A Note on the FIP Property for Extensions of Commutative Rings

Mabrouk Ben Nasr*, Nabil Zeidi*

*Faculty of Sciences, Department of Mathematics, Sfax University. B.P. 1171. 3000 Sfax, Tunisia

Abstract. A ring extension \(R \subset S \) is said to be FIP if it has only finitely many intermediate rings between \(R \) and \(S \). The main purpose of this paper is to characterize the FIP property for a ring extension, where \(R \) is not (necessarily) an integral domain and \(S \) may not be an integral domain. Precisely, we establish a generalization of the classical Primitive Element Theorem for an arbitrary ring extension. Also, various sufficient and necessary conditions are given for a ring extension to have or not to have FIP, where \(S = R[\alpha] \) with \(\alpha \) a nilpotent element of \(S \).

1. Introduction

All rings considered below are commutative and unital; all inclusions of rings are unital. For a ring \(R \), we frequently use \(\text{Spec}(R) \) (respectively, \(\text{Max}(R) \)) to denote the set of all prime (respectively, maximal) ideals of \(R \). If \(R \subset S \) is an extension of rings, we will denote by \([R, S]\) the set of all \(R \)-subalgebras of \(S \) (that is, the set of rings \(T \) such that \(R \subset T \subset S \)), by \((R : S) = \{x \in R : xS \subseteq R\} \) the conductor of \(R \) in \(S \). In particular, if \([R, S] = \{R, S\} \), we say that \(R \subset S \) is a minimal extension \([6,9]\). Recall from [1] that a ring extension \(R \subset S \) is said to have (or to satisfy) FIP (for the “finitely many intermediate algebras property”) if \([R, S]\) is finite. The initial work on the FIP property in [1] was motivated in part by a desire to generalize the Primitive Element Theorem, a classical result in field theory: If \(K \subset L \) is a finite-dimensional field extension, \(L = K[\alpha] \) for some element \(\alpha \in L \) if and only if \([K, L]\) is finite. One example of a FIP extension would be any minimal ring extension , and whenever that condition holds, then \(S = R[\alpha] \) for each \(\alpha \in S \setminus R \). The key connection between the above ideas is that if a ring extension \(R \subset S \) has FIP, then any maximal chain \(R = R_0 \subset R_1 \subset \ldots \subset R_n = S \) is finite and results from juxtaposing \(n \) minimal extensions \(R_i \subset R_{i+1} \), \(0 \leq i \leq n - 1 \). The FIP property was introduced and studied in [1] and, along with various related properties, has been treated in many other papers [2–5, 8–11]. In particular, Section 3 of [1] was devoted to the study of ring extension \(R \subset S \) satisfying FIP when \(R \) is a field. That work culminated in [1, Theorem 3.8] which gave a generalization of the Primitive Element Theorem. Later, Dobbs et al. in [2] completed this study in the case where \(R \) is replaced by an arbitrary Artinian reduced ring (cf. [2, Theorem III.2] and [2, Theorem III.5]). The present paper heavily relies on [1] and [2]; we will freely use the characterizations of the FIP extensions that were given there. The plan of this article is as follows: Section 2 was central to the work in [1, Section 3] and that led to the above-mentioned generalizations of the classical Primitive Element. The main result is the following: Let \(R \) be an infinite ring all of whose residue class fields are infinite and let \(R \subset S \) be an extension such that \(S/C \)
is a reduced ring, where \(C = (R : S) \). Then \(R \subseteq S \) has FIP if and only if \(R/C \) is an Artinian ring and \(S = R[\alpha] \) for some \(\alpha \in S \) where \(\alpha \) is algebraic over \(R \). (Recall that a ring is said to be reduced if it has no nonzero nilpotent elements.) As a consequence, we recover the result obtained by Anderson et al. in [1, Lemma 3.5].

Section 3 studies when FIP holds for ring extensions \(R \subseteq S \) such that \(S = R[\alpha] \), where \(\alpha \) is a nilpotent element. We establish some necessary and sufficient conditions for which a ring extension of this form has FIP. The first of these appears in Theorem 3.4 which states: Let \(R \) be a reduced ring and assume that \(S = R[\alpha] \) where \(\alpha \) is a nilpotent element of \(S \). Suppose that \(R/(R : S) \) is an infinite ring. Then \(R \subseteq S \) is a minimal extension if and only if \((R : S) \in \text{Max}(R) \) and \(\alpha^2 \in (R : S) \). Also, we obtain a characterization of \([R, S]\) which satisfies FIP, in term of finite maximal chains. We present the following result in Theorem 3.5: If \(S = R[\alpha] \) where \(\alpha \in S \) satisfies \(\alpha^2 = 0 \), then \(R \subseteq S \) has FIP if and only if there exists a finite maximal chain from \(R \) to \(S \). As consequence of this result, we establish that if \(S = R[\alpha] \) where \(\alpha^2 = 0 \) and \((R : S) \) is a maximal ideal of \(R \) or \(\beta \) has only finitely many ideals, then \(R \subseteq S \) has FIP. Another context for which we find a complete answer is given in Theorem 3.9: If \(R \) is a finite domain and \(S = R[\alpha, \beta] \), where \(\alpha^2 = \beta^2 = 0 \). Then \(R \subseteq S \) has FIP if and only if there exists a finite maximal chain from \(R \) to \(S \) and either \(S = R[\alpha] \) or \(S = R[\beta] \). Finally, any unexplained terminology is standard as in [12] and [13].

2. A generalized Primitive Element Theorem

Consider a ring extension \(R \subseteq S \) that has FIP. Recall from [1, Proposition 2.2 (a), (b)] that \(S \) must be a finite-type \(R \)-algebra and algebraic over \(R \). Moreover, in case \(R \) contains an infinite field, we have that \(S = R[\alpha] \) for some \(\alpha \in S \) that is algebraic over \(R \) (cf. [1, Corollary 3.2] and [1, Lemma 3.5]). Our primary interest in this section is to complete this study, we generalize the last cited results.

Proposition 2.1. Let \(R \subseteq S \) be an extension of rings such that:

(i) \(R/C \) is a finite ring, where \(C = (R : S) \);

(ii) \(S = R[\alpha] \) for some \(\alpha \in S \).

Then \(R \subseteq S \) has FIP if and only if \(\alpha \) is integral over \(R \).

Proof. For the “only if” part, since \(R/C \) is a finite ring, we have \(\dim(R/C) = 0 \) (the Krull dimension of \(R/C \)). Moreover, as \(R \subseteq C \) has FIP, then so is \(R/C \subseteq S/C \). It follows from [1,Proposition 3.4 (b)] that \(S/C \) is integral over \(R/C \). Whence, \(S/C \) is an integral over \(R/C \), in particular \(\alpha \) is integral over \(R \). Conversely, we assume that \(\alpha \) is integral over \(R \), then \(S/C = (R/C)[\pi] \) where \(\pi = \alpha + C \subseteq S/C \) is integral over \(R/C \). Thus, \(S/C \) is a finitely generated \(R/C \)-module and since \(R/C \) is a finite ring, hence \(S/C \) is also finite. Then, \(R/C \subseteq S/C \) has FIP. This prove that \(R \subseteq S \) has FIP.

\(\Box \)

Corollary 2.2. If \(S = \mathbb{Z}[\alpha] \) where \(\alpha \in S \) is integral over \(\mathbb{Z} \), then \(\mathbb{Z} \subseteq S \) has FIP if and only if \((\mathbb{Z} : S) \neq 0 \).

Proof. Suppose that \(\mathbb{Z} \subseteq S \) has FIP and assume, by way of contradiction, that \((\mathbb{Z} : S) = 0 \). Since \(S \) is a finitely generated \(\mathbb{Z} \)-module and each non unit of \(\mathbb{Z} \) is a non-zero-divisor of \(\mathbb{Z} \), then [3, Theorem 2.1] ensures that there exists a infinite chain of intermediate rings between \(\mathbb{Z} \) and \(S \). This contradicts the fact that \(\mathbb{Z} \subseteq S \) has FIP. Conversely, it suffice to notice that since \((\mathbb{Z} : S) \neq 0 \), then \(\mathbb{Z}/(\mathbb{Z} : S) \) is finite. Hence, the result follows from Proposition 2.1.

\(\Box \)

To prove our main result, Theorem 2.4, we need the following lemma.

Lemma 2.3. Let \(R \subseteq S \) be an extension of rings. Denote \(C = (R : S) \). If \(R \subseteq S \) has FIP, then \(R/C \) is a reduced ring if and only if \(C \) is the intersection of finitely many maximal ideals of \(R \).
Proof. It is clear that if C is the intersection of finitely many maximal ideals of R, then R/C is a finite direct sum of fields. Thus R/C is a reduced ring. Conversely, because $R \subset S$ has FIP, hence $R \subset S$ has FCP (in the sense of [4]). It follows from [4, Theorem 4.2] that R/C is an Artinian ring. Since R/C is a reduced Artinian ring, Wedderburn-Artin Theory (cf. [13, Theorem 3, page 209]) expresses R/C uniquely as the internal direct product of finitely many fields K_i, that is, $R/C = K_1 \times \ldots \times K_n$. Let Max$(R/C) = \{N_1, \ldots, N_n\} = \{M_1/C, \ldots, M_n/C\}$, where $M_i \in \text{Max}(R)$ and $C \subseteq M_i$ for each $i = 1, \ldots, n$. As $N_1 \cap \ldots \cap N_n = 0$, then $(M_1/C) \cap \ldots \cap (M_n/C) = (M_1 \cap \ldots \cap M_n)/C = 0$. Thus $C = M_1 \cap \ldots \cap M_n$. □

Theorem 2.4 below provides a generalization of the Primitive Element Theorem.

Theorem 2.4. Let R be an infinite ring all of whose residue class fields are infinite. Let $R \subset S$ be an extension such that S/C is a reduced ring, where $C = (R : S)$. Then $R \subset S$ has FIP if and only if R/C is an Artinian ring and $S = R[\alpha]$ for some $\alpha \in S$ where α is algebraic over R.

Proof. Notice by [2, Proposition II.4] that $R \subset S$ has FIP if and only if $R/C \subset S/C$ has FIP. For the “only if” part, since S/C is a reduced ring, then R/C is also a reduced ring. It follows from Lemma 2.3 that $C = \bigcap_{i=1}^{n} M_i$, where $M_i \in \text{Max}(R)$ for each i. By the Chinese Remainder Theorem, $R/C = K_1 \times \ldots \times K_n$ such that K_i is an infinite field for each i, and hence R/C is an Artinian ring. It remains to prove that $S = R[\alpha]$ for some $\alpha \in S$. By virtue of [4, Proposition 3.7 (d)], we can identify S/C with $S_1 \times \ldots \times S_n$ such that $K_i \subseteq S_i$ and $R/C \subset S/C$ satisfies FIP if and only if $S_i = K_i[\beta]$ satisfies FIP if and only if $K_i \subset S_i$ satisfies FIP for each i. Notice that since S/C is a reduced ring, then so is S_i. Then, we conclude form [1, Lemma 3.5] that $R/C \subset S/C$ satisfies FIP if and only if $S_i = K_i[\beta]$ for each i. Denote $\beta = (\beta_1, \beta_2, \ldots, \beta_n)$, then it is easy to verify that $K_i[\beta_1] \times \ldots \times K_i[\beta_n] \cong (K_i \times \ldots \times K_i)((\beta_1, \ldots, \beta_n)) = R/C[\beta]$. Therefore, $R/C \subset S/C$ satisfies FIP if and only if $S/C = R/C[\beta]$, where β is algebraic over R/C. This implies that $R \subset S$ satisfies FIP if and only if $S = R[\alpha]$ for some $\alpha \in S$ which is algebraic over R and satisfies $\bar{\alpha} = \alpha + C = \beta$.

For the “if” part, assume that $S = R[\alpha]$ for some $\alpha \in S$ where α is algebraic over R and R/C is an Artinian ring. Since, in addition, R/C is reduced, hence Wedderburn-Artin Theory (cf. [13, Theorem 3, page 209]) expresses R/C uniquely as the internal direct product of finitely many fields K_i, that is, $R/C = K_1 \times \ldots \times K_n$. Again [4, Proposition 3.7 (d)], the ring S/C can be uniquely expressed as a product of rings $S_1 \times \ldots \times S_n$ where $K_i \subseteq S_i$ for each $i \in \{1, \ldots, n\}$. Moreover, since $S/C = R/C[\alpha]$ where $\bar{\alpha} = \alpha + C$, hence reasoning as in the proof of the “only if” part, we deduce that $S_i = K_i[\beta_i]$ where $\bar{\alpha} = (\beta_1, \ldots, \beta_n)$ and β_i is algebraic over K_i. Hence, if K_i is a finite field, then S_i is a finite K_i-vector space. Then, S_i is finite and so $K_i \subseteq S_i$ has FIP. Now, if K_i is infinite field, then [1, Lemma 3.5] ensures that $K_i \subseteq S_i$ has FIP. By globalization, we deduce that $K_i \subseteq S_i$ has FIP for each $i \in \{1, \ldots, n\}$. Then, $R/C \subset S/C$ has FIP [4, Proposition 3.7 (d)]. Finally, according to [2, Proposition II.4], we conclude that $R \subset S$ has FIP, which completes the proof. □

In view of Theorem 2.4, the “if” implication is valid, for if R/C is an Artinian ring. The following example will show that the hypothesis “R/C is an Artinian ring” cannot be omitted in the above theorem.

Example 2.5. Let R be an infinite-dimensional valuation domain with a height 1 prime ideal P. Pick $\alpha \in P$ where $\alpha \neq 0$ and set $S = qf(R)$ the quotient field of R. It is clear that $C = (R : S) = 0$, and hence $R/C \cong R$ is not Artinian. Also $S/C \cong S$ is a reduced ring. On the other hand, [12, Theorem 19] ensures that $S = R[\alpha^{-1}]$. But $R \subset S$ does not have FIP since $[R_{\alpha}, p \in \text{Spec}(R)]$ is an infinite set of intermediate rings between R and $qf(R)$.

Corollary 2.6. ([11, Lemma 3.5]) Let R be an infinite field, and let $R \subset S$ be an extension such that S is a reduced ring. Then $R \subset S$ has FIP if and only if $S = R[\alpha]$ for some $\alpha \in S$ such that α is algebraic over R.

Proof. Since R is quasi-local with maximal ideal 0, then $R/0 \cong R$ is infinite. Moreover, as $(R : S) = 0$, hence $S/(R : S) \cong S$ is a reduced ring. Therefore, the conclusion follows readily from Theorem 2.4. □

3. When the generator is a nilpotent element

Consider a ring extension $R \subset S$. In view of the central role that nilpotent elements have played in the study of the FIP property for a ring extension (cf. [1, Theorem 3.8] and Section IV of [2]), we devote
this section to completing this study and to investigating when \(R \subset S \) has FIP where \(S = \mathbb{R}[\alpha] \) with \(\alpha \) is a nilpotent element of \(S \). We begin with two results giving useful sufficient conditions for FIP to fail.

Proposition 3.1. Let \(R \subset S \) be a ring extension such that \(S = \mathbb{R}[\alpha] \) where \(\alpha \) is a nilpotent element of \(S \). If \((R : S) \in \text{Spec}(R) \setminus \text{Max}(R) \), then \(R \subset S \) does not have FIP.

Proof. Since \((R : S) \in \text{Spec}(R) \setminus \text{Max}(R)\), then \(R/(R : S) \) is a integral domain (not a field), and we have \(S/(R : S) = (R/(R : S))[\overline{\alpha}] \) where \(\overline{\alpha} = \alpha + (R : S) \). We prove that \((0 : \overline{\alpha}) = [\overline{r} \in R/(R : S)|\overline{r}\overline{\alpha} = 0] = 0 \). Let \(\overline{r} \in R/(R : S) \) such that \(\overline{r}\overline{\alpha} = 0 \), hence \(\overline{r}\overline{\alpha} = 0 \). It follows that \(r \in (R : S) \). As \((R : S) \) is a prime ideal of \(R \) and \(\alpha \notin (R : S) \), we conclude that \(r \in (R : S) \). This implies that \(\overline{r} = 0 \), and so \((0 : \overline{\alpha}) = 0 \). According to \[2, \text{Proposition IV.1]\], we have that \(R/(R : S) \subset (R : S) \) does not have FIP, and so is \(R \subset S \). \(\Box \)

The following result is a generalization of \[2, \text{Proposition IV.1}\].

Corollary 3.2. Let \(R \) be an integral domain that is not a field, and \(R \subset S \) such that \(S = \mathbb{R}[\alpha] \) where \(\alpha \) is a nilpotent element of \(S \). If \((R : S) \neq 0 \), then \(R \subset S \) does not have FIP.

Proposition 3.3. Let \(R \subset S \) be an extension such that \(S = \mathbb{R}[\alpha] \) where \(\alpha \) is a nilpotent element of \(S \). Denote \(C = (R : S) \). If \(C \in \text{Max}(R) \), then \(R \subset S \) has FIP if and only if \(R/C \) is finite or \(R/C \) is an infinite field and \(\alpha \in C \).

Proof. Notice by \[2, \text{Proposition II.4}\] that \(R \subset S \) has FIP if and only if \(R/C \subset S/C \) has FIP. We have \(S/C = R/C[\overline{\alpha}] \) where \(\overline{\alpha} = \alpha + C \). If \(R/C \) is finite, then \(S/C \) is also finite since \(S/C \) is a \(R/C \)-vector space. Thus \(R/C \subset S/C \) has FIP, and so is \(R \subset S \). Now, if \(R/C \) is an infinite field, then \[1, \text{Lemma 3.6 (b)}\] ensures that \(R/C \subset S/C \) has FIP if and only if \(\overline{\alpha} \neq 0 \), that is, \(R \subset S \) has FIP if and only if \(\alpha \in C \). \(\Box \)

The following result is a characterization of minimal extensions where \(S \) is the form \(\mathbb{R}[\alpha] \) for some nilpotent element \(\alpha \in S \).

Theorem 3.4. Let \(R \subset S \) be a reduced ring and let \(S = \mathbb{R}[\alpha] \) where \(\alpha \) is a nilpotent element of \(S \). Suppose that \(R/(R : S) \) is a infinite ring. Then \(R \subset S \) is a minimal extension if and only if \((R : S) \in \text{Max}(R) \) and \(\alpha \notin (R : S) \).

Proof. If \(R \subset S \) is a minimal (integral) extension, then \(C = (R : S) \in \text{Max}(R) \) and from Proposition 3.3 we have \(\alpha \in C \). It follows that \(R/C \) is a infinite field and \(S/C = R/C[\overline{\alpha}] \) where \(\overline{\alpha} = \alpha + C \), and so \(\overline{\alpha} \neq 0 \). Hence, the proof of \[1, \text{Lemma 3.6 (b)}\] shows that \([R/C, S/C] = [R/C, R/C[\overline{\alpha}]], S/C = R/C[\overline{\alpha}] \). Moreover, \(R/C \subset S/C \) is a minimal extension since \(R \subset S \) is a minimal extension, we conclude that either \(R/C = R/C[\overline{\alpha}] \) or \(R/C[\overline{\alpha}] = R/C[\overline{\alpha}] \). Then, either \(R = \mathbb{R}[\alpha] \) or \(\mathbb{R}[\alpha] = R[\alpha] \). Suppose that \(R[\alpha] = \mathbb{R}[\alpha] \) and let \(n \geq 2 \) be the index of nilpotency for \(\alpha \). Hence, \(\alpha = r_0 + r_1 \alpha + r_2 \alpha^2 + \ldots + r_{n-1} \alpha^{2(n-1)} \), for some \(r_0, r_1, \ldots, r_{n-1} \in R \). Thus, \(r_0 = \alpha - (r_1 \alpha^2 + r_2 \alpha^3 + \ldots + r_{n-1} \alpha^{2(n-1)}) \) is a nilpotent element, and so \(r_0 = 0 \) since \(R \) is reduced. This implies that \(\alpha = a(r_1 \alpha + r_2 \alpha^2 + \ldots + r_{n-1} \alpha^{2(n-1)}) \), hence \((r_1 \alpha + r_2 \alpha^2 + \ldots + r_{n-1} \alpha^{2(n-1)}) = 1 \), a contradiction since \((r_1 \alpha + r_2 \alpha^2 + \ldots + r_{n-1} \alpha^{2(n-1)}) \) is a nilpotent element. Therefore, \(R = \mathbb{R}[\alpha] \), and hence \(\alpha \notin R \). Now, we prove that \(\alpha \in C \). Let \(x \notin S \), then \(x = a_0 + a_1 \alpha + a_2 \alpha^2 + \ldots + a_{n-1} \alpha^{n-1} \) for some \(a_0, a_1, \ldots, a_{n-1} \in R \). Hence, \(a \alpha = a_0 \alpha + a_1 \alpha^2 + a_2 \alpha^3 + \ldots + a_{n-1} \alpha^{n} \). Notice that any power of \(\alpha \) is a product of a power of \(\alpha^2 \) and a power of \(\alpha^3 \). As \(\alpha \alpha = \alpha^2 \in \alpha \), it follows that \(a \alpha^2 \in \alpha \), and hence \(\alpha^2 \in C \). Conversely, since \(\alpha \alpha \in C \), then \(S/C = R/C[\overline{\alpha}] \) where \(\overline{\alpha^2} = 0 \). As, in addition, \(R/C \) is a infinite field since \(C \) is a maximal ideal of \(R \), then the end of the proof of \[1, \text{Lemma 3.6 (b)}\] ensures that \(R/C \subset S/C \) is a minimal extension, this implies that \(R \subset S \) is also a minimal extension \[9, \text{Corollary 1.4}\]. \(\Box \)

We are now in position to give a characterization of \([R, S]\) which satisfies FIP, in term of finite maximal chains.

Theorem 3.5. If \(R \subset S \) is an extension of rings such that \(S = \mathbb{R}[\alpha] \) with \(\alpha^2 = 0 \), then the following conditions are equivalent:

(i) \(R \subset S \) has FIP;

(ii) There exists a finite maximal chain from \(R \) to \(S \).
Proof. (i) ⇒ (ii) The result is clear since the condition “$R \subset S$ has FIP”, implies that any maximal chain from R to S is finite.

(ii) ⇒ (i) Since $S = R + Ra$, therefore [7, Proposition 4.12] gives a bijection between $[R, S]$ and the set of ideals of R containing $C = (R : S)$. On the other hand, by assumption, there is a finite maximal chain $R = R_0 \subset R_1 \subset \ldots \subset R_n = S$ in $[R, S]$. For each $i = 0, \ldots, n-1$, denote $C_i = (R : R_{i+1})$ and $m_i = C_i \cap R$. Since $R_i \subset R_{i+1}$ is both minimal and integral, hence $C_i \in \text{Max}(R)$ and so $m_i \in \text{Max}(R)$ [6, Thorme 2.2]. Moreover, it is clear that $C \subseteq C_i$ for each i, thus $C \subseteq \bigcap_{i=0}^{n-1} m_i$. By iteration, we get

\[
\prod_{i=0}^{n-1} m_i R \subseteq \prod_{i=0}^{n-2} m_i R_{n-1} \subseteq \ldots \subseteq m_0 R_1 \subseteq R.
\]

Then, $\prod_{i=0}^{n-1} m_i \subseteq C \subseteq \bigcap_{i=0}^{n-1} m_i$. Hence, the m_i are precisely the uniquely ideals of R containing C. Therefore, $|[R, S]| = \left|\prod_{i=0}^{n-1} m_i\right|$, this prove that $R \subset S$ has FIP. \hfill \Box

The proof of Theorem 3.5 established the following result.

Proposition 3.6. Let $R \subset S$ be a ring extension such that $S = R[a]$ where $a^2 = 0$. If $(R : S)$ is a maximal ideal of R or R has only finitely many ideals, then $R \subset S$ has FIP. Moreover, $R \subset S$ is a minimal extension if and only if $(R : S) \in \text{Max}(R)$.

Remark 3.7. If $S = R[a]$ where a is a nilpotent element of S of index $n \neq 2$, then Theorem 3.5 does not follow in general. For instance, let R be any infinite field K of characteristic 2 and take $S = K[X]/(X^4) = K[x]$ where $x = X + (X^4)$ and $x^4 = 0$. Then, $\{1, x, x^2, x^3\}$ is a K-vector space basis of S. As $\dim_K(S) < \infty$, then any maximal chain of intermediate rings between K and S is finite, while the failure to satisfy FIP can be seen by applying [1, Lemma 3.6(a)].

We next give the following lemma which be used often later. Lemma 3.8 provides a generalization of [1, Lemma 2.6 (c)].

Lemma 3.8. Let $R \subset S$ be an extension. If R is infinite domain and $R \subset S$ has FIP, then S does not contain two nilpotent elements of index 2 which are algebraically independent over R.

Proof. If the assertion fails, S contains two nilpotent elements a and β of index 2 which are algebraically independent over R. We consider two cases:

Case 1. $a\beta = 0$, then $\{1, a, \beta\}$ is a basis of $R[a, \beta]$ as a finitely generated R-module. For each $r \in R$, consider $T_r = \{ a + ba + r\beta : a, b \in R \}$. It is clear that $R \subseteq T_r \subseteq S$ for each r. Moreover, since a and β are nilpotent elements of index 2, on easy verifies that each T_r is a ring. Also, $T_r \neq T_{r'}$ for each $r \neq r'$. Indeed, if $T_r = T_{r'}$, then $a + r\beta = a_0 + b_0a + r'b_0\beta$ for some $a_0, b_0 \in R$. Since $\{1, a, \beta\}$ is a basis of $R[a, \beta]$, it follows that $a_0 = 0$, $b_0 = 1$ and $r = b_0r'$. This yields that $r = r'$. Since R is infinite, $\{T_r, r \in R\}$ is an infinite collection of intermediate rings between R and S, contradicting that $R \subset S$ has FIP.

Case 2. $a\beta \neq 0$. First, suppose that $a\beta$ is algebraically independent with a and β over R, then $\{1, a, \beta, a\beta\}$ is a basis of $R[a, \beta]$ as a finitely generated R-module. For each $r \in R$, consider $T_r = \{ a + ba + r\beta : a, b \in R \}$. Reasoning as in the first case, we show that $\{T_r, r \in R\}$ describes an infinite family of rings, contradicting that $R \subset S$ has FIP. In the remaining case, $a\beta = r_0a + r_1\beta$ where $r_0, r_1 \in R$. Let $r \in R$, consider $T_r = \{ a + r\beta : a,b,c \in R \}$. Then, T_r is intermediate ring between R and S. Moreover, $T_r \neq T_{r'}$ for each $r \neq r'$. Indeed, if $r + r' = a_0 + r'\beta + a_0 + r'\beta$ for some $a_0, b_0, c_0 \in R$ such that $b_0 \neq c_0$. Then, T_r is intermediate ring between R and S. Moreover, $T_r \neq T_{r'}$ for each $r \neq r'$. Indeed, if $r + r' = a_0 + r'\beta + a_0 + r'\beta$ for some $a_0, b_0, c_0 \in R$ where $b_0 \neq c_0$. Since $\{1, a, \beta\}$ is a basis of $R[a, \beta]$ as a finitely generated R-module, then $a_0 = 0$ and $r = r'\beta = r'\beta$. Because R is integral domain, it follows that $b_0 = c_0$, the desired contradiction. Therefore, $\{T_r, r \in R\}$ is an infinite collection of intermediate rings between R and S, contradicting that $R \subset S$ has FIP. \hfill \Box

Again, by combining Lemma 3.8 and Theorem 3.5, we obtain directly another characterization of $[R, S]$ which satisfies FIP where $S = R[a, \beta]$ and $a^2 = \beta^2 = 0$.
Theorem 3.9. Let $R \subset S$ be an extension such that R is infinite domain and $S = R[\alpha, \beta]$, where $\alpha^2 = \beta^2 = 0$. Then $R \subset S$ has FIP if and only if there exists a finite maximal chain from R to S and either $S = R[\alpha]$ or $S = R[\beta]$.

We close this section by the following proposition.

Proposition 3.10. Let $R = R_1 \times \cdots \times R_n$ be a finite product of rings and let $R \subset S$ be a ring extension. Using [2, Lemma III.3], identify S with $S_1 \times \cdots \times S_n$. For each $i \in \{1, \ldots, n\}$, consider the following three conditions (which depend on i):

1. R_i is finite and S_i is a finitely generated R_i-module;
2. R_i is infinite ring all of whose residue class fields are infinite, S_i/C_i is a reduced ring where $C_i = (R_i : S_i)$, R_i/C_i is Artinian and $S_i = R_i[\alpha_i]$ for some $\alpha_i \in S_i$, which is algebraic over R_i.
3. R_i is infinite, $(R_i : S_i) \in \text{Max}(R_i)$ and $S_i = R_i[\alpha_i]$ for some $\alpha_i \in S_i$ which satisfies $\alpha_i^3 \in (R_i : S_i)$.

If for each $i \in \{1, \ldots, n\}$, at least one of the conditions (1), (2), (3) holds, then $R \subset S$ has FIP.

Proof. Combine [2, Proposition III.4 (a)] with [4, Proposition 5.1], Theorem 2.4 and Proposition 3.3.

References