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Abstract. In this paper we give a new characterization of generalized Browder’s theorem by consid-
ering equality between the generalized Drazin-meromorphic Weyl spectrum and the generalized Drazin-
meromorphic spectrum. Also, we generalize Cline’s formula to the case of generalized Drazin-meromorphic
invertibility under the assumption that AkBkAk = Ak+1 for some positive integer k.

1. Introduction and Preliminaries

Throughout this paper, let N and C denote the set of natural numbers and complex numbers, respec-
tively. Let B(X) denote the Banach algebra of all bounded linear operators acting on a complex Banach space
X. For T ∈ B(X), we denote the spectrum of T, null space of T, range of T and adjoint of T by σ(T), ker(T),
R(T) and T∗, respectively. For a subset A of C the set of accumulation points of A and the set of interior
points of A are denoted by acc(A) and int(A), respectively. Let α(T) = dim ker(T) and β(T) = codim R(T)
be the nullity of T and deficiency of T, respectively. An operator T ∈ B(X) is called a lower semi-Fredholm
operator if β(T) < ∞. An operator T ∈ B(X) is called an upper semi-Fredholm operator if α(T) < ∞ and R(T)
is closed. The class of all lower semi-Fredholm operators (upper semi-Fredholm operators, respectively)
is denoted by φ−(X) (φ+(X), respectively). An operator T is called semi-Fredholm if it is upper or lower
semi-Fredholm. For a semi-Fredholm operator T ∈ B(X), the index of T is defined by ind (T):= α(T) − β(T).
The class of all Fredholm operators is defined by φ(X) := φ+(X) ∩ φ−(X). The class of all lower semi-Weyl
operators (upper semi-Weyl operators, respectively) is defined by W−(X) = {T ∈ φ−(X) : ind (T) ≥ 0}
(W+(X) = {T ∈ φ+(X) : ind (T) ≤ 0}, respectively). An operator T ∈ B(X) is called Weyl if T ∈ φ(X) and ind
(T) = 0. The lower semi-Fredholm, upper semi-Fredholm, Fredholm, lower semi-Weyl, upper semi-Weyl and Weyl
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spectra are defined by

σl f (T) := {λ ∈ C : λI − T is not lower semi-Fredholm},
σu f (T) := {λ ∈ C : λI − T is not upper semi-Fredholm},
σ f (T) := {λ ∈ C : λI − T is not Fredholm},
σlw(T) := {λ ∈ C : λI − T is not lower semi-Weyl},
σuw(T) := {λ ∈ C : λI − T is not upper semi-Weyl},
σw(T) := {λ ∈ C : λI − T is not Weyl}, respectively.

A bounded linear operator T is said to be bounded below if it is injective and R(T) is closed. The approximate
point and surjective spectra are defined by

σa(T) := {λ ∈ C : λI − T is not bounded below},
σs(T) := {λ ∈ C : λI − T is not surjective}, respectively.

For T ∈ B(X) the ascent denoted by p(T) is the smallest non negative integer p such that kerTp = kerTp+1.
If no such integer exists we set p(T) = ∞. For T ∈ B(X) the descent denoted by q(T) is the smallest non
negative integer q such that R(Tq) = R(Tq+1). If no such integer exists we set q(T) = ∞. By [1, Theorem 1.20]
if both p(T) and q(T) are finite, then p(T) = q(T).

An operator T ∈ B(X) is called Drazin invertible if there exist a positive integer n and S ∈ B(X) such that

ST = TS, Tn+1S = Tn and STS = S.

Also, by [1, Theorem 1.132] T is Drazin invertible if and only if p(T) = q(T) < ∞. An operator T ∈ B(X) is
called left Drazin invertible if p(T) < ∞ and R(Tp+1) is closed. An operator T ∈ B(X) is called right Drazin
invertible if q(T) < ∞ and R(Tq) is closed. An operator T ∈ B(X) is called upper semi-Browder if it is an
upper semi-Fredholm and p(T) < ∞. An operator T ∈ B(X) is called lower semi-Browder if it is a lower
semi-Fredholm and q(T) < ∞. We say that an operator T ∈ B(X) is Browder if it is upper semi-Browder and
lower semi-Browder. The lower semi-Browder, upper semi-Browder and Browder spectra are defined by

σlb(T) : = {λ ∈ C : λI − T is not lower semi-Browder},
σub(T) : = {λ ∈ C : λI − T is not upper semi-Browder},
σb(T) : = {λ ∈ C : λI − T is not Browder}, respectively.

Clearly, every Browder operator is Drazin invertible.
An operator T ∈ B(X) is said to possess the single-valued extension property (SVEP) at λ0 ∈ C if for every

neighbourhood V of λ0 the only analytic function f : V → X which satisfies the equation (λI − T) f (λ) = 0
is the function f = 0. If an operator T has SVEP at every λ ∈ C, then T is said to have SVEP. Moreover, the
set of all points λ ∈ C such that T does not have SVEP at λ is an open set contained in the interior of σ(T).
Therefore, if T has SVEP at each point of an open punctured disc D \ {λ0} centered at λ0, T also has SVEP
at λ0.

p(λI − T) < ∞⇒ T has SVEP atλ

and
q(λI − T) < ∞⇒ T∗ has SVEP atλ.

An operator T ∈ B(X) is called Riesz if λI − T is Browder for all λ ∈ C \ {0}. An operator T ∈ B(X) is called
meromorphic if λI − T is Drazin invertible for all λ ∈ C \ {0}. Clearly, every Riesz operator is meromorphic.
A subspace M of X is said to be T-invariant if T(M) ⊂ M. For a T-invariant subspace M of X we define
TM : M → M by TM(x) = T(x), x ∈ M. We say T is completely reduced by the pair (M,N) (denoted by
(M,N) ∈ Red(T)) if M and N are two closed T-invariant subspaces of X such that X = M ⊕N.

An operator T ∈ B(X) is called semi-regular if R(T) is closed and ker(T) ⊂ R(Tn) for every n ∈ N. An
operator T ∈ B(X) is called nilpotent if Tn = 0 for some n ∈ N and called quasi-nilpotent if ||Tn

||
1
n → 0, i.e

λI − T is invertible for all λ ∈ C \ {0}.
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For T ∈ B(X) and a non negative integer n, define T[n] to be the restriction of T to Tn(X). If for some non
negative integer n the range space Tn(X) is closed and T[n] is Fredholm (a lower semi Fredholm, an upper
semi Fredholm, a lower semi Browder, an upper semi Browder, Browder, respectively) then T is said to be
B-Fredholm (a lower semi B-Fredholm, an upper semi B-Fredholm, a lower semi B-Browder, an upper semi
B-Browder, B-Browder, respectively). For a semi B-Fredholm operator T (see [6]), the index of T is defined
as index of T[n]. The lower semi B-Fredholm, upper semi B-Fredholm, B-Fredholm, lower semi B-Browder, upper
semi B-Browder and B-Browder spectra are defined by

σlsb f (T) := {λ ∈ C : λI − T is not lower semi B-Fredholm},
σusb f (T) := {λ ∈ C : λI − T is not upper semi B-Fredholm},
σb f (T) := {λ ∈ C : λI − T is not B-Fredholm},
σlsbb(T) := {λ ∈ C : λI − T is not lower semi B-Browder},
σusbb(T) := {λ ∈ C : λI − T is not upper semi B-Browder},
σbb(T) := {λ ∈ C : λI − T is not B-Browder}, respectively.

By [1, Theorem 3.47] an operator T ∈ B(X) is upper semi B-Browder (lower semi B-Browder, B-Browder,
respectively) if and only if T is left Drazin invertible (right Drazin invertible, Drazin invertible, respectively).

An operator T ∈ B(X) is called a lower semi B-Weyl (an upper semi B-Weyl, respectively) if it is a lower
semi B-Fredholm (an upper semi B-Fredholm, respectively) having ind (T) ≥ 0 (ind (T) ≤ 0, respectively).
An operator T ∈ B(X) is called B-Weyl if it is B-Fredholm and ind (T) = 0. The lower semi B-Weyl, upper semi
B-Weyl and B-Weyl spectra are defined by

σlsbw(T) := {λ ∈ C : λI − T is not lower semi B-Weyl},
σusbw(T) := {λ ∈ C : λI − T is not upper semi B-Weyl},
σbw(T) := {λ ∈ C : λI − T is not B-Weyl}, respectively.

It is known that (see [6, Theorem 2.7]) T ∈ B(X) is B-Fredholm (B-Weyl, respectively) if there exists (M,N) ∈
Red(T) such that TM is Fredholm (Weyl, respectively) and TN is nilpotent. Recently, (see [15, 17]) have
generalized the class of B-Fredholm and B-Weyl operators and introduced the concept of pseudo B-Fredholm
and pseudo B-Weyl operators. An operator T ∈ B(X) is said to be pseudo B-Fredholm (pseudo B-Weyl,
respectively) if there exists (M,N) ∈ Red(T) such that TM is Fredholm (Weyl, respectively) and TN is quasi-
nilpotent. The pseudo B-Fredholm and pseudo B-Weyl spectra are defined by

σpB f (T) := {λ ∈ C : λI − T is not pseudo B-Fredholm},
σpBw(T) := {λ ∈ C : λI − T is not pseudo B-Weyl}, respectively.

An operator T is said to admit a generalized kato decomposition (GKD) if there exists a pair (M,N) ∈ Red(T)
such that TM is semi-regular and TN is quasi-nilpotent. In the above definition if we assume TN to be
nilpotent, then T is said to be of Kato Type (see [14]). An operator is said to admit a Kato-Riesz decomposition
(GKRD), if there exists a pair (M,N) ∈ Red(T) such that TM is semi-regular and TN is Riesz.

Recently, Živković-Zlatanović and Duggal [16] introduced the notion of generalized Kato-meromorphic
decomposition. An operator T ∈ B(X) is said to admit a generalized Kato-meromorphic decomposition (GKMD),
if there exists a pair (M,N) ∈ Red(T) such that TM is semi-regular and TN is meromorphic. For T ∈ B(X), the
generalized Kato-meromorphic spectrum is defined by

σ1KM(T) := {λ ∈ C : λI − T does not admit a GKMD}.

Recall that an operator T ∈ B(X) is said to be Drazin invertible if there exists S ∈ B(X) such that TS = ST,
STS = S and TST − T is nilpotent. This definition is equivalent to the fact that there exists a pair (M,N) ∈
Red(T) such that TM is invertible and TN is nilpotent. Koliha [13] generalized this concept by replacing the
third condition with TST − T is quasi-nilpotent. An operator is said to be generalized Drazin invertible if
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there exist a pair (M,N) ∈ Red(T) such that TM is invertible and TN is quasi-nilpotent. The generalized Drazin
spectrum is defined by

σ1D(T) := {λ ∈ C : λI − T is not generalized Drazin invertible}.

Recently, Živković-Zlatanović and Cvetković [14] introduced the concept of generalized Drazin-Riesz in-
vertible by replacing the third condition with TST − T is Riesz. They proved that an operator T ∈ B(X) is
generalized Drazin-Riesz invertible if and only if there exists a pair (M,N) ∈ Red(T) such that TM is invert-
ible and TN is Riesz. An operator T ∈ B(X) is called generalized Drazin-Riesz bounded below (surjective,
respectively) if there exists a pair (M,N) ∈ Red(T) such that TM is bounded below (surjective, respectively)
and TN is Riesz. The generalized Drazin-Riesz bounded below, generalized Drazin-Riesz surjective and generalized
Drazin-Riesz invertible spectra are defined by

σ1DRJ (T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz bounded below},
σ1DRQ(T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz surjective},

σ1DR(T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz invertible}, respectively.

Also, they introduced the notion of operators which are direct sum of a Riesz and a Fredholm (lower
(upper) semi-Fredholm, lower (upper) semi-Weyl, Weyl). An operator is called generalized Drazin-Riesz
Fredholm (generalized Drazin-Riesz lower (upper) semi-Fredholm, generalized Drazin-Riesz lower (upper)
semi-Weyl, generalized Drazin-Riesz Weyl, respectively) if there exists (M,N) ∈ Red(T) such that TM is
Fredholm (lower (upper) semi-Fredholm, lower (upper) semi-Weyl, Weyl, respectively) and TN is Riesz.
The generalized Drazin-Riesz lower (upper) semi-Fredholm, generalized Drazin-Riesz Fredholm, generalized Drazin-
Riesz upper(lower) semi-Weyl and generalized Drazin-Riesz Weyl spectra are defined by

σ1DRφ− (T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz lower semi-Fredholm},
σ1DRφ+

(T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz upper semi-Fredholm},
σ1DRφ(T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz Fredholm},
σ1DRW− (T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz lower semi-Weyl},
σ1DRW+

(T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz upper semi-Weyl},
σ1DRW(T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz Weyl}, respectively.

Also, Živković-Zlatanović and Duggal [16] introduced the notion of generalized Drazin-meromorphic
invertible by replacing the third condition with TST − T is meromorphic. They proved that the an operator
T ∈ B(X) is generalized Drazin-meromorphic invertible if and only if there exists a pair (M,N) ∈ Red(T)
such that TM is invertible and TN is meromorphic. An operator T ∈ B(X) is said to be generalized Drazin-
meromorphic bounded below (surjective, respectively) if there exists a pair (M,N) ∈ Red(T) such that TM
is bounded below (surjective, respectively) and TN is meromorphic. The generalized Drazin-meromorphic
bounded below, generalized Drazin-meromorphic surjective and generalized Drazin-meromorphic invertible spectra
are defined by

σ1DMJ (T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic bounded below},
σ1DMQ(T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic surjective},

σ1DM(T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic invertible}, respectively.

Also, they introduced the notion of operators which are direct sum of a meromorphic and Fredholm
(lower (upper) semi-Fredholm, lower (upper) semi-Weyl, Weyl). An operator is called generalized Drazin-
meromorphic Fredholm (generalized Drazin-meromorphic lower (upper) semi-Fredholm, generalized
Drazin-meromorphic lower (upper) semi-Weyl, generalized Drazin-meromorphic Weyl) if there exists
(M,N) ∈ Red(T) such that TM is Fredholm (lower (upper) semi-Fredholm, lower (upper) semi-Weyl,
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Weyl) and TN is meromorphic. The generalized Drazin-meromorphic lower (upper) semi-Fredholm, general-
ized Drazin-meromorphic Fredholm, generalized Drazin-meromorphic lower (upper) semi-Weyl and generalized
Drazin-meromorphic Weyl spectra are defined by

σ1DMφ− (T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic lower semi-Fredholm},
σ1DMφ+

(T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic upper semi-Fredholm},
σ1DMφ(T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic Fredholm},
σ1DMW− (T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic lower semi-Weyl},
σ1DMW+

(T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic upper semi-Weyl},
σ1DMW(T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic Weyl}, respectively.

From [14, 16] we have

σ1D∗φ(T) = σ1D∗φ+
(T) ∪ σ1D∗φ− (T),

σ1K∗(T) ⊂ σ1D∗φ+
(T) ⊂ σ1D∗W+

(T) ⊂ σ1D∗J (T),
σ1K∗(T) ⊂ σ1D∗φ− (T) ⊂ σ1D∗W− (T) ⊂ σ1D∗Q(T),

σ1K∗(T) ⊂ σ1D∗φ(T) ⊂ σ1D∗W ⊂ σ1D∗(T),

where ∗ stands for Riesz or meromorphic operators.
Recall that an operator T satisfies Browder’s theorem if σb(T) = σw(T) and generalized Browder’s

theorem if σbb(T) = σbw(T). Amouch et al. [7] and Karmouni and Tajmouati [12] gave a new characterization
of Browder’s theorem using spectra arised from Fredholm theory and Drazin invertibilty. Motivated by
them, we give a new characterization of operators satisfying generalized Browder’s theorem. We prove
that an operator T satisfies generalized Browder’s theorem if and only if σ1DMW(T) = σ1DM(T). In the last
section, we generalize the Cline’s formula for the case of generalized Drazin-meromorphic invertibility
under the assumption that AkBkAk = Ak+1 for some positive integer k.

2. Main Results

The following result will be used in the sequel:

Theorem 2.1. [16, Theorem 2.1] Let T ∈ B(X), then T is generalized Drazin-meromorphic upper semi-Weyl (lower
semi-Weyl, upper semi-Fredholm, lower semi-Fredholm, Weyl, respectively) if and only if T admits a GKMD and
0 < accσusbw(T) (accσlsbw(T), accσusb f (T), accσlsb f (T), accσbw(T), respectively).

The following example shows that the inclusions σ1DMW+
(T) ⊂ σ1DMJ (T) and σ1DMW− (T) ⊂ σ1DMQ(T) can be

proper.

Example 2.2. [14, Example 3.3] Let X = c0(N), c(N), l∞(N) or lp(N), p ≥ 1. Let U and V be the forward
and the backward unilateral shifts on X, respectively. Let T = U ⊕ V. Then σa(T) = σs(T) = D, where
D denotes the closed unit disc. Therefore, 0 ∈ intσa(T) and 0 ∈ intσs(T). Thus, by [16, Theorems 2.5
and 2.6] 0 ∈ σ1DMJ (T) and 0 ∈ σ1DMQ(T). Since 0 < σ1DRW+

(T) and we know that σ1DMW+
(T) ⊂ σ1DRW+

(T),
0 < σ1DMW+

(T). Thus, 0 ∈ σ1DMJ (T) \ σ1DMW+
(T). Similarly, 0 ∈ σ1DMQ(T) \ σ1DMW− (T).

In the following results we obtain necessary and sufficient conditions to get equality.

Proposition 2.3. Let T ∈ B(X), then σ1DMJ (T) = σ1DMW+
(T) if and only if T has SVEP at every λ < σ1DMW+

(T).

Proof. Suppose that σ1DMJ (T) = σ1DMW+
(T). Let λ < σ1DMW+

(T), then λI − T is generalized Drazin-
meromorphic bounded below. Therefore, by [16, Theorem 2.5] T has SVEP at λ. Conversely, suppose
that T has SVEP at every λ < σ1DMW+

(T). It suffices to show that σ1DMJ (T) ⊂ σ1DMW+
(T). Let λ < σ1DMW+

(T)
which implies that λI − T is generalized Drazin-meromorphic upper semi-Weyl. Therefore, by Theorem
2.1 λI − T admits a GKMD. Thus, there exists (M,N) ∈ Red(λI − T) such that (λI − T)M is semi-regular and
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(λI − T)N is meromorphic. Since T has SVEP at every λ < σ1DMW+
(T), (λI − T) has SVEP at 0. As SVEP at

a point is inherited by the restrictions on closed invariant subspaces, (λI − T)M has SVEP at 0. Therefore,
by [1, Theorem 2.91] (λI − T)M is bounded below. Thus, by [16, Theorem 2.6] we have λI − T is generalized
Drazin-meromorphic bounded below. Hence, λ < σ1DMJ (T).

Proposition 2.4. Let T ∈ B(X), then σ1DMQ(T) = σ1DMW− (T) if and only if T∗ has SVEP at every λ < σ1DMW− (T).

Proof. Suppose that σ1DMQ(T) = σ1DMW− (T). Let λ < σ1DMW− (T), then λI − T is generalized Drazin-
meromorphic surjective. Therefore, by [16, Theorem 2.6] T∗ has SVEP at λ. Conversely, suppose that
T∗ has SVEP at every λ < σ1DMW− (T). It suffices to show that σ1DMQ(T) ⊂ σ1DMW− (T). Let λ < σ1DMW− (T)
which implies that λI−T is generalized Drazin-meromorphic lower semi-Weyl. Then by Theorem 2.1 λI−T
admits a GKMD and λ < accσlsbw(T). Since T∗ has SVEP at every λ < σ1DMW− (T) and σ1DMW− (T) ⊂ σlw(T)
then T∗ has SVEP at every λ < σlw(T) = σuw(T∗). Therefore, by [1, Theorem 5.27] we have σlw(T) = σuw(T∗) =
σub(T∗) = σlb(T). Thus, by [1, Theorem 5.38] we have σlsbw(T) = σlsbb(T). This implies that λ < accσlsbb(T).
Therefore, by [16, Theorem 2.6] λI − T is generalized Drazin-meromorprhic surjective and it follows that
λ < σ1DMQ(T).

Corollary 2.5. Let T ∈ B(X), then σ1DM(T) = σ1DMW(T) if and only if T and T∗ have SVEP at every λ < σ1DMW(T).

Proof. Suppose that σ1DM(T) = σ1DMW(T). Let λ < σ1DMW(T), then λI−T is generalized Drazin-meromorphic
invertible. Therefore, by [16, Theorem 2.4] T and T∗ have SVEP at λ. Conversely, let λ < σ1DMW(T) =
σ1DMW+

(T) ∪ σ1DMW− (T). Then by proofs of Proposition 2.3 and Proposition 2.4 we have λ < σ1DMJ (T) ∪
σ1DMQ(T) = σ1DM(T).

Theorem 2.6. Let T ∈ B(X), then following statements are equivalent:
(i) σ1DM(T) = σ1DMW(T),
(ii) T or T∗ have SVEP at every λ < σ1DMW(T).

Proof. Suppose that T has SVEP at every λ < σ1DMW(T). It suffices to prove that σ1DM(T) ⊂ σ1DMW(T). Let
λ < σ1DMW(T) then λI − T admits a GKMD and λ < accσbw(T). Since σ1DRW(T) ⊂ σbw(T), T has SVEP at
every λ < σbw(T). Therefore, σbw(T) = σbb(T). Thus, λ < accσbb(T) which implies that λI − T is generalized
Drazin-meromorphic invertible.

Now suppose that T∗ has SVEP at every λ < σ1DRW(T). Since σbb(T) = σbb(T∗) and σbw(T) = σbw(T∗) we
have σ1DM(T) = σ1DMW(T). The converse is an immediate consequence of Corollary 2.5.

Recall that an operator T ∈ B(X) is said satisfy generalized a-Browder’s theorem if σusbb(T) = σusbw(T). An
operator T ∈ B(X) satisfies a-Browder’s theorem if σub(T) = σuw(T). By [4, Theorem 2.2] we know that
a-Browder’s theorem is equivalent to generalized a-Browder’s theorem.

Theorem 2.7. Let T ∈ B(X), then the following holds:
(i) generalized a-Browder’s theorem holds for T if and only if σ1DMJ (T) = σ1DMW+

(T),
(ii) generalized a-Browder’s theorem holds for T∗ if and only if σ1DMQ(T) = σ1DMW− (T),
(iii) generalized Browder’s theorem holds for T if and only if σ1DM(T) = σ1DMW(T).

Proof. (i) Suppose that generalized a-Browder’s theorem holds for T which implies that σusbb(T) = σusbw(T).
It suffices to prove that σ1DMJ (T) ⊂ σ1DMW+

(T). Let λ < σ1DMW+
(T), then λI − T is generalized Drazin-

meromorphic upper semi-Weyl. By Theorem 2.1 it follows that λI − T admits a GKMD and λ < accσusbw(T).
This gives λ < accσusbb(T). Therefore, by [16, Theorem 2.5] λI − T is generalized Drazin-meromorphic
bounded below which gives λ < σ1DMJ (T). Conversely, suppose that σ1DMJ (T) = σ1DMW+

(T). Using
Proposition 2.3 we deduce that T has SVEP at every λ < σ1DMW+

(T). Since σ1DMW+
(T) ⊂ σuw(T), T has

SVEP at every λ < σuw(T). By [1, Theorem 5.27] T satisfies a-Browder’s theorem. Therefore, generalized
a-Browder’s theorem holds for T.
(ii) Suppose that generalized a-Browder’s theorem holds for T∗ which implies that σlsbb(T) = σlsbw(T).
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It suffices to prove that σ1DMQ(T) ⊂ σ1DMW− (T). Let λ < σ1DMW− (T), then λI − T is generalized Drazin-
meromorphic lower semi-Weyl. By Theorem 2.1 it follows that λI − T admits a GKMD and λ < accσlsbw(T).
This gives λ < accσlsbb(T). Therefore, by [16, Theorem 2.6] λI − T is generalized Drazin-meromorphic
surjective which gives λ < σ1DMQ(T). Conversely, suppose that σ1DMQ(T) = σ1DMW− (T). Using Proposition
2.4 we deduce that T∗ has SVEP at every λ < σ1DMW− (T). Since σ1DMW− (T) ⊂ σlw(T), T∗ has SVEP at every
λ < σlw(T) = σuw(T∗). Therefore, generalized a-Browder’s theorem holds for T∗.
(iii) Suppose that generalized Browder’s theorem holds for T which implies thatσbb(T) = σbw(T). It suffices to
prove that σ1DM(T) ⊂ σ1DMW(T). Let λ < σ1DMW(T), then λI−T is generalized Drazin-meromorphic Weyl. By
Theorem 2.1 it follows that λI−T admits a GKMD and λ < accσbw(T). This gives λ < accσbb(T). Therefore, by
[16, Theorem 2.4]λI−T is generalized Drazin-meromorphic invertible which givesλ < σ1DM(T). Conversely,
suppose that σ1DM(T) = σ1DMW(T). Using Corollary 2.5 we deduce that T and T∗ have SVEP at every
λ < σ1DMW(T). Since σ1DMW(T) ⊂ σbw(T), T and T∗ have SVEP at every λ < σbw(T). Therefore, by [1, Theorem
5.14] generalized Browder’s theorem holds for T.

Using Theorem 2.7, [2, Theorem 2.3], [4, Theorem 2.1], [5, Proposition 2.2] and [12, Theorem 2.6] we have
the following theorem:

Theorem 2.8. Let T ∈ B(X), then the following statements are equivalent:
(i) Browder’s theorem holds for T,
(ii) Browder’s theorem holds for T∗,
(iii) T has SVEP at every λ < σw(T),
(iv) T∗ has SVEP at every λ < σw(T),
(v) T has SVEP at every λ < σbw(T),
(vi) generalized Browder’s theorem holds for T,
(vii) T or T∗ has SVEP at every λ < σ1DRW(T),
(viii) σ1DR(T) = σ1DRW(T),
(ix) T or T∗ has SVEP at every λ < σ1DMW(T),
(x) σ1DM(T) = σ1DMW(T),
(xi) σ1D(T) = σpBW(T).

Using [4, Theorem 2.2] and [12, Theorem 2.7] a similar result for a-Browder’s theorem can be stated as
follows:

Theorem 2.9. Let T ∈ B(X), then the following statements are equivalent:
(i) a-Browder’s theorem holds for T,
(ii) generalized a-Browder’s theorem holds for T,
(iii) T has SVEP at every λ < σ1DRW+

(T),
(iv) σ1DRJ (T) = σ1DRW+

(T),
(v) T has SVEP at every λ < σ1DMW+

(T),
(vi) σ1DMJ (T) = σ1DMW+

(T).

Lemma 2.10. Let T ∈ B(X), then
(i) σu f (T) = σub(T)⇔ σusb f (T) = σusbb(T),
(ii) σl f (T) = σlb(T)⇔ σlsb f (T) = σlsbb(T).

Proof. (i) Let σu f (T) = σub(T). It suffices to show that σusbb(T) ⊂ σusb f (T). Let λ0 < σusb f (T). Then λ0I − T is
upper semi B-Fredholm. Therefore, by [1, Theorem 1.117] there exists an open disc D centered at λ0 such
that λI −T is upper semi-Fredholm for all λ ∈ D \ {λ0}. Since σu f (T) = σub(T), λI −T is upper semi-Browder
for all λ ∈ D \ {λ0}. Therefore, p(λI − T) < ∞ for all λ ∈ D \ {λ0}. Thus, T has SVEP at every λ ∈ D \ {λ0}

which gives T has SVEP at λ0. Thus, by [3, Theorem 2.5] it follows that λ < σusbb(T). Conversely, let
σusbb(T) = σusb f (T). It suffices to show that σub(T) ⊂ σu f (T). Let λ < σu f (T). Then λ < σusb f (T) = σusbb(T).
Therefore, p(λI − T) < ∞which implies that λ < σub(T).

(ii) Using a similar argument as above we can get the desired result.
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Remark 2.11. From [16, Example 3.7] it is seen that the inclusions σ1DMφ+
(T) ⊂ σ1DMJ (T), σ1DMφ− (T) ⊂

σ1DMQ(T) and σ1DMφ(T) ⊂ σ1DM(T) can be proper. In the following theorems we give necessary and sufficient
conditions to get equality.

Theorem 2.12. Let T ∈ B(X), then the following statements are equivalent:
(i) σusb f (T) = σusbb(T),
(ii) T has SVEP at every λ < σusb f (T),
(iii) T has SVEP at every λ < σ1DMφ+

(T),
(iv) σ1DMJ (T) = σ1DMφ+

(T).

Proof. (i)⇔ (ii) Suppose that σusb f (T) = σusbb(T). Let λ < σusb f (T), then λ < σusbb(T) which gives p(λI−T) < ∞.
Therefore, T has SVEP at λ. Now suppose that T has SVEP at every λ < σusb f (T). It suffices to prove that
σusbb(T) ⊂ σusb f (T). Let λ < σusb f (T), then λI − T is upper semi B-Fredholm operator. Since T has SVEP at λ
then by [3, Theorem 2.5] it follows that λ < σusbb(T).
(iii)⇔ (iv) Suppose that T has SVEP at every λ < σ1DMφ+

(T) which implies that λI−T is generalized Drazin-
meromorphic upper semi-Fredholm. It suffices to show that σ1DMJ (T) ⊂ σ1DMφ+

(T). Let λ < σ1DMφ+
(T),

then by Theorem 2.1 there exists (M,N) ∈ Red(λI − T) such that (λI − T)M is semi-regular and (λI − T)N is
meromorphic. Since T has SVEP at λ, (λI − T)M has SVEP at 0. Therefore, by [1, Theorem 2.91] (λI − T)M is
bounded below. Thus, λ < σ1DMJ (T). Conversely, suppose that σ1DMJ (T) = σ1DMφ+

(T). Let λ < σ1DRφ+
(T),

then λI − T is generalized Drazin-meromorphic bounded below. Therefore, by [16, Theorem 2.5] it follows
that T has SVEP at λ.
(i)⇔ (iv) Suppose that σusb f (T) = σusbb(T). It suffices to prove that σ1DMJ (T) ⊂ σ1DMφ+

(T). Let λ < σ1DMφ+
(T),

then λI−T is generalized Drazin-meromorphic upper semi-Fredholm. By Theorem 2.1 it follows that λI−T
admits a GKMD and λ < accσusb f (T). This gives λ < accσusbb(T). Therefore, by [16, Theorem 2.5] λI − T
is generalized Drazin-meromorphic bounded below which gives λ < σ1DMJ (T). Conversely, suppose that
σ1DMJ (T) = σ1DMφ+

(T). Then by (iv)⇒ (iii) T has SVEP at every λ < σ1DMφ+
(T). Since σ1DMφ+

(T) ⊂ σu f (T), T
has SVEP at every λ < σu f (T). Therefore, by [12, Theorem 2.8] we have σu f (T) = σub(T). Thus, by Lemma
2.10 σusb f (T) = σusbb(T).

Theorem 2.13. Let T ∈ B(X), then the following statements are equivalent:
(i) σlsb f (T) = σlsbb(T),
(ii) T∗ has SVEP at every λ < σlsb f (T),
(iii) T∗ has SVEP at every λ < σ1DMφ− (T),
(iv) σ1DMQ(T) = σ1DMφ− (T).

Proof. (i)⇔ (ii) Suppose that σlsb f (T) = σlsbb(T). Let λ < σlsb f (T), then λ < σlsbb(T) which gives q(λI − T) < ∞.
Therefore, T∗ has SVEP at λ. Now suppose that T∗ has SVEP at every λ < σlsb f (T). It suffices to prove that
σlsbb(T) ⊂ σlsb f (T). Let λ < σlsb f (T), then λI − T is lower semi B-Fredholm operator. Since T∗ has SVEP at λ
then by [3, Theorem 2.5] we have λ < σlsbb(T).
(iii) ⇔ (iv) Suppose that T∗ has SVEP at every λ < σ1DMφ− (T) which implies that λI − T is generalized
Drazin-meromorphic lower semi-Fredholm. It suffices to show that σ1DMQ(T) ⊂ σ1DMφ− (T). By Theorem 2.1
it follows that λI − T admits a GKMD and λ < accσlsb f (T). Since σ1DMφ− (T) ⊂ σl f (T), T∗ has SVEP at every
λ < σl f (T). Therefore, by [12, Theorem 2.9] we have σl f (T) = σlb(T). Thus, by Lemma 2.10 σlsb f (T) = σlsbb(T)
which implies that λ < accσlsbb(T). Hence, λ < σ1DMQ(T). Conversely, suppose that σ1DMQ(T) = σ1DMφ− (T).
Let λ < σ1DMφ− (T), then λI − T is generalized Drazin-meromorphic surjective. Therefore by [16, Theorem
2.6] it follows that T∗ has SVEP at λ.
(i)⇔ (iv) Suppose that σlsb f (T) = σlsbb(T). It suffices to prove that σ1DMQ(T) ⊂ σ1DMφ− (T). Let λ < σ1DMφ− (T),
then λI − T is generalized Drazin-meromorphic lower semi-Fredholm. By Theorem 2.1 it follows that
λI − T admits a GKMD and λ < accσlsb f (T). This gives λ < accσlsbb(T). Therefore, by [16, Theorem 2.6]
λI − T is generalized Drazin-meromorphic surjective which gives λ < σ1DMQ(T). Conversely, suppose that
σ1DMQ(T) = σ1DMφ− (T). Then by (iv)⇒ (iii) T∗ has SVEP at every λ < σ1DMφ− (T). Since σ1DMφ− (T) ⊂ σl f (T) ,
T∗ has SVEP at every λ < σl f (T). This gives σlsb f (T) = σlsbb(T).



A. Gupta, A. Kumar / Filomat 33:19 (2019), 6335–6345 6343

Using [12, Corollary 2.10] and Theorems 2.12, 2.13 we have the following result:

Corollary 2.14. Let T ∈ B(X), then the following statements are equivalent:
(i) σ f (T) = σb(T),
(ii) T and T∗ have SVEP at every λ < σ f (T),
(iii) σb f (T) = σbb(T),
(iv) T and T∗ have SVEP at every λ < σb f (T),
(v) σ1D(T) = σpb f (T),
(vi) T and T∗ have SVEP at every λ < σpb f (T),
(viii) σ1DR(T) = σ1DRφ(T),
(viii) T and T∗ have SVEP at every λ < σ1DRφ(T),
(ix) σ1DM(T) = σ1DMφ(T),
(x) T and T∗ have SVEP at every λ < σ1DMφ(T).

3. Cline’s Formula for the generalized Drazin-meromorphic invertibility

Let R be a ring with identity. Drazin[9] introduced the concept of Drazin inverses in a ring. An element
a ∈ R is said to be Drazin invertible if there exist an element b ∈ R and r ∈N such that

ab = ba, bab = b, ar+1b = ar.

If such b exists then it is unique and is called Drazin inverse of a and denoted by aD. For a, b ∈ R, Cline [8]
proved that if ab is Drazin invertible, then ba is Drazin invertible and (ba)D = b((ab)D)2a. Recently, Gupta
and Kumar [10] generalized Cline’s formula for Drazin inverses in a ring with identity to the case when
akbkak = ak+1 for some k ∈N and obtained the following result:

Theorem 3.1. ([10, Theorem 2.20]) Let R be a ring with identity and suppose that akbkak = ak+1 for some k ∈ N.
Then a is Drazin invertible if and only if bkak is Drazin invertible. Moreover, (bkak)D = bk(aD)2ak and aD =
ak(bkak)D)k+1.

Recently, Karmouni and Tajmouati [11] investigated for bounded linear operators A,B,C satisfying the
operator equation ABA = ACA and obtained that AC is generalized Drazin-Riesz invertible if and only if
BA is generalized Drazin-Riesz invertible. Also, they generalized Cline’s formula to the case of generalized
Drazin-Riesz invertibility. In this section, we establish Cline’s formula for the generalized Drazin-Riesz
invertibility for bounded linear operators A and B under the condition AkBkAk = Ak+1. By [10, Theorem 2.1,
Theorem 2.2, Proposition 2.4 and Lemma 2.1] and a result [1, Corollary 3.99] we can deduce the following
result:

Proposition 3.2. Let A,B ∈ B(X) satisfies AkBkAk = Ak+1 for some k ∈ N, then A is meromorphic if and only if
BkAk is meromorphic.

Theorem 3.3. Suppose that A,B ∈ B(X) and AkBkAk = Ak+1 for some k ∈ N. Then A is generalized Drazin-
meromorphic invertible if and only if BkAk is generalized Drazin-meromorphic invertible.

Proof. Suppose that A is generalized Drazin-meromorphic invertible, then there exists T ∈ B(X) such that

TA = AT, TAT = T and ATA − A is meromorphic.

Let S = BkT2Ak. Then

(BkAk)S = (BkAk)(BkT2Ak) = Bk(AkBkAk)T2 = BkAk+1T2 = BkAkT

and
S(BkAk) = (BkT2Ak)(BkAk) = BkT2Ak+1 = BkAkT.
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Therefore, S(BkAk) = (BkAk)S. Consider

S(BkAk)S = BkT2Ak(BkAk)BkT2Ak = (BkT2Ak)(BkAkT) = BkT2Ak+1T = BkT2Ak = S.

Let Q = I − AT, then Q is a bounded projection commuting with A. Therefore, Qn = Q for all n ∈ N. We
observe that

(QA)kBk(QA)k = QkAkBkQkAk = QkAk+1Qk = Qk+1Ak+1 = (QA)k+1

and

BkAk
− (BkAk)2S = BkAk

− (BkAk)2BkT2AK = BkAk
− Bk(AkBkAk)BkT2Ak

= BkAk
− BkAk+2T2 = Bk(I − A2T2)Ak = Bk(I − AT)Ak

= BkQAk = BkQkAk = Bk(QA)k.

Since QA is meromorphic and(QA)kBk(QA)k = (QA)k+1, by Proposition 3.2 BkAk
− (BkAk)2S is meromorphic.

Conversely, suppose that BkAk is generalized Drazin-meromorphic invertible. Then there exists T′ ∈ B(X)
such that

T′BkAk = BkAkT′, T′BkAkT′ = T′ and BkAkT′BkAk
− BkAk is meromorphic.

Let S′ = AkT′k+1. Then

S′A = AkT′k+1A = AkT′k+2BkAkA = AkT′k+2BkAk+1 = AkT′k+2(BkAk)2 = AkT′k

and
AS′ = Ak+1T′k+1 = AkT′k.

Consider

AS′ = (AkT′k+1A)AkT′k+1 = (AkT′k)AkT′k+1 = Akvk+1BkA2kT′k+1 = AkT′k+1(BkAk)k+1

= Sk+1 = AkT′k+1 = S′.

We claim that for all n ∈Nwe have

(A − A2S′)n = (An
− An+1S′).

We prove it by induction. Evidently, the result is true for n = 1. Assume it to be true for n = p. Consider

(A − A2S′)p+1 = (A − A2S′)(A − A2S′)p

= (A − A2S′)(Ap
− Ap+1S′)

= AP+1
− AP+2S′ − AP+2S′ + AP+3S′2

= Ap+1
− Ap+2S′.

Also,

Bk(A − A2S′)k = Bk(Ak
− Ak+1S′) = BkAk

− BkAk−1A2S′ = BkAk
− BkAk−1AkT′k−1

= BkAk
− BkA2k−1T′k−1 = BkAk

− (BkAk)kT′k−1 = BkAk
− (BkAk)2S′.

Now consider

(A − A2S′)kBk(A − A2S′)k = (Ak
− Ak+1S′)Bk(Ak

− Ak+1S′)

= AkBkAk
− Ak+1S′BkAk

− AkBkAkBkAkS′ + Ak+1(BkAk)2S′2

= Ak+1
− Ak+2S′ = (A − A2S′)k+1.

Since Bk(A − A2S′)k = BkAk
− (BkAk)2T′ is meromorphic, by Proposition 3.2 it follows that A − A2S′ is

meromorphic.
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