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Abstract. Hammerstein integral equations have been arisen from mathematical models in various branches
of applied sciences and engineering. This article investigates an approximate scheme to solve Fredholm-
Hammerstein integral equations of the second kind. The new method uses the discrete collocation method
together with radial basis functions (RBFs) constructed on scattered points as a basis. The discrete collocation
method results from the numerical integration of all integrals appeared in the approach. We employ the
composite Gauss-Legendre integration rule to estimate the integrals appeared in the method. Since the
scheme does not need any background meshes, it can be identified as a meshless method. The algorithm
of the presented scheme is interesting and easy to implement on computers. We also provide the error
bound and the convergence rate of the presented method. The results of numerical experiments confirm
the accuracy and efficiency of the new scheme presented in this paper and are compared with the Legendre
wavelet technique.

1. Introduction

Consider the following Fredholm-Hammerstein integral equation of the second kind:

u(x) − λ
∫ b

a
K(x, y)Ψ(y,u(y))dy = f (x), a ≤ x, y ≤ b, a, b ∈ R, (1)

where the kernel function K(x, y) and the right-hand side function f (x) are given, the unknown function u(x)
must be determined, λ ∈ R is a non-zero constant and the known function Ψ is continuous and nonlinear
respect to the variable u. Many problems of mathematical physics, engineering and mechanics can be stated
in the form of Hammerstein integral equations [24, 42, 44]. These types of integral equations also deduce
from a reformulation of boundary value problems with a certain nonlinear boundary condition [13, 14, 21].

Several methods based on the basic functions so-called projection methods including collocation and
Galerkin methods have been given for these types of integral equations. The discrete collocation method
[11], the new collocation-type method [38, 39], the iterated Galerkin methods [37], the discrete Galerkin
method [12] and the modified iterated projection method [28] have been applied to solve nonlinear Ham-
merstein integral equations. The Nystrom method with the existence of asymptotic error expansion [9, 31],
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the Walsh-Hybrid function approach [46], the Adomian decomposition scheme [54] and the discrete Legen-
dre spectral method [16] have been described the numerical solution of nonlinear integral equations of the
second kind. Furthermore, Haar wavelets [40], rationalized Haar wavelets [22], Legendre wavelets [1, 36]
have been investigated for solving Hammerstein integral equations.

The RBFs are effective techniques for interpolating an unknown function on a scattered set of points
which have been used in the past few decades. These functions involve a single independent variable
regardless of the dimension of the problem, so applying them in higher dimensions does not increase the
difficulties. It should be mentioned that the RBF method does not require any domain elements, so it is
meshless. Firstly, Hardy [32] has studied RBFs as a multidimensional scattered interpolation method in the
modeling of the earth’s gravitational field in 1971 called multiquadrics and inverse multiquadrics. The thin
plate splines as a type of free shape parameter RBFs have been developed by Meinguet [43] and investigated
for smoothing noisy multidimensional data by Wahba [50]. Franke [27] has published a review paper in
the comparison of scattered data approximations available in early 1980.

In recent years, the implication of RBFs has been shifted from scattered data interpolation to the numer-
ical solution of partial differential equations (PDEs). RBF method has been developed for solving various
types of PDEs such as the one-dimensional nonlinear Burgers equation with shock wave [33], shallow
water equations for tide and currents simulation [34], heat transfer problems [56], parabolic equation with
nonlocal boundary conditions [49], financial mathematics problems [35], KdV equation [18], Klein-Gordon
equation [20], improved Boussinesq equation [48], sine-Gordon equation [19] and inverse wave propagation
problems [51]. The author of [52] has presented comparisons on the performances among five typical RBFs
for solving problems arising from engineering industries and applied sciences. Also, the useful research
work [53] has studied the subdomain RBF collocation method for solving fracture mechanics problems.

We would like to review some of the most recent works for the numerical solution of integral equations
utilizing the meshless methods. The meshless discrete collocation schemes have been investigated using
RBFs for solving Fredholm integral equations on non-rectangular domains with sufficiently smooth kernels
[2] and weakly singular kernels [6, 7]. The meshless product integration (MPI) method [5] has been proposed
to solve one-dimensional linear weakly singular integral equations. The moving least squares (MLS)
collocation method has been used for solving linear and nonlinear two-dimensional integral equations on
non-rectangular domains [4, 45] and integro-differential equations [17]. A local meshless Galerkin method
[3] has been utilized to solve weakly singular linear integral equations of the second kind. An MLS-based
scheme has been applied for the numerical solution of boundary integral equations [8, 41].

In this paper, we present a method for obtaining the numerical solution of the second-kind Hammerstein
integral equation (1). The method estimates the solution using the collocation method based on the use
of RBF approach. The numerical scheme developed in the current paper utilizes the Gauss-Legendre
quadrature rule for approximating integrals. We study the error analysis of the proposed method and
demonstrate that the convergence rate of the approach is arbitrarily high. The new technique is tested over
several Hammerstein integral equations and obtained results confirm the theoretical error estimates. In the
following, we list some advantages of the proposed method for solving Hammerstein integral equations:
X The method is meshless, since it requires no domain elements.
X The new algorithm is simple and computationally attractive.
X The technique obtains more accurate results using fewer bases in compared with other methods.
X The iteration methods for solving the nonlinear final system corresponding to the method have less
compactions.
X The scheme does not increase the difficulties for higher dimensional problems due to the easy adaption
of RBF.
X The approach is more flexible for most classes of Hammerstein integral equations.

The outline of the paper is as follows: In Section 2, we present a computational method for solving
Fredholm-Hammerstein integral equations of the second kind (1) utilizing the RBF scheme. In Section 3,
we provide the error analysis for the new method. Numerical examples are given in Section 4. Finally, we
conclude the article in Section 5.
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2. RBF Collocation method

In this section, the RBF collocation method is applied for solving the Fredholm-Hammerstein integral
equation of the second kind (1). We introduce the operatorsK and R on C[a, b] as

Ku(x) =

∫ b

a
K(x, y)u(y)dy, a ≤ x, y ≤ b, (2)

and

Ru(x) = Ψ(x,u(x)), a ≤ x ≤ b. (3)

We suppose that the function Ψ satisfies the following assumptions [37, 38]:

A1. There exists C1 > 0 such that

|Ψ(x,u1) −Ψ(x,u2)| ≤ C1|u1 − u2|, for all u1,u2 ∈ R.

A2. There is a constant C2 > 0 such that ∂Ψ
∂u confirms

|
∂Ψ
∂u

(x,u1) −
∂Ψ
∂u

(x,u2)| ≤ C2|u1 − u2|, for all u1,u2 ∈ R.

A3. Ψ(.,u(.)), ∂Ψ
∂u (.,u(.)) ∈ C[a, b] for u(x) ∈ C[a, b].

Therefore the integral equation (1) can be represented in operator form as

(I − λKR)u = f . (4)

Let {x1, ..., xN} be a given set of distinct nodal points selected arbitrarily in the interval [a, b]. To approximate
a function u(x) using the radial function Φ(x) = φ(|x|), we can give the following linear combination [55]:

u(x) ≈
N∑

k=1

c̄kφ(|x − xk|), x ∈ [a, b]. (5)

In this paper, we use two well-known RBFs introduced as [55]
1. The Gaussians

Φ(x) = e(−c|x|2), c > 0.

2. The inverse multiquadrics
Φ(x) = (|x|2 + c2)−1/2, c > 0.

The Gaussian and inverse multiquadrics are strictly positive definite functions on R [25]. This property
guarantees that the associated interpolation matrixes based on them are non-singular [55] although is ill-
conditioned. In most cases, the accuracy of the RBF solution depends heavily on the choice of a parameter
c known as the shape parameter [55]. Many authors have investigated the shape parameter [26]. For
example, in his original work on (inverse) multiquadric interpolation in R2 Hardy [32] suggested using
c = 0.815d, where d = (1/N)

∑N
i=1 di, and di is the distance from xi to its nearest neighbor. Later Franke [27]

suggested using c = 1.25(D/N), where D is the diameter of the smallest circle containing all data points.
Recently, the papers [29, 30] have investigated a beneficial way of finding the optimal values of the shape
parameters based on the local Taylor expansions.
The coefficients {c̄1, ..., c̄N} in the expansion (5) are determined by solving the following system that is
obtained by replacing this expansion with u(x) and pick distinct node points x1, x2, ..., xN in the integral
equation (1) as

N∑
k=1

c̄kφ(|xi − xk|) − λ
∫ b

a
K(xi, y)Ψ

y,
N∑

k=1

c̄kφ(|y − xk|)

 dy = f (xi), i = 1, ...,N. (6)
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We can represent the nonlinear system (6) in the abstract form

ūN = (I − λPNKR)ūN. (7)

The iteration methods, such as Newton’s method, for solving such cumbersome nonlinear system require
to compute several definite integrals at each step of the iteration and so, they are usually sensitive to the
selection of initial guess [38]. As a remedy, we recommend the following new approach based on the use
of the idea in [38]. Define

z(x) = Ψ(x,u(x)).

Solve the equivalent integral equation

z(x) = Ψ

(
x, f (x) + λ

∫ b

a
K(x, y)z(y)dy

)
, a ≤ x, y ≤ b, (8)

or in the abstract form

z = R( f + λKz), (9)

for unknown z(x). Then the solution of original integral equation (1) is obtained by

u(x) = f (x) + λ

∫ b

a
K(x, y)z(y)dy, a ≤ x, y ≤ b. (10)

Therefore we can rewrite the integral equation (10) in the operator form as

u = f + λKz. (11)

Similarly, we estimate the unknown function z(x) by selecting N nodal points on the interval [a, b] such as
a ≤ x1 < x2 < ... < xN ≤ b, and using the RBF φ as follows:

z(x) ≈ z̄N(x) =

N∑
k=1

z̄kφ(|x − xk|), a ≤ x ≤ b. (12)

We replace the expansion (12) with z(x) and pick distinct node points x1, x2, ..., xN in the integral equation
(8) which conclude the following nonlinear system:

N∑
k=1

z̄kφ(|xi − xk|) = Ψ

xi, f (xi) + λ
N∑

k=1

z̄k

∫ b

a
K(xi, y)φ(|y − xk|)dy

 , (13)

or in the operator form, we have

z̄N = RPN( f + λK z̄N). (14)

The discrete collocation methods result from the numerical integration of all integrals in the system (13).
In this situation, an advantage of the method proposed in this paper is that the internal integrals on the
right side of (13) need to be calculated once only, since they are dependent only on the basis (not on the
unknowns) and result in a closed set of algebraic nonlinear equations for the N unknowns [38]. In the
current work, we use a composite qN-point Gauss-Legendre rule for singular integrals with M non-uniform
subdivisions. Suppose that f (x) is defined on (a, b) satisfies

| f (2qN)(x)| ≤ C, (15)

for all x ∈ (a, b). Then, for any given integer M > 0,∫ b

a
f (x)dx =

∆x
2

M∑
q=1

∫ 1

−1
f
(
∆x
2

x + (q −
1
2

)∆x
)

dx + O(
1

M2qN
), (16)
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where ∆x = b−a
M . Now, we apply qN-point Gauss-Legendre quadrature rule relative to the coefficients {θk}

and weights {wk} in the interval [−1, 1] to approximate integrals in (16), we obtain∫ b

a
f (x)dx =

M∑
q=1

qN∑
k=1

wk
∆x
2

f (θq
k) + O(

1
M2qN

), (17)

where θq
k = ∆x

2 v` + (q − 1
2 )∆x. It should be noted that φ(|y − xk|) are smooth on [a, b], that is, they are

several times continuously differentiable on [a, b] [10]. Therefore, we can use the composite qN-point Gauss-
Legendre rule with M uniform subdivisions relative to the coefficients {v`} and weights {w`} in the interval
[−1, 1] as∫ b

a
K(xi, y)z(y)dy ≈

M∑
q=1

qN∑
k=1

wk
∆hq

2
K(xi, θ

q
k)z(θq

k), (18)

where ∆x = b−a
M and θq

k = ∆x
2 v` + (q − 1

2 )∆x.
Based on the use of composite qN-point Gauss-Legendre quadrature rule using M subintervals relative to
the coefficients {yk} and weights {wk} in the interval [−1, 1], a sequence of numerical integral operators KN
on C2qN [a, b] is also introduced from the quadrature rule (18) by

KNu(x) =
∆x
2

qN∑
k=1

wk

M∑
q=1

K(x, θq
k)z(θq

k), N ≥ 1, (19)

where ∆x = b−a
M and τq

` = ∆x
2 v` + (q − 1

2 )∆x.
It should be mentioned that {KN} is a collectively compact set and converges pointwise [23, 36], moreover
for every u ∈ C(2qN)[a, b] and K ∈ C(2qN)([a, b] × [a, b]), we have [23]

‖Ku −KNu‖∞ ≤
CN

M2qN
sup

x∈[a,b]
|u(2qN)(x)|. (20)

We assume thatKN, N ≥ 1 on C[a, b] for approximatingK satisfy the following hypotheses [9, 11]:
H1. K andKN, N ≥ 1, are completely continuous nonlinear operators on C[a, b].
H2. KN, N ≥ 1 is a collectively compact family on C[a, b], i.e., for every bounded set B ⊂ C[a, b], the closure
of the set ∪∞N=1KN(B) is compact in C[a, b].
H3. KN is pointwise convergent toK on C[a, b], i.e,KN(u)→ K (u), u ∈ C[a, b].
H4. At each point of C[a, b], {KN} is an equicontinuous family.
H5. K andKN, N ≥ 1 are twice Frechet differentiable on the ball B(u0, r) and moreover

‖K
′′

N‖ ≤ α < ∞, N ≥ 1, u ∈ B(u0, r). (21)

Utilizing the numerical integration scheme (18) in the system (13) yields the nonlinear system of algebraic
equations

N∑
k=1

ẑkφ(|xi − xk|) = Ψ

xi, f (xi) + λ
N∑

k=1

ẑk

M∑
q=1

qN∑
k=1

wk
∆hq

2
K(xi, θ

q
k)z(θq

k)

 , i = 1, ...,N, (22)

for the unknowns {ẑ1, ..., ẑN}. The solution of this system eventually leads to the following numerical
solution which can be approximated z(x) as:

ẑN(x) =

N∑
j=1

ẑ jφ(|x − x j|), a ≤ x ≤ b. (23)
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We can represent the final systems (22) in the abstract form as

ẑN = RPN( f + λKN ẑN). (24)

Finally, we find the numerical solution of the integral equation (1) by

ûN(x) = f (x) + λ
∆x
2

qN∑
k=1

wk

M∑
q=1

K(x, θq
k)ẑN(θq

k)

= f (x) + λ
∆x
2

qN∑
k=1

wk

M∑
q=1

K(x, θq
k)

N∑
j=1

c̄ jφ(|θq
k − x j|). (25)

In other words, the solution of proposed scheme in the current paper is gotten by

ûN = f + λKNzN.

3. Error estimate

This section describes the error estimate and the convergence rate of the new scheme. We first present
the error estimate of RBFs interpolation in terms of the fill distance parameter which mostly follows from
[15, 55]. All strictly positive definite functions give rise to reproducing kernels with respect to some Hilbert
space which are named native Hilbert spaces.

Definition 3.1. [55] Suppose Φ ∈ C(Rd) ∩ L1(Rd) is a real-valued strictly positive definite function. Then the real
native Hilbert space respect to reproducing kernel Φ(· − ·) is

ℵΦ(Rd) = { f ∈ C(Rd) ∩ L2(Rd) :
f̂
√

Φ̂
∈ L2(Rd)}, (26)

with inner product

< f , 1 >ℵΦ(Rd)=
1
√

2π
<

f̂
√

Φ̂
,
1̂
√

Φ̂
>L2(Rd)=

1
√

2π

∫
Rd

f̂ (w)1̂(w)
√

Φ̂
dw, (27)

where f̂ denotes Fourier transform of f . Furthermore, every f ∈ ℵΦ(Rd) has the representation

f (x) =
1
√

2π

∫
Rd

f̂ (w)eixwdw.

From Definition 3.1, we concluded that the native spaces can be regarded as an extension of the standard
Sobolev spaces. In other words, if the Fourier transform of strictly positive definite function Φ decays only
algebraically, then the function Φ has a corresponding Sobolev space as its native space [25, 55].
We now present some definitions [15, 55] that are important to measure the quality of data points and to
estimate the error of RBF interpolation method.

Definition 3.2. The fill distance of a set of points X = {x1, ..., xN} ⊆ [a, b] for a bounded domain D is defined by

hX = sup
a≤x≤b

min
0≤ j≤N

‖x − x j‖2.

Definition 3.3. The separation distance of X = {x1, ..., xN} is defined by

qX =
1
2

min
i, j
‖xi − x j‖2.

The set X is said to be quasi-uniform with respect to a constant c > 0 if qX ≤ hX ≤ cqX [25].
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The collocation operator PN : C[a, b] → CN[a, b] for RBF Φ(x) = φ(|x|) is defined by the following linear
combination [55]:

PNu(x) =

N∑
k=1

ckφ(|x − xk|), a ≤ x ≤ b, (28)

where where the coefficients {ck}
N
k=1 are determined by the interpolation conditions

PNu(xi) = u(xi), i = 1, ...,N, (29)

and
CN[a, b] = span{φ(|x − x1|), ..., φ(|x − xN |)}.

We are ready to represent the convergence theorem for approximating a function u ∈ ℵΦ[a, b] by the RBF
approach [55].

Theorem 3.4. [55] Assume the interpolant of a function u ∈ ℵΦ[a, b] is based on the positive definite RBF Φ and the
distinct set X = {x1, ..., xN}. Then for every l ∈N there exist constants h0(l),Cl such that

‖u − PNu‖∞ ≤ Clhl
X|u|ℵΦ[a,b], (30)

provided hX ≤ h0(l).

Remark 3.5. [25] As a conclusion from Theorem 3.4, for the sufficiently small hX, some positive constant c and
u ∈ ℵΦ[a, b], we list the error bound as follows:
For Gaussians, we have

‖u − PNu‖∞ ≤ e(
−c| log hX,D |

hX
)
|u|ℵΦ[a,b]. (31)

For inverse multiquadrics, we give

‖u − PNu‖∞ ≤ e( −c
hX,D

)
|u|ℵΦ[a,b]. (32)

Therefore the convergence rates will be arbitrarily high algebraic for infinitely smooth RBFs such as Gaussians and
inverse multiquadrics and for RBFs with limited smoothness, the approximation order of the method is limited by the
degree of smoothness (see [55], Chapter 11 for details).

Let Tu = u be a fixed point problem on C[a, b] and T be a nonlinear compact operator on C[a, b]. Define
the approximating operator TN on C[a, b] to estimate the operator T. The required hypotheses on T and
TN, N ≥ 1 are listed and labeled in the following [9, 11]:
(i) T and TN, N ≥ 1, are completely continuous nonlinear operators on C[a, b].
(ii) TN, N ≥ 1 is a collectively compact family on C[a, b].
(iii) TN is pointwise convergent to T on C[a, b], i.e, TN(u)→ T(u), u ∈ C[a, b].
(iv) At each point of C[a, b], {TN} is an equicontinuous family.
(v) T and TN, N ≥ 1 are twice Frechet differential on the ball B(u0, r), r > 0 and moreover

‖T
′′

N‖ ≤ α < ∞, N ≥ 1, u ∈ B(u0, r). (33)

Lemma 3.6. Suppose (i)-(v). Let z0 be a fixed point of T, and assume that 1 is not an eigenvalue of T′(z0), where
T′(z0) denotes the Frechet derivative of T at z0. If (v) is satisfied on B(z0, r) ⊆ C[a, b], then u0 is a fixed point, of the
nonzero index. Moreover, there are ε,M > 0 such that for every N > M, TN has a unique fixed point zN in B(u0, ε).
Also, there is a constant γ2 > 0 such that

‖zN − z0‖∞ ≤ γ1‖Tz0 − TNz0‖∞, N ≥M. (34)



P. Assari / Filomat 33:3 (2019), 667–682 674

Consider the nonlinear operators Tz and TNz on C[a, b] as follows:

Tz ≡ R(Kz + f ),

and
TNz ≡ PNR(KNz + f ).

Assuming thatK andKN satisfies H1-H5, it is shown in [11] that T and TN also satisfies (i)-(v).
We are ready to consider the convergence theorem about the presented method.

Theorem 3.7. Suppose that the assumptions of Theorem 3.4 and Lemma 3.6 hold. Let the Hammerstein integral
equation (1) have a unique solution u0 ∈ ℵΦ[a, b]∩C2qN [a, b]. Assume that 1 is not an eigenvalue of R′(Kz0 + f )K ′,
whereK ′ and R′ indicates the Frechet derivatives at z0. Thus there are ε, M̄ > 0 such that the proposed method has a
unique solution ūN in the ball B(u0, ε) for every N > M̄. Moreover there exist positive constants C1,CP,CK,CN, γ1, h0,
provided that hX,D ≤ h0 such that

‖ûN − u0‖∞ ≤ CK|λ|γ1Clhl
X|υ0|ℵΦ[a,b] + (CKγ1CPC1 + 1)

|λ|CN

M2qN
sup

x∈[a,b]
|z(2qN)

0 (x)|, (35)

where υ0 ≡ R(Kz0 + f ).

Proof. By considering ûN = f + λKN ẑN, we have

‖ûN − u0‖∞ ≤ ‖( f + λKN ẑN) − ( f + λKz0)‖∞ = |λ|‖KN ẑN −Kz0‖∞

≤ |λ|‖KN ẑN −KNz0‖∞ + |λ|‖KNz0 −Kz0‖∞, (36)

so it is concluded that

‖ûN − u0‖∞ ≤ |λ|‖KN‖‖ẑN − z0‖∞ + |λ|‖KNz0 −Kz0‖∞. (37)

Since the family KN is the pointwise convergence to K , there exists a constant M2 > 0 such that for every
N > M2 we have ‖KNz0 −Kz0‖ < ε and from the principle of uniform boundedness [10], it can be supposed
that ‖KN‖ ≤ CK. Therefore

‖ûN − u0‖∞ ≤ |λ|CK‖ẑN − z0‖∞ + |λ|‖KNz0 −Kz0‖∞. (38)

Since 1 is not an eigenvalue of T′ ≡ R′(Kz0 + f )K ′, this can be immediately obtained from Lemma 3.6 that
there exists a unique solution zN ∈ B(z0, ε) (i.e., there is a constant M1 > 0 such that for every N > M1 we
have ‖ẑN − z0‖∞ < ε), such that

‖ẑN − z0‖∞ ≤ γ1‖Tz0 − TNz0‖∞ = γ1‖R(Kz0 + f ) − PNR(KNz0 + f )‖∞.

On the other hand, we have

‖ẑN − z0‖∞ ≤ γ1‖R(Kz0 + f ) − PNR(Kz0 + f )‖∞ + γ1‖PNR(Kz0 + f ) − PNR(KNz0 + f )‖∞
≤ γ1‖υ0 − PNυ0‖∞ + γ1‖PN‖‖R(Kz0 + f ) − R(KNz0 + f )‖∞,

where υ0 ≡ R(Kz0 + f ). From the principle of the uniform boundedness (see [10], Theorem A.3 in the
Appendix), we conclude that

CP = sup
N∈N
‖PN‖ < ∞. (39)

Also, from the assumption (A1) on the Fredholm-Hammerstein integral equation (1), we have

‖R(Kz0 + f ) − R(KNz0 + f )‖∞ ≤ C1‖Kz0 −KNz0‖∞. (40)

Therefore, using (39) and (40) results that

‖ẑN − z0‖∞ ≤ γ1‖υ0 − PNυ0‖∞ + γ1CPC1‖Kz0 −KNz0‖∞. (41)
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By substituting (41) in (38), we obtain

‖̂uN − u0‖∞ ≤ CKγ1‖υ0 − PNυ0‖∞ + (CKγ1CPC1 + 1)‖Kz0 −KNz0‖∞.

Choosing M̂ = max{M1,M2}, we deduce that ûN, for N > M, within B(u0, ε̂), is the unique solution of the
proposed method, because

‖ûN − u0‖∞ ≤ (C2ε + ε) = ε̂. (42)

It is seen z0(x) = Φ(x,u0(x)) in ℵΦ[a, b] ∩ C2qN [a, b], because Φ is a well-behaved function on [a, b] × R and
u0 ∈ ℵΦ[a, b] ∩ C2qN [a, b]. Finally using Theorem 3.4 and the error bound (20), we have

‖ûN − u0‖∞ ≤ CK|λ|γ1Clhl
X|υ0|ℵΦ[a,b] + (CKγ1CPC1 + 1)

|λ|CN

M2qN
sup

x∈[a,b]
|z(2qN)

0 (x)|.

Since, hX,D → 0 as N → ∞ (justified by the quasi-uniform condition on X), yields ûN → u0. This completes
the proof.

4. Numerical examples

To study the accuracy and efficiency of the new method, we have solved four test problems involving
Hammerstein integral equations. The Gaussians (GAs) and the inverse multiquadrics (IMQs) are applied
for solving these types of integral equations. In computations, we put c = 0.11×

√
N for GAs and c = 3

√
N

for
IMQs based on the discussion on selection shape parameter in [2, 26]. We utilize 10-points composite Gauss-
Legendre quadrature formula with subdivisions M = 10 to compute integrals in the scheme. Furthermore,
the numerical results are compared with the method presented in [36] based on the use of Legendre
wavelets ψnm(x) = ψ(k,m, x), in which k = 2, 3, ... and m = 0, 1, ...,M − 1. Wavelets as localized functions are
useful for solving nonlinear integral equations [1, 36]. We have obtained the following conclusions by this
comparison:
X The Legendre wavelet method leads to a larger system with n = M2k−1 unknowns instead of the proposed
method.
X The obtained results of the presented scheme are better than the results given by the Legendre wavelet
method.
X The proposed method has a simple algorithm based on some random nodes over the [a, b] in compared
with the Legendre wavelet method.
X The convergence rates of the proposed method are higher than the convergence rates of the Legendre
wavelet method.
We have measured the accuracy of presented technique by the maximum error ‖eN‖∞ and the mean error
‖eN‖2 which can be defined as follows:

‖ek‖∞ = max
x∈[a,b]
{|uex(x) − ûN,M(x)|}, ‖ek‖2 =

(∫ b

a
|uex(x) − ûN,M(x)|2dx

) 1
2

,

where the exact solution uex(x) is estimated by the numerical solution ûN,M(x) obtained by the current paper.
The convergence rates of the presented scheme have been also reported by

Ratio =
ln(‖eN‖∞) − ln(‖eN′‖∞)

ln(N′) − ln(N)
.

We have written all routines in ”Maple” software with the ”Digits” 20 (Digits environment variable controls
the number of digits in Maple) and a Laptop with 2.10 GHz of Core 2 CPU and 4 GB of RAM has been used
to run these. To solve the final nonlinear system of algebraic equations the ”Fsolve” command has been
employed based on the use of floating-point arithmetic. In this command, the selection of initial guesses
is very important for converge issue. Here, for N ≤ 6, we choose the zero vector of length N as initial
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Figure 1: Absolute error distributions of Example 4.1

Table 1: Some numerical results for Example 4.1

N GA IMQ Legendre wavelet
‖eN‖2 ‖eN‖∞ Ratio ‖eN‖2 ‖eN‖∞ Ratio n ‖eN‖2 ‖eN‖∞

3 1.65 × 10−3 2.46 × 10−3
− 8.36 × 10−3 1.15 × 10−2

− 3 4.86 × 10−3 1.12 × 10−2

6 1.16 × 10−5 3.27 × 10−5 4.71 5.41 × 10−5 1.61 × 10−4 6.15 6 1.34 × 10−3 3.08 × 10−3

9 1.87 × 10−7 5.53 × 10−7 8.68 1.64 × 10−6 6.18 × 10−6 8.05 12 2.14 × 10−4 4.93 × 10−4

12 2.51 × 10−9 7.52 × 10−9 14.49 7.92 × 10−8 2.43 × 10−7 11.24 24 9.95 × 10−6 2.29 × 10−5

15 3.64 × 10−11 1.09 × 10−11 17.53 5.31 × 10−9 1.01 × 10−8 14.28 48 3.56 × 10−6 8.20 × 10−6

18 4.15 × 10−13 1.42 × 10−12 22.37 8.05 × 10−11 3.15 × 10−10 19.03 96 5.08 × 10−7 1.15 × 10−6

guesses [2]. Also, to select the initial guesses for N > 6, we apply the obtained solutions corresponding
to the nodal points whose number is less than N. In other words, we assume that ûτ is the approximate
solution which is obtained by the presented method for τ < N, then consider the following linear system
of algebraic equations

N∑
k=1

c(0)
k φ(|xi − xk|) = ûτ(xi), i = 1, ...,N, (43)

The initial value may be chosen as the solution of system (43), i.e, û(0) = [c(0)
1 , ..., c

(0)
N ]t. Next, we increase the

value of τ until a satisfactory convergence is achieved [2].

Example 4.1. Consider the following Fredholm-Hammerstein integral equation of the second kind:

u(x) −
∫ ln 3

0

ln(1 + x2 + y2)
x2y + π

sinh(u(y) + y)
y2 cosh(y) + 1

dy = f (x), 0 ≤ x ≤ ln 3, (44)

where the function f (x) has been so chosen that the exact solution is

uex(x) =
x

√

1 + x2
.

The traditional methods take difficulty for numerically solving this problem, but using some nodes scattered
over the interval [0, ln 3], this problem could be solved using the meshless method proposed in this paper.
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Figure 2: Absolute error distributions of Example 4.2

Table 2: Some numerical results for Example 4.2

N GA IMQ Legendre wavelet
‖eN‖2 ‖eN‖∞ Ratio ‖eN‖2 ‖eN‖∞ Ratio n ‖eN‖2 ‖eN‖∞

3 3.85 × 10−3 6.55 × 10−3
− 1.34 × 10−2 2.12 × 10−2

− 3 1.84 × 10−3 4.18 × 10−3

6 1.90 × 10−5 4.95 × 10−5 5.33 2.08 × 10−4 6.22 × 10−4 5.08 6 2.87 × 10−4 6.62 × 10−4

9 1.06 × 10−7 3.89 × 10−7 10.30 1.61 × 10−5 3.46 × 10−5 7.12 12 1.42 × 10−5 3.27 × 10−5

12 9.32 × 10−10 4.02 × 10−9 14.35 5.99 × 10−7 1.40 × 10−6 11.13 24 3.97 × 10−6 9.14 × 10−6

15 8.89 × 10−12 4.54 × 10−11 18.59 2.31 × 10−8 4.85 × 10−8 15.08 48 6.39 × 10−7 1.47 × 10−6

18 9.70 × 10−14 5.26 × 10−13 22.95 4.82 × 10−10 9.69 × 10−10 21.45 96 6.12 × 10−8 1.34 × 10−7

Table 1 shows results in terms of ‖e‖2, ‖e‖∞ and the rate of convergence for different numbers of N utilizing
GAs and IMQs. Also, the results are compared with the method in [36] based on the use of Legendre wavelets
for solving Hammerstein integral equations. As we expected from Theorem 3.7, the results converge to
the exact values of O(hl

X,D) where the used RBF is 2l times continuously differentiable [55]. Since GAs and
IMQs are several times continuously differentiable, the convergence rate of method is arbitrarily high. We
compared the obtained errors for different numbers of N in Figure 1.

Example 4.2. In this example, we solve the integral equation

u(x) −
∫ e

0

ex+y+3

x2 + 1

√
u2(y) + 1

y2 + π
dy = f (x), 0 ≤ x ≤ e, (45)

where the function f (x) has been so chosen that the exact solution is

uex(x) = (x2 + 1) ln(1 + x).

Table 2 shows results in terms of ‖e‖2, ‖e‖∞ and the rate of convergence for different numbers of N utilizing
GAs and IMQs. To compare the presented method, we also solve the integral equation utilizing the Legendre
wavelet method [36] and the numerical results are given in this table. By increasing the number of nodes,
the numerical results converge to the exact values with high order and these confirm the theoretical error
estimates. We also compared the obtained errors for different numbers of N in Figure 2.
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Figure 3: Absolute error distributions of Example 4.3

Example 4.3. Consider the following second-kind Hammerstein integral equation:

u(x) −
∫ π

2

0

√
x2 + y

x2 + xy + π
ln

(
1 +

u(y)
ey + 1

)
dy = f (x), 0 ≤ x ≤

π
2
, (46)

where the function f (x) has been so chosen that the exact solution is

uex(x) = sin(
x

x + 1
).

Table 3 shows results in terms of ‖e‖2, ‖e‖∞ and the rate of convergence for different numbers of N utilizing
GAs and IMQs. Also, the results are compared with the method in [36] based on the use of Legendre wavelets
for solving Hammerstein integral equations. It is seen that the obtained numerical results converge to the
exact solution by increasing the nodal point selected randomly on [0, π2 ]. Also, it should be noted that from
Theorem 3.7, for sufficiently large qN, the error of the RBF interpolation is dominated over the integration
error. Therefore, increasing the number of nodes in numerical integration method has no significant effect
on the error. We compared the obtained errors for different numbers of N in Figure 3.

Example 4.4. We consider the following Fredholm-Hammerstein integral equation:

u(x) −
∫ 1

0

(x + y)2

ex+y2+π

u(y)
1 + u(y)

dy = f (x), 0 ≤ x ≤ 1, (47)

where the function f (x) has been so chosen that the exact solution is

uex(x) = (x3 + 1)e
x

x+1 .

Table 4 shows results in terms of ‖e‖2, ‖e‖∞ and the rate of convergence for different numbers of N utilizing
GAs and IMQs. To compare the presented method, we also solve the integral equation utilizing the
Legendre wavelet method [36] and the numerical results are given in this table. The results obtained in
this example demonstrate that the method can be easily used for various kinds of Hammerstein integral
equations. We compared the obtained errors for different numbers of N in Figure 4.
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Table 3: Some numerical results for Example 4.3

N GA IMQ Legendre wavelet
‖eN‖2 ‖eN‖∞ Ratio ‖eN‖2 ‖eN‖∞ Ratio n ‖eN‖2 ‖eN‖∞

3 1.89 × 10−3 3.21 × 10−3
− 2.30 × 10−2 3.51 × 10−2

− 3 2.33 × 10−3 5.98 × 10−3

6 7.99 × 10−6 2.04 × 10−5 5.52 3.11 × 10−4 9.30 × 10−4 5.23 36 3.56 × 10−4 9.17 × 10−4

9 3.15 × 10−8 1.13 × 10−7 11.05 2.57 × 10−5 5.42 × 10−5 7.01 12 4.76 × 10−5 1.24 × 10−4

12 1.79 × 10−10 7.50 × 10−10 0.866 8.61 × 10−7 1.57 × 10−6 12.31 24 6.31 × 10−6 1.64 × 10−5

15 9.23 × 10−13 4.59 × 10−12 0.744 1.17 × 10−8 5.33 × 10−8 15.17 48 9.22 × 10−7 2.41 × 10−6

18 5.15 × 10−15 2.69 × 10−14 0.707 8.59 × 10−10 1.48 × 10−9 19.64 96 1.14 × 10−7 2.87 × 10−7

Figure 4: Absolute error distributions of Example 4.4

Table 4: Some numerical results for Example 4.4

N GA IMQ Legendre wavelet
‖eN‖2 ‖eN‖∞ Ratio ‖eN‖2 ‖eN‖∞ Ratio n ‖eN‖2 ‖eN‖∞

3 8.23 × 10−3 1.41 × 10−2
− 3.42 × 10−2 5.69 × 10−2

− 3 2.02 × 10−2 4.87 × 10−2

6 6.21 × 10−4 1.68 × 10−4 4.83 7.56 × 10−4 2.10 × 10−3 3.59 6 3.59 × 10−3 7.79 × 10−3

9 5.62 × 10−7 2.09 × 10−6 9.33 4.01 × 10−5 9.56 × 10−5 6.57 12 5.48 × 10−4 1.18 × 10−3

12 6.71 × 10−9 2.90 × 10−8 13.42 9.81 × 10−7 2.51 × 10−6 11.44 24 7.53 × 10−5 1.62 × 10−4

15 8.09 × 10−11 4.21 × 10−10 17.56 2.39 × 10−8 7.66 × 10−8 14.45 48 9.93 × 10−6 2.14 × 10−5

18 1.12 × 10−12 5.89 × 10−12 21.97 8.17 × 10−10 2.03 × 10−9 18.69 96 1.24 × 10−6 2.57 × 10−6
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Figure 5: Absolute error distributions of Example 4.5

Table 5: Some numerical results for Example 4.5

N GA IMQ Legendre wavelet
‖eN‖2 ‖eN‖∞ Ratio ‖eN‖2 ‖eN‖∞ Ratio n ‖eN‖2 ‖eN‖∞

3 4.42 × 10−3 6.84 × 10−3
− 3.87 × 10−3 7.19 × 10−3

− 3 9.86 × 10−3 2.47 × 10−2

6 6.01 × 10−6 1.28 × 10−5 6.85 1.80 × 10−4 3.98 × 10−4 4.17 6 1.91 × 10−3 4.73 × 10−3

9 6.57 × 10−8 2.04 × 10−7 8.80 4.51 × 10−5 1.03 × 10−5 9.01 12 2.78 × 10−4 6.98 × 10−4

12 6.97 × 10−10 2.92 × 10−9 13.33 1.13 × 10−7 3.06 × 10−7 12.23 24 4.03 × 10−5 9.81 × 10−5

15 8.82 × 10−12 4.84 × 10−11 17.01 7.23 × 10−9 1.12 × 10−8 14.86 48 4.97 × 10−6 1.21 × 10−5

18 1.26 × 10−13 7.79 × 10−13 21.26 8.99 × 10−11 3.69 × 10−10 18.65 96 6.48 × 10−7 1.57 × 10−6

Example 4.5. As the final example, let

u(x) −
∫ sih(1)

0

sin(xy + 1)
(xy + 1)2

ey+u(y)

y2 + 1
dy = f (x), 0 ≤ x ≤ sih(1), (48)

where the function f (x) has been so chosen that the exact solution is

uex(x) =
(x2 + 1)
x + π2 .

Table 5 shows results in terms of ‖e‖2, ‖e‖∞ and the rate of convergence for different numbers of N utilizing
GAs and IMQs. Also, the results are compared with the method in [36] based on the use of Legendre
wavelets for solving Hammerstein integral equations. As we can see from Theorem 3.7, the results gradually
converge to the exact values as N→∞ of order hl

X which results converge to the exact values of arbitrarily
high, because the used RBFs in this paper are smooth. We compared the obtained errors for different
numbers of N in Figure 5.

5. Conclusion

The main purpose of this article is to investigate a computational scheme for solving Fredholm-
Hammerstein integral equations of the second kind. The method estimates the solution by the collocation
method based on the use of RBF approach. The discrete collocation method for solving integral equations
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results from the numerical integration of all integrals appeared in the method. The proposed scheme
applies a accurate quadrature formula via the Gauss-Legendre integration rule to compute integrals in the
scheme. Since the proposed method does not require any background mesh, we can call it as the meshless
discrete collocation method. We also obtain the error bound and the convergence rate of the presented
method. Finally, numerical examples are included to show the validity and efficiency of the new technique
and confirm the theoretical error estimates.
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