A Fixed Point Theorem for Mappings Satisfying a New Common Range Property

Valeriu Popaa, Dan Popaa

a’Vasile Alecsandri’ University of Bacău, 157 Calea Mărăşeşti, Bacău, 600115, România

Abstract. In this paper a general fixed point theorem for two pairs of mappings satisfying a new type of common range property without limit of sequences in metric spaces are proved.

1. Introduction and Preliminaries

Let X be a non empty set and $A, S : X \to X$ two self mapping on X. A point $x \in X$ is a coincidence point of A and S if $w = Ax = Sx$ for some $x \in X$.

The set of all coincidence points of A and S is denoted by $C(A, S)$, and w is said to be a point of coincidence of A and S.

Definition 1.1. \cite{7} Let X be a nonempty set and A and S be two self mappings on X. A and S are weakly compatible if $ASu = SAu$ for all $u \in C(A, S)$.

In 2011, Sintunavarat and Kumam \cite{12} introduced the notion of common limit range property in metric spaces.

Definition 1.2. \cite{12} A pair of self mappings A and S on a metric space (X, d) is said to satisfy common limit range property with respect to S, denoted $\text{CLR}(S)$ property if there exists a sequence $x_n \in X$ such that

$$\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = t \in S(X).$$

Recently, Imdad et all. \cite{3} extend this notion of common limit range property for two pairs of mappings.

Definition 1.3. \cite{3}. Two pairs (A, S) and (B, T) of self mappings on a metric space (X, d) satisfy common limit range property with respect to (ST), denoted $\text{CLR}(S, T)$ property if there exist two sequences x_n and $y_n \in X$ such that

$$\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = \lim_{n \to \infty} By_n = \lim_{n \to \infty} Ty_n = u \in S(X) \cap T(X).$$

Some fixed point results for two pairs of mappings with theorems with $\text{CLR}(S)$ and $\text{CLR}(S, T)$ - properties are obtained in \cite{4},\cite{5},\cite{6} and other papers. Quite recently, a new type of common limit range property is introduced in \cite{11}.

Definition 1.4. \cite{11} Let A, S and T be self mappings of a metric space (X, d). The pair (A, S) is said to satisfy a common limit range property with respect to T, denoted by $\text{CLR}(A, S, T)$ - property if there exist a sequence x_n such that

2010 Mathematics Subject Classification. Primary 54H25; Secondary 47H10

Keywords. metric space, fixed point, implicit relation, coincidence range property

Received: 10 January 2019; Accepted: 05 May 2019

Communicated by Vladimir Rakočević

Email addresses: vpopa@ub.ro (Valeriu Popa), popavdan@yahoo.com (Dan Popa)
\[\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = u \in S(X) \cap T(X) \]

Remark 1.1. In all definitions 1.2 – 1.4 there exists some convergent sequences in \(X \). We introduce a new type of common range property without limits of sequences.

Definition 1.5. \((A, S)\) and \(T\) satisfy \(\text{CRP}_{(A,S,T)}\) - coincidence range property with respect to \(T\), if there exists \(u \in C(A, S) \), with \(z = u \in T(X) \).

Example 1.1. Let \(X = [1, \infty) \) with the usual metric, and \(Ax = (x^2 + 1)/2 \), \(Sx = (x + 1)/2 \) and \(Tx = x \), then \(T(X) = [1, \infty) \), and \(Sx = Ax \) implies \(x = 1 \). As a consequence, \(A1 = S1 = z = 1 \in T(X) = [1, \infty) \).

2. Implicit relations

Several classical fixed point theorems and common fixed point theorems have been unified considering a general condition, by an implicit function in [9] and [10] and other papers. In 2008, Ali and Imdad [2] had introduced a new class of implicit relations. We will introduce a new class of implicit relations, similarly with [2].

Definition 2.1. Let \(F_{C} \) be a family of functions \(F(t_{1}, \ldots, t_{k}) : R^{k}_{+} \to R \) satisfying: (F1): \(F(t_{0}, 0, t, t, 0) > 0 \), for all \(t > 0 \), (F2): \(F(t, t, 0, t, t, t) > 0 \), for all \(t > 0 \). The purpose of this paper is to prove a general fixed point theorem for two pairs of mappings satisfying \(\text{CRP}_{(A,S,T)} \) - property and an implicit relation.

Example 2.2. \(F(t_{1}, \ldots, t_{k}) = t_{1} - k \max \{ t_{2}, \ldots, t_{k} \} \), where \(k \in (0,1) \).

Example 2.3. \(F(t_{1}, \ldots, t_{k}) = k \max \{ t_{2}, t_{3}, t_{4}, \frac{t_{5} + t_{6}}{2} \} \), where \(k \in (0,1) \).

Example 2.4. \(F(t_{1}, \ldots, t_{k}) = t_{1} - a \max \{ t_{1}, t_{4} \} - c \max \{ t_{2}, t_{3} \} \), where \(a, b, c \geq 0 \) and \(a + b + c < 1 \).

Example 2.5. \(F(t_{1}, \ldots, t_{k}) = t_{1} - a \max \{ t_{3}, t_{5} \} - (1-a)(a.t_{5} + b.t_{6}) \), where \(a, b, c \geq 0 \) and \(a + b < 1 \).

Example 2.6. \(F(t_{1}, \ldots, t_{k}) = t_{1} - a \frac{t_{3}}{1 + t_{5}} + b.t_{6} \), where \(a, b \geq 0 \) and \(a + 2b < 1 \).

Example 2.7. \(F(t_{1}, \ldots, t_{k}) = t_{1} - t_{1}(a.t_{2} + b.t_{3} + c.t_{4}) - d.t_{5}.t_{6} \), where \(a, b, c, d \geq 0 \) and \(a + b + c + d < 1 \).

Example 2.8. \(F(t_{1}, \ldots, t_{k}) = t_{1} - \max \{ c.t_{2}, c.t_{3}, c.t_{4}, a.t_{5} + b.t_{6} \} \), where \(a, b, c \geq 0 \) and \(\max \{ c, a + b \} < 1 \).

The purpose of this paper is to prove a general fixed point theorem for two pairs of mappings satisfying \(\text{CRP}_{(A,S,T)} \) - properties without the use of limits of mappings.

3. Main result:

Lemma 3.1 [1]. Let \(f, g \) be two weakly compatible mappings of a non empty set \(X \). If \(f \) and \(g \) have a unique point \(w \) of coincidence where \(w = fx = gx \), for that \(xeX \), then \(w \) is the unique common fixed point of \(f \) and \(g \).

Theorem 3.2 Let \(A, B, S, T \) be self mappings of a metric space such that: (3.1)\(F(d(Ax, By)), d(Sx, Ty), d(Sx, Ax), d(Ty, By), d(Sx, By), d(Ax, Ty) \leq 0 \) for all \(x, y \in X \) and some \(F \in F_{C} \).

If \((A, S)\) and \(T\) satisfy \(\text{CRP}_{(A,S,T)} \) property then \(C(B, T) \neq \emptyset \). Moreover, if \((A, S)\) and \((B, T)\) are two pairs of weakly compatible mappings, then \(A, B, S \), and \(T \) have a unique common fixed point.

Proof: Since \((A, S)\) and \(T\) satisfy \(\text{CRP}_{(A,S,T)} \) property, there exist \(u \in X \) such that \(z = Av = Sv \) with \(z \in T(X) \). Hence, there exists \(u \in X \) such that \(z = T(u) \).

By 3.1. for \(x = u \) and \(y = u \) we obtain: \(F(d(Av, Bu)), d(Sv, Tu), d(Sv, Av), d(Tu, Bu), d(Sv, Bu), d(Av, Tu) \leq 0 \), \(F(d(z, Bu), 0, 0, d(z, Bu), d(z, Bu), 0) \leq 0 \). A contradiction with (F1) if \(d(z, Bu) > 0 \), hence \(d(z, Bu) = 0 \). Which implies \(z = Bu = Tu \). Therefore \(z = Av = Sv = Tu = Bu \). Therefore, \(z \) is a common point of coincidence of \((A, S)\) and \((B, T)\).

We prove that \(z \) is the unique point of coincidence for \(A \) and \(S \). Suppose that \(t = Aw = Bw \) for some \(w \in X \). By 3.1 we obtain for \(x = w \) and \(y = u \) that \(F(d(Av, Bu)), d(Sv, Tu), d(Sv, Av), d(Tu, Bu), d(Sv, Bu), d(Av, Tu) \leq 0 \), \(F(d(t, z), d(t, z), 0, 0, d(z, t), d(t, z)) \leq 0 \). A contradiction of (F2) if \(d(z, t) > 0 \). Which implies \(d(z, t) = 0 \), i.e. \(z = t \). And \(z \) is the unique point of coincidence of \(A \) and \(S \). Similarly \(z \) is the unique point of coincidence, moreover, if \((A, S)\) and \((B, T)\) are weakly compatible, by Lemma 3.1, \(z \) is the unique common fixed point of \(A, B, S, T \).
Remark 3.3: For the proof of this theorem we have to do the following steps:

Step 1. Solve the equation $Sx = Ax$ on X and establish $C(A, S) = \{z | xX \text{ and } Sx = Ax, z = Ax\}$. If $C(A, S) = \Phi$ the theorem is not applicable.

Step 2. If $C(A, S) \neq \Phi$ we have to select z from $C(A, S)$ such that z exists an $x \in X$ such that $T(x) = z$. As a consequence, A, S, T satisfy the CRP$_{(A, S, T)}$ property.

Step 3. Verify if the pairs (A, S) and (B, T) are weakly compatible. I.e. solve the $Az = Sz, z \in C(A, S)$ and similarly, for (B, T): solve the $Bq = Tq, q \in C(B, T)$. If one of those pairs are not weakly compatible, the theorem cannot be applied. Stop.

Step 4. If the relation 3.1 is satisfied then, by Theorem 3.1, A, S, B, T have a unique fixed point: z.

Example 3.4 Let $x = [0,1]$ be a metric space with d, the usual metric and $Ax = 0, Sx = \frac{x}{3}, Bx = \frac{x}{2}, Tx = x$. If $Ax = Sx$ then $x = 0$ and $C(A, S) = \{0\}$. Then, $z = 0, zT(x) = x$. Hence, (A, S) and T satisfy CRP$_{(A, S, T)}$ property.

Moreover, $AS0 = SA0 = 0$, and $BT0 = TB0 = 0$, hence (A, S) and (B, T) are weakly compatible. Otherhand, $d(Ax, By) = \frac{x}{4}, d(Ty, By) = \frac{x}{2}$, which implies, $d(Ax, By) \leq k d(Ty, By)$, where $k \in (\frac{1}{2}, 1)$. Then $d(Ax, By) \leq k \max[d(Sx, Ty), d(Sx, Ax)], d(Ty, By), d(Sx, By), d(Ax, Ty)$, with $ke(\frac{1}{2}, 1)$.

By Theorem 3.2, and Example 2.1, A, B, S and T have a unique common fixed point $z = 0$.

Remark 3.4 By Theorem 3.2 and example 2.2-2.8 we can obtain new particular results.

References

