each
element is non-negative.)

The used L-distances (including the sup-distance) with weight-sequence are defined in the form below.

Definition 3.2. Let c be a weight-sequence which does not contain the symbol∞. The L-distance with c is:

dc(p, q; L j) =

 ∞∑
i=1

c(i)|p(i) − q(i)| j


1
j

.

For special case j = 1: the formula

dc(p, q; L1) =

∞∑
i=1

c(i)|p(i) − q(i)|

is used. In the case j = ∞ we get the weighted sup-distance as

dc(p, q; L∞) =
∞

sup
i=1

(c(i)|p(i) − q(i)|).
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One can ask the following question about our results presented in [11]: Why have we defined the
neighbourhood relation and allowed to change a value in a step by at most 1? The answer is that it
looks simple and natural, but here we refine the definition. We can change the elements of the sequence
depending on their place in the sequence and on the used weight function, as we present it in the next
definitions.

Definition 3.3. The sequence d is the inverse weight-sequence of c if for all i ∈ N, d(i) = 1
c(i) . Here we use d(i) = 0,

when c(i) = ∞; and d(i) = ∞, when c(i) = 0.

We will use the elements of the weight-sequences as the weights of the members of the sequences at the
same position, i.e., the more important places in the sequences have higher weight values. (The distance of
sequences p and q is not less if we use lower weight-values in the weight-sequence.)

Definition 3.4. The sequences p and q are kc-neighbours for k ∈ N with the weight-sequence c (let its inverse
weight-sequence be d) if the following conditions hold:

• |p(i) − q(i)| ≤ d(i) for all i ∈N, and
•

∑
∀i∈N,p(i),q(i)

1 ≤ k.

We define the Bc-paths and Bc-distances of the sequences in the same way as they were presented in
Definitions 2.8 and 2.10, respectively, using the neighbourhood relation of Definition 3.4.

Remark 3.5. There is an alternative way to define the neighbourhood relations with weight-sequences on R∞. For a
k ∈N and a weight sequence c let the sequences p and q be kc-neighbours if

• c(i)|p(i) − q(i)| ≤ 1 for all i and,
•

∑
∀i,c(i)(p(i)−q(i)),0

1 ≤ k.

The difference (between the neighbourhood relations defined in Definition 3.4 and this alternative neighbourhood
relations) occurs when the weight-sequence c contains the element 0. In the first case, the distance of any two distinct
sequences is greater than 0, i.e., they are not 0-neighbours. With the second type of criteria the distance of the
sequences is 0 if they differ only in such elements (p(i) , q(i)) for those c(i) = 0 (i.e., the position has 0 weight, and
thus 0 importance). In that case our distance function is a semi-metric if the triangle inequality holds for it. (For the
condition for n-sequences that satisfy the triangle inequality see Theorem 6.2.) We can get a (generalized) metric by
grouping the sequences with distance 0 to the same class. In this way, we get (finite or infinite) sub-sequences of the
original ones deleting the i-th elements from all elements of R∞, c and of course d, for all i for which c(i) = 0. After
deletion of these items the alternative definition coincides with Definition 3.4, because, in this case, for all remained
indices i the condition c(i) > 0 holds. Thus, if c(i) > 0 for all i, then both definitions are the same and for any
n-sequence B the properties a) and b) of Definition 2.3 hold.

For using the relation of Definition 3.4 we will define the weighted (absolute) difference sequence and
the weighted uids of two sequences, using the weight-sequence c in analogous way as they are given in
Notation 2.7.

Definition 3.6. Let p and q be two sequences and d be the inverse weight-sequence of a weight sequence c. Put

w′(i) =


0, if p(i) = q(i)

min(1, |p(i) − q(i)|), if d(i) = ∞
∞, if d(i) = 0 and p(i) , q(i)

|p(i)−q(i)|
d(i) , otherwise;

for all i, and let wc = (w′(i))∞i=1. The sequence wc is called the weighted (absolute) difference of p and q with respect to
the weight sequence c.

The weighted up-integer-difference-sequence (wuids) uc = (u′(i))∞i=1 of p and q is defined as the ceiling (top) of the
elements of their weighted absolute difference, i.e., u′(i) = dw′(i)e.
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It is obvious that the sequence uc contains integers which give us the value of the number of steps we
need to change the corresponding element of p to reach the corresponding element of q. Therefore, if there
is an element c(i) = ∞ (it is equivalent to d(i) = 0) of the weight-sequence c and p and q differs at the i-th
element (p(i) , q(i)), then dc(p, q; B) = ∞ for any n-sequence B. The elements of the weight sequence mean
how important are the values of the sequences at these places. In our terminology, the more important
values play more important role in the distance. The weight c(i) = ∞ means that the i-th elements are so
important that if they differs, then the sequences are in infinite distances from each-other.

4. Shortest weighted B-paths between sequences

Now we recall Algorithm 1 from [11] and we present its variation for the case of weighted n-sequences.
Algorithm 1

Input: An n-sequence B = (b(i))∞i=1, a weight sequence c (and its inverse d) and p, q ∈ R∞, such that
dc(p, q; B) < ∞.

• step 1. Let w(0) be the absolute difference of p and q as defined in Notation 2.7, and wc
(0) = (w′(i))∞i=1 be

the weighted difference of p and q as in Definition 3.6, t(i) = s1n(p(i) − q(i)) i ∈ N, and put j = 0 and
Π = (p).

• step 2. If w( j)(i) = 0 for every i, then goto step 8, else set j = j + 1.

• step 3. Put w( j) = w( j−1) and wc
( j) = wc

( j−1).

• step 4. If b( j) is finite, then select the largest b( j) entries of wc
( j), and the respective values in w( j). If

b( j) is infinite, then select all the entries of w( j) and w( j)
c .

• step 5. For each selected w( j)(i) if w( j)(i) ≥ d(i), then let w′( j)(i) = w′( j−1)(i)− 1 and w( j)(i) = w( j−1)(i)− d(i)
else let w( j)(i) = w′( j)(i) = 0.

• step 6. Append to the path Π the sequence x j defined by x j(i) = q(i) + w( j)(i)t(i) for all i.

• step 7. Goto 2.

• step 8. Output Π as a minimal Bc-path between p and q, and j as the length of this path.

Using Algorithm 1 we get the answer for the shortest path problem using by n-sequences and weight-
sequences together. It can be shown similarly to the proof of Theorem 1 in [11] with the definition of wc,
that this algorithm is also correct. (We have only new scales for the elements depending on the values of
c(i).) The algorithm works if the Bc-distance of sequences p and q is finite. The theorem below states a
necessary and sufficient condition for Bc-distance to be finite, and, thus, allows to check this property before
one applies the algorithm.

Theorem 4.1. The Bc-distance of two arbitrary sequences p and q is finite for an n-sequence B including the symbol
∞ k times if and only if their weighted difference wc is a k-sequence. (And their distance is infinite if the number of
∞ is k, and wc is not k-sequence.)

Proof. This theorem is a consequence of Theorem 2 in [11] using the re-scaled property of wc.

5. Formula for B-distances with weight sequences

For calculating Bc-distances we have the following theorem. For the calculation we use the sequence
vc = (v′(i))∞i=1, which has the same elements as the uids uc, sorting by non-decreasing order (i.e. the multiset
of elements of uc is the same as for vc and for all i < j the condition v′(i) ≥ v′( j) holds), as the algorithm
changes those values of uc first, which have greatest values among them.
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Theorem 5.1. Let B( j) the j-limited sequence of the n-sequence B and c is a weight-sequence. The weighted Bc-distance
of p, q ∈ R∞ is

dc(p, q; B) = max
i∈N
{d(i)

c (p, q)},

where

d(i)
c (p, q) = max

h|
i∑

k=1

v′(k) >
h−1∑
k=1

b(i)(k)

 .
Proof. It is obvious by proof of Proposition 5 of [11] and the definition of vc.

The effect of using a weight-sequence is to ‘re-scale’ the difference of the sequences.
We consider the items of p and q by help of their difference sequence w and the given weight-sequence

c.

Lemma 5.2. Let p and q be arbitrary sequences inR∞, and let the n-sequence B1 be faster than the n-sequence B2 (i.e.,
B1 w

∗ B2). Using a weight-sequence c we have the following statement. If dc(p, q; B1) = ∞, then dc(p, q; B2) = ∞.

Proof. It is evident.

We have the following properties using the weight-sequence c.

Proposition 5.3. For the weight sequence c(i) = 0 for all i, and the n-sequence (1)∞i=1 we get the H-distance of the
sequences p and q for all possible p, q ∈ R∞:

d0(p, q; (1)∞i=1) = d(p, q; H).

Using the weight-sequence c = 0 = (0)∞i=1 and an n-sequence B for which b(1) = ∞ the distance Bc is similar to
the discrete metric.

d0(p, q; (∞, ...)) = d(p, q; disc).

Using weight-sequences it is possible that the Bc-distance of the sequences p and q is finite, however,
their absolute difference sequence w is divergent. More precisely, we have the following theorem about the
role of the weight-sequences.

Theorem 5.4. The Bc-distance of p, q ∈ R∞ is finite if and only if the B-distance of the sequences o = (0)∞i=1 and wc –
defined by Definition 3.6 – is finite.

Proof. It is obvious.

In the case above, the difference-sequence w is called a kc-sequence with the weight sequence c and with
a suitable value of k based on Theorem 4.1.

6. Metric properties of distances

Sometimes it seems to be strange to call a distance function as a ‘distance’ without satisfying the
conditions to be a metric. Since for B-distances the metric conditions are not fulfilled automatically, in this
section we analyze their metric properties.

Lemma 6.1. If B1 is faster than B2, then
dc(q, r; B1) ≤ dc(q, r; B2)

for any weight-sequence c.

Proof. The weight-sequence is nothing else, but a re-scaling, therefore using Algorithm 1 the statement
follows.
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Now we extend Theorem 3 from [11] to the case of weighted distances, and we prove this more general
case. (Using weight sequence c(i) = 1 for all i, this proof can also be considered as the proof of Theorem 3
of [11].)

Theorem 6.2. The weighted distance function based on an n-sequence B and weight-sequence c generates a generalized
metric space on the set R∞, if and only if B(i) is faster than B for all i ∈N.

Proof. First, we prove sufficiency. The validity of properties a) of Definition 2.3 is trivial; it can be seen, e.g.,
following Algorithm 1. Indeed, the distance dc(p, q; B) depends only on the weighted absolute-difference wc
of p and q, and on B. (As we noted after Theorem 5.1) As the definition of w and so wc are symmetric in p
and q, thus dc(p, q; B) = dc(q, p; B) for arbitrary p, q ∈ R∞ and for arbitrary n-sequence B and weight-sequence
c. It is clear that the distance is zero if and only if the difference sequences (both w and wc) of the sequences
has only zero elements, i.e., if the sequences are the same. Otherwise, the distance is a positive integer or
infinite. Therefore, all distances generated by an n-sequence satisfy these two properties independently of
the weight-sequence c. Hence, it is enough to deal with the triangle inequality.

Now we prove that property c) is true if and only if B(i) is faster than B for all i ∈ N. Let p, q, r ∈ R∞

be three sequences, such that their distances are finite with the weight-sequence c. Then, we can find a
Bc-path Π between p and r which is a concatenation of a minimal Bc-path between p and q, and a minimal
(B(i))c-path between q and r, where i = dc(p, q; B) + 1, and B(i) is the i-shifted sequence of B. Hence,

|Π| = dc(p, q; B) + dc(q, r; B(i)).

The assumption that B(i) is faster than B means that

dc(q, r; B(i)) ≤ dc(q, r; B)

(by Lemma 6.1). Thus,
|Π| ≤ dc(p, q; B) + dc(q, r; B).

By the definition of the Bc-distance we have

dc(p, r; B) ≤ |Π| ,

hence
dc(p, r; B) ≤ dc(p, q; B) + dc(q, r; B).

Now, suppose that not all the distances are finite between p, q and r. If dc(p, q; B) = ∞ or dc(q, r; B) = ∞ then
c) is trivially valid. Assume, that dc(p, r; B) = ∞, but dc(p, q; B) = s < ∞. If there would be a (B(s))c-path
between q and r, then there would also be a Bc-path between p and r. (We could concatenate a shortest
Bc-path between p and q, with length s, and a (B(s))c-path between q and r.) As the shifted sequence B(s) is
faster than B, by Lemma 5.2 there is no Bc-path between q and r. So, dc(q, r; B) = ∞, and c) is valid in this
case, too.

Now, we prove necessity by an indirect method. Assume that for some j ∈ N, B( j) is not faster than B,
but the Bc-distance has property c). In this case, by Definition 2.3 there exist two sequences p, q ∈ R∞ and
k ∈N such that dc(p, q; B( j)) = k, and dc(p, q; B) < k. Define the elements of sequence r ∈ R∞ in the following
way:

r(i) = q(i) + (−1)s1(p(i)−q(i))
· c(i) · tl(i),

where

s1(p(i) − q(i)) =

{
1, if p(i) ≥ q(i),
0, in other case.

l(i) is a permutation ofN such a way, that w′ (l(i)) ≥ w′ (l(n)) for all l(i) < l(n). (It is a non-decreasing ordering
of wc, as vc was at Theorem 5.1.) The values tl(i) are the number of elements of B among the first j ones such
that their values are at least l.
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Actually, we use the (n-th) greatest value of tl(i) (which is the number of items at least value 1 (n) among
the first j elements of B) calculating the value of r(i), for which i is the index of the (n-th) greatest element
of the sequence wc.

By our algorithm, it is easy to see that dc(q, r; B) = j and q is an element of one of the shortest paths
between p and r. Then,

dc(p, r; B) = dc(q, r; B) + dc(p, q; B( j)) = j + k,

as a shortest Bc-path between p and r can be obtained as a concatenation of a shortest (B( j))c-path from p to
q and a shortest Bc-path from q to r. Thus,

dc(p, q; B) + dc(q, r; B) < k + j = dc(p, r; B).

But we assumed that d(p, q; B) has property c). This is a contradiction, and the proof is complete.

Consequence 6.3. If a Bc-distance is a generalized metric, and the symbol ∞ occurs in B, then it occurs infinitely
many times.

Theorem 6.4. A Bc-distance is a metric if and only if B(i) is faster than B for all i, ∞ is an element of B and the
weight-sequence c contains only finitely many non-zero elements.

Proof. By Theorem 6.2 we know that a Bc-distance is a generalized metric iff each B(i) is faster than B. We
need to prove about the finiteness. Assume that B contains the symbol ∞ and the weight function c has
only finitely many non-zero elements. Let k ∈N such that b(k) = ∞, and there are no j ∈N for which j < k
and b( j) = ∞. Using Algorithm 1 after the k-th step there are only finitely many non-zero items in w(k)

c and

in w(k). The sum of the ceiling of these values, i.e.,
(
∞∑

i=1
u′(k)(i)

)
is a natural number. It will be decreasing

by a positive integer value in each of the steps. Therefore the Bc distance will be finite for every pair of
sequences.

For proving the other direction, the distance dc

(
(0)∞i=1, (i)

∞

i=1; B
)

is infinite if B does not contain the symbol
∞ (independently of the used weight-sequence c).

The Bc distance of the sequences p and q is infinite (independently of the used n-sequence B), if the
sequence wc of p and q is divergent. The sequence wc is divergent if and only if its subsequence keeping
only the values for which p(i) , q(i) is divergent. But, those elements of wc are given by

w′(i) = c(i)|p(i) − q(i)| = c(i)w(i).

Since p and q are arbitrary pair of sequences w can be arbitrary (we can restrict our analysis to w with only
non-negative values). For surely non-divergent sequence wc = (c(i)w(i))∞i=1 independently of w the following
condition is needed: there exist some j ∈N such that c(i) = 0 for all i > j, which was to be proven.

To check the weight sequences and the n-sequences that the distance defined by them is a (generalized)
metric or not one can use Proposition 7 from [11] together with the previous result, Theorem 6.4.

Consequence 6.5. If a B-distance (or a Bc-distance) is a generalized metric, then the Bk-distances (or the Bk
c-distances)

using limited n-sequences are generalized metrics (and not necessarily metrics) for all k ∈N.

7. Conclusion

In paper [11], we have investigated B-distances of sequences, which depend on the elements of sequences
with equal weight. These distance functions are positive definite, i.e., the distance is non-negative and it is
zero only in case when the sequences are the same. We have defined k-convergent and k-sequences based
on properties of their tails.

In the recent paper, using various weight-sequences instead of the constant (1)∞i=1 sequence, we have
investigated the weighted Bc-distances, in which we can use various weight-functions and n-sequences
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to get wide variety of distances. Using them we can get finite distances between sequences which are
divergent.

We have presented an algorithm which solve the shortest path problem between any two the sequences
(having a finite distance). A formula to calculate a Bc-distance of any two sequences has also been derived.
We have shown the connection between the existence of a finite path between the sequences p and q and
the k-sequence property of their (weighted) absolute difference sequence. We have proven a necessary
and sufficient condition for the n-sequence B to provide a generalized metric over the set of sequences
and a necessary and sufficient condition for the weight-sequence and the n-sequence for defining metric
distances.

Moreover, our definitions and results work with finite sequences also. Calculating with two finite
sequences we need only the assumption that their length are the same (or we can use 0 as the other
elements of the respective infinite sequences).

It is an interesting future work to study the spheres in these spaces for various radii r (r ∈N).
We should note here that B-distances were also defined for formal languages in [8], and other types

of combination of weights and n-sequences were presented for the square grid in [12–14, 16] and for
three-dimensional grids in [15, 17].
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