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Abstract. In this paper we develop star topological and topological group-groupoid structures of mon-
odromy groupoid and prove that the monodromy groupoid of a topological group-groupoid is also a
topological group-groupoid.

1. Introduction

As enunciated by Chevalley in [7, Theorem 2, Chapter 2], the general idea of the monodromy principle
is that of extending a local morphism f on a topological structure G, or extending a restriction of f , not
to G itself but to some simply connected cover of G. A form of this for topological groups was given in
[7, Theorem 3], and developed by Douady and Lazard in [8] for Lie groups, generalized to topological
groupoid case in [14] and [4].

The notion of monodromy groupoid was indicated by J. Pradines in [17] as part of his grand scheme
announced in [17–20] to generalize the standard construction of a simply connected Lie group from a Lie
algebra to a corresponding construction of a Lie groupoid from a Lie algebroid (see also [11, 12, 16]).

One construction of the monodromy groupoid for a topological groupoid G and an open subset W
including the identities is given via free groupoid concept and denoted by M(G,W) as a generalization of
the construction in [8].

Another construction of the monodromy groupoid for a topological groupoid G in which each star Gx
has a universal cover is directly given in Mackenzie [11, p. 67-70] as a disjoint union of the universal covers
of the stars Gx’s and denoted by Mon(G).

These two monodromy groupoids M(G,W) and Mon(G) are identified as star Lie groupoids in [4,
Theorem 4.2] using Theorem 4.2 which is originally [1, Theorem 2.1] to get an appropriate topology.

In particularly if G is a connected topological group which has a universal cover, then the monodromy
groupoid Mon(G) is the universal covering group, while if G is the topological groupoid X ×X, for a semi-
locally simply connected topological space X, then the monodromy groupoid Mon(G) is the fundamental
groupoid πX. Hence the monodromy groupoid generalizes both the concepts of universal covering group
and the fundamental groupoid. For further discussion on monodromy and holonomy groupoids see [2].

The notion of monodromy groupoid for topological group-groupoid was recently introduced and in-
vestigated in [15]; and then it has been generalized to the internal groupoid case in [13]. Motivated by the
referee’s comments of latter paper, in this paper, we aim to develop the topological aspect of the monodromy
groupoid Mon(G) as a group-groupoid for a topological group-groupoid G.
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The organization of the paper is as follows. In Section 1 we give a preliminary of groupoid, group-
groupoid, topological groupoid and the constructions of monodromy groupoid. In Section 2 star topological
group-groupoid structure of monodromy groupoid with some results are given. Section 3 is devoted to
develop topological aspect of the monodromy groupoid Mon(G) as group-groupoid together with a strong
monodromy principle for topological group-groupoids.

2. Preliminaries on Monodromy Groupoid

A groupoid is a small category in which each morphism is an isomorphism (see for example [5] and [11]).
So a groupoid G has a set G of morphisms and a set Ob(G) of objects together with source and target point
maps α, β : G → Ob(G) and object inclusion map ε : Ob(G) → G such that αε = βε = 1Ob(G). There exists
a partial composition defined by Gβ ×α G → G, (1, h) 7→ 1 ◦ h, where Gβ ×α G is the pullback of β and α.
Here if 1, h ∈ G and β(1) = α(h), then the composite 1 ◦ h exists such that α(1 ◦ h) = α(1) and β(1 ◦ h) = β(h).
Further, this partial composition is associative, for x ∈ Ob(G) the morphism ε(x) acts as the identity and it is
denoted by 1x, and each element 1 has an inverse 1−1 such that α(1−1) = β(1), β(1−1) = α(1), 1 ◦ 1−1 = ε(α(1)),
1−1
◦ 1 = ε(β((1)). The map G → G, 1 7→ 1−1 is called the inversion. In a groupoid G, the source and target

points, the object inclusion, the inversion maps and the partial composition are called structural maps. An
example of a groupoid is fundamental groupoid of a topological space X, where the objects are points of X
and morphisms are homotopy classes of the paths relative to the end points. A group is a groupoid with
one object.

In a groupoid G each object x is identified with unique identity ε(x) = 1x and hence we sometimes write
Ob(G) for the set of identities. For x, y ∈ Ob(G) we write G(x, y) for α−1(x) ∩ β−1(y). The difference map
δ : G ×α G → G is given by δ(1, h) = 1−1

◦ h, and is defined on the double pullback of G by α. If x ∈ Ob(G),
and W ⊆ G, we write Wx for W ∩ α−1(x), and call Wx the star of W at x. Especially we write Gx for α−1(x)
and call star of G at x. We denote the set of inverses of the morphisms in W by W−1.

A star topological groupoid is a groupoid in which the stars Gx’s have topologies such that for each
1 ∈ G(x, y) the left (and hence right) translation

L1 : Gy → Gx, h 7→ 1 ◦ h

is a homeomorphism and G is the topological sum of the Gx’s. A topological groupoid is a groupoid in which
G and Ob(G) have both topologies such that the structural maps of groupoid are continuous.

A group-groupoid is a groupoid G in which the sets of objects and morphisms have both group structures
and the product map G × G→ G, (1, h) 7→ 1h, inverse G→ G, 1 7→ 1−1 and, the unit maps : {?} → G, where
{?} is singleton, are morphisms of groupoids.

In a group-groupoid G, we write 1 ◦ h for the composition of morphisms 1 and h in groupoid while 1h
for the product in group and write 1̄ for the inverse of 1 in groupoid and 1−1 for the one in group. Here
note that the product map is a morphism of groupoids if and only if the interchange rule

(1h) ◦ (kl) = (1 ◦ k)(h ◦ l)

is satisfied for 1, h, k, l ∈ G whenever one side composite is defined.
A topological group-groupoid is defined in [10, Definition 1] as a group-groupoid which is also a topological

groupoid and the structural maps of group multiplication are continuous. We define a star topological group-
groupoid as a group-groupoid which is also a star topological groupoid.

Let X be a topological space admitting a simply connected cover. A subset U of X is called liftable if U is
open, path-connected and the inclusion U→ X maps each fundamental group of U trivially. If U is liftable,
and q : Y → X is a covering map, then for any y ∈ Y and x ∈ U such that qy = x, there is a unique map
ı̂ : U → Y such that ı̂x = y and qı̂ is the inclusion U → X. A space X is called semi-locally simply connected if
each point has a liftable neighborhood and locally simply connected if it has a base of simply connected sets.

Let X be a topological space such that each path component of X admits a simply connected covering
space. It is standard that if the fundamental groupoid πX is provided with a topology as in [6], then for an
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x ∈ X the target point map t : (πX)x → X is the universal covering map of X based at x (see also Brown [5,
10.5.8]).

Let G be a topological groupoid and W an open subset of G including all the identities. As a generalization
of the construction in [8], the monodromy groupoid M(G,W) is defined as the quotient groupoid F(W) /N,
where F(W) is the free groupoid on W and N is the normal subgroupoid of F(W) generated by the elements
of the form [uv]−1[u][v] whenever uv ∈ W for u, v ∈ W. Then M(G,W) has a universal property that any
local morphism f : W → H globalizes to a unique morphism f̃ : M(G,W)→ H of groupoids.

Let G be a star topological groupoid such that each star Gx has a universal cover. The groupoid Mon(G)
is defined in [11] as the disjoint union of the universal covers of stars Gx’s at the base points identities.
Hence Mon(G) is disjoint union of the stars (π(Gx))ε(x). The object set X of Mon(G) is the same as that
of G. The source point map α : Mon(G) → X maps all stars (π(Gx))ε(x) to x, while the target point map
β : Mon(G)→ X is defined on each star (π(Gx))ε(x) as the composition of the two target point maps

(π(Gx))ε(x)
β
−→ Gx

β
−→ X.

As explained in Mackenzie [11, p.67] there is a partial composition on Mon(G) defined by

[a] • [b] = [a ? (a(1) ◦ b)]

where ?, inside the bracket, denotes the usual composition of paths and ◦ denotes the composition in the
groupoid. Here a(1) ◦ b is the path defined by (a(1) ◦ b)(t) = a(1) ◦ b(t) (0 ≤ t ≤ 1). Here we point that since
G is a star topological groupoid, the left translation is a homeomorphism. Hence the path a(1) ◦ b, which is
a left translation of b by a(1), is defined when b is a path. So the path a ? (a(1) ◦ b) is defined by

(a ? (a(1) ◦ b))(t) =


a(2t), 0 ≤ t ≤ 1

2

a(1) ◦ b(2t − 1), 1
2 ≤ t ≤ 1.

Here if a is a path in Gx from ε(x) to a(1), where β(a(1)) = y, say, and b is a path in Gy from ε(y) to b(1), then
for each t ∈ [0, 1] the composite a(1) ◦ b(t) is defined in Gy, yielding a path a(1) ◦ b from a(1) to a(1) ◦ b(1). It
is straightforward to prove that in this way a groupoid is defined on Mon(G) and that the target point map
of paths induces a morphism of groupoids p : Mon(G)→ G.

The following theorem whose Lie version is given in [4, Theorem 4.2], identifies two monodromy
groupoids M(G,W) and Mon(G) as star topological groupoids.

Theorem 2.1. Let G be a star connected topological groupoid such that each star Gx has a simply connected cover.
Suppose that W is a star path connected neighborhood of Ob(G) in G and W2 is contained in a star path connected
neighbourhood V of Ob(G) such that for all x ∈ Ob(G), Vx is liftable. Then there is an isomorphism of star topological
groupoids M(G,W)→Mon(G) and hence the morphism M(G,W)→ G is a star universal covering map.

3. Monodromy Groupoids as Star Topological Group-Groupoids

In [15, Theorem 3.10 ] it was proved that if G is a topological group-groupoid in which each star Gx has
a universal cover, then Mon(G) is a group-groupoid. We can now state the following theorem in terms of
star topological group-groupoids.

Theorem 3.1. Let G be a topological group-groupoid such that each star Gx has a universal cover. Then the
monodromy groupoid Mon(G) is a star topological group-groupoid.

Proof. If each star Gx admits a universal cover at ε(x), then each star Mon(G)x may be given a topology so
that it is the universal cover of Gx based at ε(x), and then Mon(G) becomes a star topological groupoid.
Further by the detailed proof of the Theorem [15, Theorem 3.10 ], we define a group structure on Mon(G)
by

Mon(G) ×Mon(G)→Mon(G), ([a], [b]) 7→ [ab]

such that Mon(G) is a group-groupoid. The other details of the proof follow from the cited theorem.
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The following corollary is a result of Theorem 2.1 and Theorem 3.1.

Corollary 3.2. Let G be a topological group-groupoid and W an open subset of G satisfying the conditions in Theorem
2.1, then the monodromy groupoid M(G,W) is a star topological group-groupoid.

Let TopGrpGpd be the category whose objects are topological group-groupoids and morphisms are the
continuous groupoid morphisms preserving group operation; and let STopGrpGpd be the full subcategory
of TopGrpGpd on those objects which are topological group-groupoids whose stars have universal covers.
Let StarTopGrpGpd be the category whose objects are star topological group-groupoids and the morphisms
are those of group-groupoids which are continuous on stars. Then we have the following.

Proposition 3.3.

Mon: STopGrpGpd→ StarTopGrpGpd

which assigns the monodromy groupoid Mon(G) to such a topological group-groupoid G is a functor.

Proof. We know from Theorem 3.1 that if G is a topological group-groupoid in which the stars have
universal covers, then Mon(G) is also a star topological group-groupoid. Let f : G → H be a morphism of
STopGrpGpd. Then the restriction f : Gx → H f (x) is continuous and hence by [6, Proposition 3], the induced
morphism π( f ) : π(Gx) → π(H f (x)), which is a morphism of topological groupoids, is continuous. Latter
morphism is restricted to the continuous map π( f ) : π(Gx)1x → π(H f (x))1 f (x) which is Mon( f ) : (Mon(G))x →

(Mon(H)) f (x). That means Mon( f ) is a morphism of star topological group-groupoids. The other details of
the proof is straightforward.

We need the following results in the proof of Theorem 3.6.

Proposition 3.4. ([6, Theorem 1]) If X is a locally path connected and semi-locally simply connected space, then
the fundamental groupoid πX may be given a topology making it a topological groupoid.

Theorem 3.5. ([15, Theorem 3.8]) If X and Y are locally path connected and locally simply connected topological
spaces, then π(X × Y) and π(X) × π(Y) are isomorphic as topological groupoids.

Theorem 3.6. For the topological group-groupoids G and H whose stars have universal covers, the monodromy
groupoids Mon(G ×H) and Mon(G) ×Mon(H) as star topological group-groupoids are isomorphic.

Proof. Let G and H be the topological group-groupoids such that the stars have the universal covers. Then
by Theorem 3.1, Mon(G × H) and Mon(G) × Mon(H) are star topological group-groupoids and by [15,
Theorem 2.1] we know that these groupoids Mon(G × H) and Mon(G) ×Mon(H) are isomorphic. By the
fact that the star (Mon(G))x is the star (π(Gx))ε(x) of the fundamental groupoid π(Gx) we have the following
evaluation

(Mon(G ×H))(x,y) = π((G ×H)(x,y))ε(x,y)

= (π(Gx ×Hy))ε(x,y)

' (π(Gx))ε(x) × (π(Hy))ε(y) (by Theorem 3.5)
= (Mon(G))x × (Mon(H))y

Hence we have a homeomorphism (Mon(G × H))(x,y) → (Mon(G))x × (Mon(H))y on the stars and then by
gluing these homeomorphisms on the stars we have an isomorphism f : Mon(G×H)→Mon(G)×Mon(H)
defined by f ([a]) = ([p1a], [p2a]) for [a] ∈Mon(G ×H), which is identity on objects. Here f is reduced to the
homeomorphisms on the stars and it is also a morphism of group-groupoids. Hence f is an isomorphism
of star topological group-groupoids and therefore the star topological group-groupoids Mon(G × H) and
Mon(G) ×Mon(H) are isomorphic.
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Before giving the group-groupoid version of the monodromy principle we give definition of local
morphism for group-groupoids adapted from definition of local morphism of groupoids in [14].

Definition 3.7. Let G and H be group-groupoids. A local morphism from G to H is a map f : W → H from a
subset W of G, including the identities, satisfying the conditions αH( f (u)) = f (αG(u)), βH( f (u)) = f (βG(u)),
f (u ◦ v) = f (u) ◦ f (v) and f (uv) = f (u) f (v) whenever u, v ∈W, u ◦ v ∈W and uv ∈W.

A local morphism of star topological group-groupoids is a local morphism of group-groupoids which is
continuous on the stars.

Let G and H be topological group-groupoids and W an open neighborhood of Ob(G). A local morphism
from G to H is a continuous local morphism f : W → H of group-groupoids.

We can now prove a weak monodromy principle for star topological group-groupoids.

Theorem 3.8. (Weak Monodromy Principle) Let G be a star connected topological group-groupoid and W an
open and star connected subgroup of G containing Ob(G) and satisfying the condition in Theorem 2.1. Let H be a star
topological group-groupoid and f : W → H a local morphism of star topological group-groupoids which is identity on
Ob(G). Then f globalizes uniquely to a morphism f̃ : M(G,W)→ H of star topological group-groupoids.

Proof. Here remark that by Corollary 3.2, M(G,W) is a star topological group-groupoid and by the construc-
tion of M(G,W) we have an inclusion map ı : W → M(G,W) and W is homeomorphic to ı(W) = W′ which
generates M(G,W). The existence of f̃ : M(G,W)→ H as a groupoid morphism follows from the universal
property of free groupoid F(W) and the fact that M(G,W) is generated by W′. Hence one needs to show
that f̃ is a group-groupoid morphism, i.e., it preserves the group operation. Let a and b be the morphisms
of M(G,W). Since W′ generates M(G,W), a and b are written as a = u1 ◦ u2 . . . ◦ un and b = v1 ◦ v2 . . . ◦ vm for
ui, v j ∈ W′. Since W is group and so also is W′ we have uivi ∈ W′ for all i. Then by the interchange rule we
have the following evaluation for m ≥ n

f̃ (ab) = f̃ ((u1 ◦ u2 . . . ◦ un)(v1 ◦ v2 . . . ◦ vm))

= f̃ (u1v1 ◦ . . . ◦ unvn ◦ 1β(un)vn+1 ◦ . . . ◦ 1β(un)vm)
= f (u1v1 ◦ . . . ◦ unvn ◦ 1β(un)vn+1 ◦ . . . ◦ 1β(un)vm)
= f (u1) f (v1) ◦ . . . ◦ f (1β(un)) f (vm)
= ( f (u1) ◦ . . . ◦ f (un))( f (v1) ◦ . . . ◦ f (vm))
= f (u1 ◦ . . . ◦ un) f (v1 ◦ . . . ◦ vm)

= f̃ (a) f̃ (b).

Since M(G,W) is generated by W′, the continuity of f̃ : M(G,W)→ H on stars follows by the continuity of
f : W → H.

As a result of Theorem 3.8 we have the following corollary.

Corollary 3.9. Let G be a star topological group-groupoid which is star connected and star simply connected and let
W be an open and star connected subgroup of G containing Ob(G) and satisfying the condition in Theorem 2.1. Let H
be a star topological group-groupoid and let f : W → H be a local morphism of star topological group-groupoids which
is identity on Ob(G). Then f globalizes uniquely to a morphism f̃ : G→ H of star topological group-groupoids.

Proof. Since G is star connected and star simply connected, Mon(G), as a star topological groupoid, becomes
isomorphic to G; and by Theorem 2.1 and Corollary 3.2 M(G,W) and Mon(G) are isomorphic as star
topological groupoids. Hence the rest of the proof follows from Theorem 3.8.
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4. Topological Structure on Monodromy Groupoid as Group-Groupoid

In this section we prove that if G is a topological group-groupoid in which each star has a universal
cover and W is a useful open subset of G, including the identities, then the monodromy groupoid M(G,W)
becomes a topological group-groupoid with the topology obtained by Theorem 4.2.

Let G be a groupoid and X = Ob(G) a topological space. An admissible local section of G, which is due to
Ehresmann [9], is a function σ : U→ G from an open subset of X such that the following holds.

1. ασ(x) = x for all x ∈ U;
2. βσ(U) is open in X;
3. βσ maps U topologically to βσ(U).

Here the set U is called domain of s and written as Ds. Let Γ(G) be the set of all admissible local sections of
G. A product defined on Γ(G) as follows: for any two admissible local sections

(st)x = (sx)(tβsx)

s and t are composable if Dst = Ds. If s is admissible local section then s−1 is also an admissible local section
βsDs → G, βsx 7→ (sx)−1.

Let W be a subset of G and let W have a topology such that X is a subspace. (α, β,W) is called enough
continuous admissible local sections or locally sectionable if

1. sα(w) = w;
2. s(U) ⊆W;
3. s is continuous from Ds to W. Such s is called continuous admissible local section.

Holonomy groupoid is constructed for a locally topological groupoid whose definition is as follows (see
[3] for a locally topological groupoid structure on a foliated manifold):

Definition 4.1. ([1, Definition 1.2]) A locally topological groupoid is a pair (G,W) where G is a groupoid
and W is a topological space such that

1. Ob(G) ⊆W ⊆ G;
2. W = W−1;
3. W generates G as a groupoid;
4. The set Wδ = (W ×α W) ∩ δ−1(W) is open in W ×α W and the restriction to Wδ of the difference map
δ : G ×α G→ G is continuous;

5. the restrictions to W of the source and target point maps α, β are continuous and (α, β,W) has enough
continuous admissible local sections.

Note that a topological groupoid is a locally topological groupoid but converse is not true.
The following globalization theorem assigns a topological groupoid called holonomy groupoid and de-

noted by Hol(G,W) or only H to a locally topological groupoid (G,W) and hence it is more useful to obtain
an appropriate topology on the monodromy groupoid. We give an outline of the proof since some details
of the construction in the proof are needed for Proposition 4.3 and Theorem 4.4.

Theorem 4.2. ([1, Theorem 2.1]) Let (G,W) be a locally topological groupoid. Then there is a topological groupoid
H, a morphism φ : H→ G of groupoids and an embedding i : W → H of W to an open neighborhood of Ob(H) such
that the following conditions are satisfied:

i) φ is the identity on objects, φi = idW , φ−1(W) is open in H,and the restriction φW : φ−1(W) → W of φ is
continuous;

ii) if A is a topological groupoid and ξ : A→ G is a morphism of groupoids such that:
a) ξ is the identity on objects;
b) the restriction ξW : ξ−1(W)→W of ξ is continuous and ξ−1(W) is open in A and generates A;
c) the triple (αA, βA,A) is locally sectionable,

then there is a unique morphism ξ′ : A→ H of topological groupoids such that φξ′ = ξ and ξ′a = iξa for a ∈ ξ−1(W).
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Proof. Let Γ(G) be the set of all admissible local sections of G. Define a product on Γ(G) by

(st)x = (sx)(tβsx)

for two admissible local sections s and t. If s is an admissible local section then write s−1 for the admissible
local section βsDs → G, βsx 7→ (sx)−1. With this product Γ(G) becomes an inverse semigroup. Let Γc(W) be
the subset of Γ(G) consisting of admissible local sections which have values in W and are continuous. Let
Γc(G,W) be the subsemigroup of Γ(G) generated by Γc(W). Then Γc(G,W) is again an inverse semigroup.
Intuitively, it contains information on the iteration of local procedures.

Let J(G) be the sheaf of germs of admissible local sections of G. Thus the elements of J(G) are the
equivalence classes of pairs (x, s) such that s ∈ Γ(G), x ∈ Ds, and (x, s) is equivalent to (y, t) if and only if
x = y and s and t agree on a neighbourhood of x. The equivalence class of (x, s) is written [s]x. The product
structure on Γ(G) induces a groupoid structure on J(G) with X as the set of objects, and source and target
point maps are [s]x 7→ x, [s]x 7→ βsx respectively. Let Jc(G,W) be the subsheaf of J(G) of germs of elements
of Γc(G,W). Then Jc(G,W) is generated as a subgroupoid of J(G) by the sheaf Jc(W) of germs of elements of
Γc(W). Thus an element of Jc(G,W) is of the form

[s]x = [s1]x1 . . . [sn]xn

where s = s1 . . . sn with [si]xi ∈ Jc(W), xi+1 = βsixi, i = 1, . . . ,n and x1 = x ∈ Ds.
Let ψ : J(G) → G be the map defined by ψ([s]x) = s(x), where s is an admissible local section. Then

ψ(Jc(G,W)) = G. Let J0 = Jc(W) ∩ kerψ. Then J0 is a normal subgroupoid of Jc(G,W); the proof is the
same as in [1, Lemma 2.2] The holonomy groupoid H = Hol(G,W) is defined to be the quotient groupoid
Jc(G,W)/J0. Let p : Jc(G,W) → H be the quotient morphism and let p([s]x) be denoted by < s >x. Since
J0 ⊆ kerψ there is a surjective morphism φ : H→ G such that φp = ψ.

The topology on the holonomy groupoid H such that H with this topology is a topological groupoid is
constructed as follows. Let s ∈ Γc(G,W). A partial function σs : W → H is defined as follows. The domain
of σs is the set of w ∈W such that βw ∈ Ds. A continuous admissible local section f through w is chosen and
the value σsw is defined to be

σsw =< f >αw< s >βw=< f s >αw .

It is proven that σsw is independent of the choice of the local section f and that these σs form a set of charts.
Then the initial topology with respect to the charts σs is imposed on H. With this topology H becomes a
topological groupoid. Again the proof is essentially the same as in Aof-Brown [1].

From the construction of the holonomy groupoid the following extendibility condition is obtained.

Proposition 4.3. The locally topological groupoid (G,W) is extendible to a topological groupoid structure on G if
and only if the following condition holds:
(1): if x ∈ Ob(G) , and s is a product s1 . . . sn of local sections about x such that each si lies in Γc(W) and s(x) = 1x,
then there is a restriction s′ of s to a neighbourhood of x such that s′ has image in W and is continuous, i.e. s′ ∈ Γc(W).

To prove that M(G,W) is a topological group-groupoid, we first prove a more general result.

Theorem 4.4. Let G be a topological group-groupoid and W an open subset of G such that

1. Ob(G) ⊆W
2. W = W−1

3. W generates G and
4. (αW , βW ,W) has enough continuous admissible local sections.

Let p : M → G be a morphism of group-groupoids such that Ob(p) : Ob(M) → Ob(G) is identity and assume that
ı : W →M is an inclusion such that pı = i : W → G and W′ = ı(W) generates M.

Then M admits the structure of a topological group-groupoid such that p : M → G is a morphism of topological
group-groupoids and maps W′ to W homeomorphically.
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Proof. As it was proved in [4, Corollary 5.6], (M,W′) is a locally topological groupoid and by Proposition
4.3 it is extendible, i.e., the holonomy groupoid H = Hol(M,W′) is isomorphic to M. Hence by Theorem
4.2, M becomes a topological groupoid such that M has the chart topology from W′. Hence the chart
open subsets of M form a base for this topology. We now prove that the difference map of product
m : M ×M→M, (a, b)→ ab−1 is continuous. We now consider the following diagram.

m−1(W′) ∩ (W′
×W′) W′

M ×M M

mW′

m

Let U be a base open subset, i.e. a chart open subset of M and U′ be the open subset of W′, which is
homeomorphic to U. Since the restriction mW′ : m−1(W′)∩ (W′

×W′)→W′ is continuous, the inverse image
(mW′ )−1(U′) is open in m−1(W′) ∩ (W′

×W′) and it is homeomorphic to an open neighbourhood of M ×M.
That means the inverse image m−1(U) is open in M ×M and hence m is continuous.

Since the locally topological groupoid (M,W′) is extendible the holonomy groupoid H = Hol(M,W′)
is isomorphic to M and hence by Theorem 4.2, p : M → G becomes a morphism of topological groupoids.
Further by assumption it is a morphism of group-groupoids. Hence p : M → G becomes a morphism of
topological group-groupoids.

As a result of Theorems 2.1 and 4.4 we can state the following corollary.

Corollary 4.5. Let G be a topological group-groupoid such that each star Gx has a universal cover. Suppose that
W is a star path connected neighborhood of Ob(G) in G satisfying the conditions in Theorem 2.1 and Theorem 4.4.
Then the monodromy groupoid Mon(G) is a topological group-groupoid such that the projection p : Mon(G)→ G is
a morphism of topological group-groupoids.

Proof. By Theorem 2.1, M(G,W) and Mon(G) are isomorphic as star topological groupoids. By Theorem
4.4, M(G,W) is a topological group-groupoid and so also is Mon(G) as required.

As a result of Corollaries 3.9 and 4.5 we can give the following theorem which we call as strong monodromy
principle for topological group-groupoids.

Theorem 4.6. ( Strong Monodromy Principle) Let G be a star connected and star simply connected topological
group-groupoid and let W be an open and star connected subgroup of G satisfying the conditions of Theorem 2.1
and Theorem 4.4. Let H be a topological group-groupoid and let f : W → H be a local morphism of topological
group-groupoids which is the identity on Ob(G). Then f extends uniquely to a morphism f̃ : G → H of topological
group-groupoids.

Proof. By Corollary 3.9, the local morphism f : W → H extends to f̃ : G → H; and by Corollary4.5 Mon(G)
and M(G,W) are isomorphic as topological group-groupoids. The continuity of f̃ follows from the fact that
f̃ is continuous on an open subset W′ which generates M(G,W).
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