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Abstract. We give some sufficient and necessary conditions for an element in a ring with involution to be
a partial isometry by using certain equations admitting solutions in a definite set.

1. Introduction

Let R be an associative ring with 1. An involution a = a* in R is an anti-isomorphism of degree 2 (see.,
[13]), that is,

@) =a, (a+b) =a"+b", (ab) =b'a".

In this case R is called a +—ring.
An element a € R is said to be Moore—Penrose invertible (or MP—invertible) [14] if there exists some b € R
such that the following Penrose equations hold:

(1) aba = a, (2) bab="b, (3) ab = (ab)*, (4) ba = (ba)".

There is at most one b such that the above conditions hold (see., [3, 4, 7]). We call it the Moore—Penrose
inverse (or MP—inverse) of a and denote it by a'. The set of all MP—invertible elements of R is denoted by R.

An element a € R is said to be group invertible [13] if there is some b € R satisfying the following
conditions:

aba =a, bab="b, ab = ba.

There is at most one b such that the above conditions hold. We call it the group inverse of a and denote it by
a*. The set of all group invertible elements of R is denoted by R*.

An element a € R* N R* satisfying a* = a' is said to be EP [5]. We denote the set of all EP elements of R
by REP.

An element a € R is called a partial isometry [11] if a* = a*. We denote by R the set of all the partial
isometries of R. Partial isometries has been explored by many authors. In [1], using the representation of
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complex matrices provided in [6], O.M. Baksalary et al. investigated various classes of matrices, such as
partial isometries, EP and star-dagger elements. In [9, 11], D. Mosi¢ and D.S. Djordjevi¢ studied partial
isometries by a purely algebraic technique, extending some already known results for complex matrices into
the setting of the rings with involution. In addition, they presented a conjecture in [9] about an equivalent
condition for a partial isometry a witha € Rt, which was negated by W. Chen [2] through a counter-example.

Motivated by these results, this paper is intended to provide, by using certain equations admitting
solutions in a definite set, further equivalent conditions for an element in a ring with involution to be a
partial isometry. Since there are close connections between partial isometries, EP elements and normal
elements in rings with involution [9, 11], we present also several characterizations of the latter two kinds
of elements.

2. Results
We give at first the following lemma, which follows by [9].
Lemma 2.1. Leta € R*NR". Ifa = a*a*, then a € RPL.

Remark 2.2. The converse of Lemma 2.1 is not true. For instance, put R = M3(Zs) and, for any A € R, define

111
A* = AT, where AT is the transpose of A. Thus R is a =-ring. Pick B = [ 0 00 ] It is easy to check that
0 00

100 100
BeR*NR",B=B*=B%andB'=| 1 0 0 |=B". ThereforeB€ R, butB>B*={ 0 0 0 |#B.
100 0 00
Leta € R’ Then aa*a = a for a* = a* and consequently we can construct an equation as follows.

X =aa’x. 1
Leta € R* N R" and write x, = {a,a",a',a*, (a"), (a")*}. Then we have the following theorem.
Theorem 2.3. Let a € R* N R'. Then a € R™! if and only if equation (1) has at least one solution in x,.

Proof. = Itis evident that x = a is a solution of equation (1) in x,.

& (1) If x = a* is a solution of equation (1), then a* = aa*a*, and so that a € R in terms of [11, Theorem
21 (V)].

(2) If x = a is a solution of equation (1), then a = aa*a, which implies that a € R..

(3) If x = a' is a solution of equation (1), then a* = aa*a’, which gives a € R” by [9].

(4) If x = a* is a solution of equation (1), then a* = aa*a*. Applying the involution, we arrive at the result
thata = a%a". It is known by Lemma 2.1 that a € R™.

(5) If x = (a")" is a solution of equation (1), then (a*)* = aa*(a*)*. Using the involution, we obtaina* = a
which yields a = a%a* = a%a*. By Lemma 2.1, 2 € RP..

(6) If x = (a')" is a solution of equation (1), then (a")* = aa*(a®)* = aa*a = a, from which the result a € R”
follows. [

*aa*,

By the proof of Theorem 2.3, we have the following corollary.

Corollary 2.4. Let a € R* N R'. Then the following conditions are equivalent:
(1) a € RPL;
(2) atat = a*a®;
(3)a*a® =a'a;
(4) a*(ay = a*a;
(5) (a*)'a* = aa®.
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Remark 2.2 illustrates that if a € R”!, we can not deduce that the equation (1) has solutions in {a', a*, (a*)*}.
Equation (1) yields by symmetricity the following equation.

X = xa‘a. 2)
Theorem 2.5. Let a € R* N R'. Then a € R if and only if equation (2) has at least one solution in x,.

It is immediate that a € R"! if and only if a* € R”!, and it is not difficult to check that x, = x,. Applying
the involution, we get the following equation.

X = xaa'. 3)
Theorem 2.6. Let a € R* N\ R'. Then a € R if and only if equation (3) has at least one solution in x,.

Leta € R* N R'. We call 4 a strongly partial isometry element of R if a* = a* = a’. The set of all strongly
partial isometry elements of R is denoted by RSEP. Certainly, R°E’ = REP n RFL.
The following result follows by [9].

Lemma 2.7. Leta € R*NRY. Ifa* = aa'a’, then a € REP.

Change equation (1) into the following one.

X =axa’. 4)

Theorem 2.8. Let a € R* N R'. Then a € RS if and only if equation (4) has at least one solution in x,.
Proof. = By a € R, we conclude a?a* = a?a* = a, which shows that x = a is a solution of equation (4).

& (1) If x = a is a solution of equation (4), then a = a’a*, giving a € RE” by [9].

(2) If x = a" is a solution of equation (4), then a* = aa*a*. Multiplying this equality on the left by a2, we
arrive at the result that a = a?a*. According to (1), we have thata € R,

(3) If x = a' is a solution of equation (4), then a* = aa’a*. It follows from Lemma 2.7 and Corollary 2.4
that a € RSP,

(4) If x = a” is a solution of equation (4), then a* = aa*a*. Applying the involution, we must geta = a
yielding a € R°EF by (1).

(5) If x = (a")" is a solution of equation (4), then (a*)* = a(a*)*a*. Using the involution, we obtain a* = aa
By (2), we know a € RSEP.

(6) If x = (a%)* is a solution of equation (4), then (a")* = a(a’)*a*. Applying the involution, we infer that
at = aa’a’, forcing from (3) thata € REF. [

ZQ*’

ta*.

Replacing 4" in equation (3) by af, we get the following equation.

x = xaa', )

which together with equation (4) yields the following equation.

xaa' = axa". (6)

Theorem 2.9. Let a € R* N R'. Then a € R if and only if equation (6) has at least one solution in x,.
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Proof. = Obviously x = a is a solution of equation (6).

< (1) If x = ais a solution of equation (6), then a?a® = a?a*. It follows thata € R by [11, Theorem 2.1 (i)].

(2) If x = a" is a solution of equation (6), then a*aa" = aaa*. Multiplying this equality on the left by a?,
we deduce a’a" = a%a". According to (1), we see thata € RPL.

(3) If x = a' is a solution of equation (6), then a' = afaa’ = aa
Corollary 2.4 thata € R,

(4) If x = a* is a solution of equation (6), then a* = a*aa’ = aa*a*. Using the involution, we conclude then
that a = a%a*, yielding a € R” by Lemma 2.1.

(5) If x = (a*)" is a solution of equation (6), then (a*)*aa" = a(a*)*a*. Using the involution, we arrive at the
result that a* = aa’a* = aa*a*. Thus

*a*, meaning a'a® = a'a*. It follows from

a*(a'y = ad*a* (@) = a*aa’a = a¥a,

which implies from Corollary 2.4 that a € R™..
(6) If x = (a')" is a solution of equation (6), then (a*)*aa" = a(a*)'a*. Using the involution, we obtain that
aatat = aata*, and furthermore
a'at = a'(aa’a®) = a¥(aa'a’) = a'a”.
So it is the case thata € R”.. O

Applying the involution on equation (6), we obtain the following equation.

aatx = axa’, (7)
which gives the following theorem.
Theorem 2.10. Let a € R* N RY. Then a € RP' if and only if equation (7) has at least one solution in x,.

Combining equations (6) and (7), we get the following equation.

aa’x = xaa®. (8)

Theorem 2.11. Leta € R* N RY. Then a € RE? if and only if equation (8) has at least one solution in x,.

Proof. = Since a € RE?, we have a?a’ = a%a* = a = aa*a. Therefore x = a is a solution of equation (8).

& (1) If x = a is a solution of equation (8), then a = aa'a = a%a®, which implies a € REF by [12].

(2) If x = a” is a solution of equation (8), then aa*a* = a*aa®. That is, a* = a*aa*, stating thata € REP.

(3) If x = a' is a solution of equation (8), then aa’a® = a'aa® = a*. So,a%a = aa*a’a and a'a = (a'a)* = a*a?a’.
Accordingly a = aa*a = a(a*a®a®) = a?a’, which indicates a € R by (1).

(4) If x = a* is a solution of equation (8), then aa'a* = a*aa® = a*. It may be concluded that a = a%a",
proving a € REP by (1).

(5) If x = (a*)* is a solution of equation (8), then aa'(a*)* = (a*)'aa’. Applying the involution, we get
a*aa* = aa'a® = a*. Hence a € REP according to (2).

(6) If x = (a')" is a solution of equation (8), then aa'(a")* = (a")*aa’. Using the involution, we infer that
a" = a%aa" = aa'a®, so thata € REP by (3). [

Corollary 2.12. Let a € R* N R*. Then the following conditions are equivalent:

(1) a € REP;
(2) a = a%a*;
(3)a =ata?;

(4) at = aatat;
(5)at = atata;
(6) a* = a*aat;
(7) a* = ataa®.
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We remark that the (2) and (3) of the above corollary appeared in [12], and the (6) of that appeared in
[13].
Replacing a' in equation (8) by a*, we obtain an equation as follows.

aa*x = xaa’, )
Theorem 2.13. Leta € R* N R'. Then a is a normal element if and only if equation (9) has at least one solution in x,.

Proof. = Let a be a normal element. Then as* = a*a and evidently x = a is a solution of equation (9).
< (1) If x = a is a solution of equation (9), then aa*a = a?a*, which implies by [10] that a is normal.
(2) and (3) follow also from [10].
(4) If x = a* is a solution of equation (9), then aa*a* = a*aa*. Applying involution on it, the rest follows by

D).

(5) If x = (a*)* is a solution of equation (9), then aa*(a*)* = (a*)*aa*. Multiplying this equality on the right
by (a')", we deduce a(a*a’a)* = (a*)*a. Using the involution, we conclude a'a*aa* = a*a*. Multiplying this
equality on the left by a, we arrive at aa®a* = aa*a*. By (2), we know that a is normal.

(6) If x = (a%)" is a solution of equation (9), then aa*(a’)* = (a*)*aa*. Applying the involution, we have that
ataa* = aa*a*,i.e., a* = aa*a’, which gives that 4 is normal by (3). [
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