
Filomat 33:3 (2019), 961–970
https://doi.org/10.2298/FIL1903961Z

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. A linear viscoelastic wave equation with density and a time-varying delay term in the internal
feedback is considered. Under suitable assumptions on the relaxation function, we establish a decay result
of solution for by using energy perturbation method in the space Rn (n > 2). We extend a recent result in
Feng [10].

1. Introduction and position of problem

It is well known that the PDEs with time delay have been much studied during the last years and their
results is by now rather developed especially in the varying delay case, see [1], [7]–[9], [16]–[18], [21], and
so on. In the classical theory of delayed wave equations, several main parts are joined in a fruitful way, it is
very remarkable that the damped wave equation with varying delays occupies a similar position and arise
in many applied problems.

In this paper, we consider the following wave equation with a time-varying delay term in the internal
feedback:

utt − φ(x)
(
∆xu −

∫ t

0 1(t − s)∆xu(s)ds
)

+ µ1ut + µ2ut (x, t − τ (t)) = 0,
u (x, 0) = u0(x),ut (x, 0) = u1(x), x ∈ Rn,
ut(x, t) = f0(x, t), x ∈ Rn, t ∈ [−τ(0), 0),

(1)

where u0(x), u1(x) and f0 (x, t − τ (0)) are given initial data and the function 1 is the relaxation function. The
function φ(x) :=

(
ρ (x)

)−1 is the speed of sound at the point x ∈ Rn and the function ρ (x) is the density. The
constants µ1 and µ2 are two real numbers and the function τ(t) is the varying delay term.

We assume, on the time-delay functions, that there exist positive constants τ0 and τ such that

0 < τ0 ≤ τ (t) ≤ τ, ∀t > 0, (2)
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Moreover, we assume

τ ∈W2,∞([0,T]), ∀T > 0, (3)

τ′ (t) ≤ d < 1, ∀t > 0, (4)

where d is the positive constant.
The relaxation function 1 satisfies the following assumptions:
(G1) 1 : R+ → R+ is a C1 function satisfying

1 (0) > 0, 1 −
∫
∞

0
1 (s) ds = l > 0. (5)

(G2) There exists a non-increasing differentiable function ζ : R+ → R+ such that∫
∞

0
ζ(s)ds = +∞, 1′ (t) ≤ −ζ (t) 1 (t) , for t ≥ 0.. (6)

The modified energy functional associate with problem (1) is given by

E(t) =
1
2
‖ut(t)‖2L2

ρ
+

1
2

(
1 −

∫ t

0
1(s)ds

)
‖∇xu(t)‖22

+
1
2

(1 ◦ ∇xu)(t) +
ξ
2

∫ t

t−τ(t)

∫
Rn
ρ (x) eλ(s−t)u2

s (x, s) dxds, (7)

where and ξ > 0 will be chosen later, and the constant λ > 0, see [19], satisfies

λ <
1
τ1

∣∣∣∣∣∣log
|µ2|
√

1 − d

∣∣∣∣∣∣ .
and

(1 ◦ ∇xu)(t) =

∫ t

0
1(t − s) ‖∇xu(t) − ∇xu(s)‖2 ds, (8)

For τ (t) = τ0, system (1) has been investigated recently by many authors, where they showed the
well-posedness and stabilities results in bounded/unbounded domains (see [1], [2], [3], [5], [7], and so on).
Concerning the existence and uniqueness result, we refer the reader to read the existing works which is
not our aim interesting here (see [10], Theorem 3.1). In the present work, we extend the result in [10] to
time-varying delay.

The plan of the paper is as follows. The first section is devoted to introduce the problem. In Section 2,
we give some preliminaries and our main results. In Section 3, we shall prove the stability of energy to the
problem.

2. Preliminaries and main result

As in [11], [22], we introduce the weighted spacesD1,2 (Rn) and Lp
ρ (Rn) for our system. First we assume

the density ρ (x) : Rn
→ Rn satisfies the following conditions.

(A) ρ (x) > 0, ρ ∈ C0,γ (Rn) with γ ∈ (0, 1) and ρ ∈ L
n
2 (Rn)∩ L∞ (Rn). Now we define the weighted spaces

D
1,2 (Rn) and Lp

ρ (Rn),
(
1 < p < ∞

)
.

(1) The spaceD1,2 (Rn) is defined to be the closure of C∞0 (Rn) functions with respect
to which norm

D
1,2 (Rn) =

{
u ∈ L

2n
n−2 (Rn) : ∇xu ∈ L2 (Rn)

}
,
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equipped with the norm ‖u‖D1,2(Rn) =
∫
Rn |∇xu|2 dx.

(2) We introduce the weighted space L2
ρ (Rn) to be defined the closure of C∞0 (Rn)

functions with respect to the inner product

(u, v)L2
ρ(Rn) =

∫
Rn
ρuvdx,

and we know that L2
ρ (Rn) is a separable Hilbert space and ‖u‖2

L2
ρ(Rn)

= (u,u)L2
ρ(Rn) .

(3) If u is a measurable function on Rn, we define

‖u‖p
Lp
ρ(Rn)

(Rn) =

(∫
Rn
ρ |u|p dx

) 1
p

, for 1 < p < ∞,

and let Lp
ρ (Rn) consist of all u for which ‖u‖Lp

ρ(Rn) < ∞.
We have the following Lemma.

Lemma 2.1. [10], [11][23] Assume the function ρ satisfies (A), then for any u ∈ D1,2 (Rn)

‖u‖Lq
ρ
≤ ‖ρ‖Ls‖∇xu‖ with s =

2n
2n − qn + 2q

and 2 ≤ q ≤
2n

n − 2
. (1)

Remark 2.2. For q = 2, we have

‖u‖L2
ρ
≤ ‖ρ‖L n

2
‖∇xu‖. (2)

If ρ ∈ L
n
2 (Rn), we have

‖u‖L2
ρ
≤ c∗‖∇xu‖, (3)

where c∗ > 0 is a constant.

The main result of the present work is to establish a general decay rate of the energy, which is given by
the following theorem.

Theorem 2.3. Assume the assumptions (G1)-(G2) and |µ2| <
√

1 − dµ1 hold. Let U(0) = (u0,u1) ∈ D1,2(Rn) ×
L2
ρ(Rn) and f0(x, t) ∈ L2

ρ(Rn
× (−τ(0), 0)), then there exist two constants β > 0 and γ > 0 such that the energy

E (t) defined by (7) satisfies

E (t) ≤ βe−γ
∫ t

t0
ζ(s)ds

, ∀t ≥ 0. (4)

for ant fixed t0 > 0.

3. Proof of stability result

In this section, we show that problem (1), is uniformly exponentially stable using the multiplier tech-
nique. To achieve our goal, we need the following lemmas.

Lemma 3.1. Under the assumptions of Theorem 2.3, the modified energy functional defined by (7) satisfies for any
t ≥ 0,

E′(t) ≤

(
|µ2|

2
√

1 − d
− µ1 +

ξ
2

)
‖ut(t)‖2L2

ρ

+

(
|µ2|

2

√

1 − d −
ξ
2

e−λτ̄(1 − d)
) ∫
Rn
ρ(x)u2

t (t − τ(t))dx +
1
2

(1′ ◦ ∇xu)(t)

−
1
2
1(t)‖∇xu(t)‖22 −

ξλ
2

∫ t

t−τ(t)

∫
Rn
ρ(x)e−λ(t−s)u2

t (x, s)dxds. (1)



S. Zitouni, Kh. Zennur, L. Bouzettouta / Filomat 33:3 (2019), 961–970 964

Proof. Taking derivative of E(t), we have

E′(t) =

∫
Rn
ρ (x) ututtdx −

1
2
1(t)‖∇xu‖22 +

(
1 −

∫ t

0
1(s)ds

) ∫
Rn
∇xu∇xutdx

+
1
2

(1′ ◦ ∇xu) +

∫ t

0
1(t − s)

∫
Rn

(∇xu (t) − ∇xu (s))∇xut (t) dxds

−λ
ξ
2

∫
Rn

∫ t

t−τ(t)
ρ (x) eλ(s−t)u2

s (x, s) dxds +
ξ
2

∫
Rn
ρ (x) u2

t (x, t) dx

−
ξ
2

(1 − τ′ (t)) e−λτ(t)
∫
Rn
ρ (x) u2

t (x, t − τ (t)) dx

By using equation (1) and integration by parts, we can easily get

E′(t) =
1
2

(1′ ◦ ∇xu) −
1
2
1(t)‖∇xu‖22 − µ1

∫
Rn
ρ (x) u2

t dx +
ξ
2
‖ut‖

2
L2
ρ

−µ2

∫
Rn
ρ (x) utut (x, t − τ (t)) dx

−
ξ
2

(1 − τ′ (t)) e−λτ(t)
∫
Rn
ρ (x) u2

t (x, t − τ (t)) dx

−λ
ξ
2

∫
Rn

∫ t

t−τ(t)
ρ (x) eλ(s−t)u2

s (x, s) dxds.

By using Young’s inequality, we can get

−µ2

∫
Rn
ρut(t) · ut(t − τ(t))dx ≤

|µ2|

2
√

1 − d
‖ut‖

2
L2
ρ

+
|µ2|

2

√

1 − d
∫
Rn
ρu2

t (t − τ(t))dx,

which gives us (1). The proof is complete. �

Lemma 3.2. Under the assumptions of Theorem 2.3, let (u,ut) be the solution of problem (1). The functional F1 (t)
defined by

F1(t) =

∫
Rn
ρuutdx (2)

satisfies that there exist a positive constants κ1, κ2 and κ3 such that for any t > 0,

F′1(t) ≤ −
l
2
‖∇xu(t)‖2 + κ1 ‖ut(t)‖2L2

ρ
+ κ2

∫
Rn
ρu2

t (x, t − τ (t)) dx + κ3
(
1 ◦ ∇xu

)
(t) (3)
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Proof. It is easy to get

F′1(t) =

∫
Rn
ρu2

t dx +

∫
Rn

u∆xudx −
∫
Rn

u
∫ t

0
1(t − s)∆xu(s)dsdx

−µ1

∫
Rn
ρuutdx − µ2

∫
Rn
ρuut (x, t − τ (t)) dx

=

∫
Rn
ρu2

t dx −
∫
Rn
|∇xu|2 dx +

∫
Rn
∇xu (t)

∫ t

0
1(t − s)∇xu(s)dsdx

−µ1

∫
Rn
ρuutdx − µ2

∫
Rn
ρuut (x, t − τ (t)) dx

=

∫
Rn
ρu2

t dx +

(∫ t

0
1(s)ds − 1

)
‖∇xu‖2 − µ1

∫
Rn
ρuutdx

+

∫
Rn
∇xu (t)

∫ t

0
1(t − s) (∇xu(s) − ∇xu (t)) dsdx

−µ2

∫
Rn
ρuut (x, t − τ (t)) dx (4)

By using Young’s and Hölder’s inequalities, we arrive at for any ε > 0∫
Rn
∇xu (t)

∫ t

0
1(t − s) (∇xu(s) − ∇xu (t)) dsdx

≤ ε

∫
Rn
|∇xu|2 dx +

1
4ε

(∫ t

0
1(s)ds

) (
1 ◦ ∇xu

)
≤ ε ‖∇xu‖2 +

1 − l
4ε

(
1 ◦ ∇xu

)
. (5)

By using the same calculations and (3)we have for any ε > 0∣∣∣∣∣−µ1

∫
Rn
ρuutdx

∣∣∣∣∣ ≤ µ1εc2
∗ ‖∇xu‖2 +

µ1

4ε
‖ut‖

2
L2
ρ

(6)∣∣∣∣∣−µ2

∫
Rn
ρuut (x, t − τ (t))

∣∣∣∣∣ ≤ µ2εc2
∗ ‖∇xu‖2 +

µ2

4ε

∫
Rn

u2
t (x, t − τ (t)) dx (7)

Inserting (5)-(7) into (4), using Assumption (G1) and taking ε > 0 small enough, we can get (3) with

κ1 = 1 +
µ1

4ε
, κ2 =

µ2

4ε
, κ3 =

1 − l
4ε

.

The existence of viscoelastic term forces us to introduce the next Lemma.

Lemma 3.3. Under the assumptions of Theorem 2.3, let (u,ut) be the solution of problem(1). The functional F2 (t)
defined by

F2(t) = −

∫
Rn
ρut

∫ t

0
1(t − s) (u(t) − u (s)) dsdx (8)

satisfies that there exists a positive constant κ4 such that for any δ > 0

F′2(t) ≤

(
2δ −

∫ t

0
1(s)ds

)
‖ut(t)‖2L2

ρ
+

(
δ + 2δ (1 − l)2

)
‖∇xu(t)‖2 + κ4

(
1 ◦ ∇xu

)
(t)

−
1(0)c2

∗

4δ
(
1′ ◦ ∇xu

)
(t) + δ

∫
Rn
ρu2

t (x, t − τ (t)) dx (9)
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Proof. We derive F2(t) and use (1) to obtain

F′2(t) = −

∫
Rn

∆xu
∫ t

0
1(t − s) (u(t) − u (s)) dsdx

+

∫
Rn

(∫ t

0
1(s)∆xu(s)ds

) (∫ t

0
1(t − s) (u(t) − u (s)) ds

)
dx

+µ1

∫
Rn
ρut

∫ t

0
1(t − s) (u(t) − u (s)) dsdx

+µ2

∫
Rn
ρut (x, t − τ (t))

∫ t

0
1(t − s) (u(t) − u (s)) dsdx

−

∫
Rn
ρut

∫ t

0
1′(t − s) (u(t) − u (s)) dsdx −

∫ t

0
1(s)ds. ‖ut‖

2
L2
ρ

(10)

Using integration by parts, Young’s inequality and Hölder’s inequality, we have for any δ > 0,

∣∣∣∣∣∣−
∫
Rn

∆xu
∫ t

0
1(t − s) (∇xu(s) − ∇xu (t)) dsdx

∣∣∣∣∣∣
≤ δ ‖∇xu‖2 +

1 − l
4δ

(
1 ◦ ∇xu

)
(11)

∣∣∣∣∣∣
∫
Rn

(∫ t

0
1(t − s) (u(t) − u (s)) ds

)
.

(∫ t

0
1(t − s)∆xu(s)ds

)
dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣−
∫
Rn

(∫ t

0
1(t − s) (∇xu(t) − ∇xu (s)) ds

)
.

(∫ t

0
1(s)∇xu(s)ds

)
dx

∣∣∣∣∣∣
≤ δ

∫
Rn

(∫ t

0
1(t − s)∇xu(s)ds

)2

dx +
1
4δ

∫
Rn

(∫ t

0
1(t − s) (∇xu(t) − ∇xu (s)) ds

)2

dx

≤ 2δ
∫
Rn

(∫ t

0
1(t − s) (∇xu(t) − ∇xu (s)) ds

)2

+

(∫ t

0
1(t − s)∇xu(s)ds

)2 dx

+
1
4δ

∫
Rn

(∫ t

0
1(t − s) (∇xu(t) − ∇xu (s)) ds

)2

dx

≤

(
2δ +

1
4δ

) (∫ t

0
1(s)ds

) (
1 ◦ ∇xu

)
+ 2δ

(∫ t

0
1(s)ds

)2

‖∇xu‖2

≤

(
2δ +

1
4δ

)
(1 − l)

(
1 ◦ ∇xu

)
+ 2δ (1 − l)2

‖∇xu‖2 (12)

∣∣∣∣∣∣µ1

∫
Rn
ρut

∫ t

0
1(t − s) (u(t) − u (s)) dsdx

∣∣∣∣∣∣
≤ δ ‖ut‖

2
L2
ρ

+
c2
∗

4δ
(
1 ◦ ∇xu

)
(13)

∣∣∣∣∣∣µ2

∫
Rn
ρut (x, t − τ (t))

∫ t

0
1(t − s) (u(t) − u (s)) dsdx

∣∣∣∣∣∣
≤ δ

∫
Rn
ρu2

t (x, t − τ (t)) dx +
c2
∗

4δ
(
1 ◦ ∇xu

)
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and ∣∣∣∣∣∣−
∫
Rn
ρut

∫ t

0
1′(t − s) (u(t) − u (s)) dsdx

∣∣∣∣∣∣
≤ δ ‖ut‖

2
L2
ρ
−
1(0)c2

∗

4δ
(
1′ ◦ ∇xu

)
(14)

Combining (11)-(14) with (10), we can obtain (9) with

κ4 = (1 − l)
[(

2δ +
1
4δ

)
+

1
4δ

]
+

c2
∗

2δ

The proof of the Lemma is complete.
Define the Lyapunov functional

L(t) = E(t) + N1F1(t) + N2F2(t) (15)

where, N1 and N2 are positive constants that will be fixed later.

Lemma 3.4. For N1 > 0 and N2 > 0 small enough, we have

1
2

E(t) ≤ L(t) ≤ 2E(t) (16)

Proof. By using Hölder’s inequality, Young’s inequality and making use of the above Lemmas, and (3)
we obtain for any δ > 0

|L(t) − E(t)| ≤ N1

∫
Rn

∣∣∣ρuutdx
∣∣∣ + N2

∫
Rn

∣∣∣∣∣∣ρut

∫ t

0
1(t − s) (u(t) − u (s)) dsdx

∣∣∣∣∣∣
≤ N1

(
δ ‖ut‖

2
L2
ρ

+
c2
∗

4δ
‖∇xu‖2L2

ρ

)
+ N2

(
δ ‖ut‖

2
L2
ρ

+
c2
∗

4δ
(1 − l)

(
1 ◦ ∇xu

))
≤ δ (N1 + N2) ‖ut‖

2
L2
ρ

+
N1c2

∗

4δ
‖∇xu‖2L2

ρ
+

N2c2
∗

4δ
(1 − l)

(
1 ◦ ∇xu

)
which implies us there exists a positive constant ε > 0 such that

|L(t) − E(t)| ≤ εE(t), (17)

or

(1 − ε) E(t) ≤ L(t) ≤ (1 + ε) E(t) (18)

when we choose ε1 > 0 and ε2 > 0 small enough. The proof is complete.

Proof of Theorem 2.3. For any fixed t0 > 0, we know that for any t ≥ t0,∫ t

0
1 (s) ds ≥

∫ t0

0
1 (s) ds := 10. (19)
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Now we derive (15) and using (9), (3) and (1)

L′(t) ≤

(
|µ2|

2
√

1 − d
− µ1 +

ξ
2

+ N1κ1 + N2
(
2δ − 10

))
‖ut‖

2
L2
ρ

+

(
1
2
−N2

1(0)c2
∗

4δ

)
(1′ ◦ ∇xu) +

(
N2

(
δ + 2δ (1 − l)2

)
−N1

l
2

)
‖∇xu‖2

+

(
|µ2|

2

√

1 − d −
ξ
2

e−λτ̄(1 − d) + N1κ2 + N2δ

) ∫
Rn
ρ (x) u2

t (x, t − τ (t)) dx

−
λξ
2

∫
Rn

∫ t

t−τ(t)
ρ (x) eλ(s−t)u2

s (x, s) dxds

+ (N1κ3 + N2κ4)
(
1 ◦ ∇xu

)
. (20)

We can easily get that eλτ1 goes to 1 as λ→ 0+. Noting the continuity of the set of real numbers, we can take
λ so small that there exists a positive constant ξ such that

eλτ1 |µ2|
√

1 − d
< ξ < µ1. (21)

From (21) we infer that

|µ2|

2
√

1 − d
− µ1 +

ξ
2
< 0, (22)

and

|µ2|

2

√

1 − d −
ξ

2eλτ̄
(1 − d) < 0. (23)

We can choose 0 < δ < 10

2 such that
(
2δ − 10

)
< 0. For any fixed δ < 0, we at last choose N2 and N1 small

enough so that

N2 < min
{

2δ
1(0)c2

∗

,
1
δ

(
−
|µ2|

2

√

1 − d +
ξ
2

e−λτ̄(1 − d)
)}
, (24)

and

2N2

l

(
δ + 2δ (1 − l)2

)
< N1 < min

{
N2

κ1

(
10 − 2δ

)
,−
|µ2|

2κ2

√

1 − d +
ξ

2κ2
e−λτ̄(1 − d) −

N2δ
κ2

}
, (25)

which gives us

1
2
−N2

1(0)c2
∗

4δ
> 0,

|µ2|

2

√

1 − d −
ξ
2

e−λτ̄(1 − d) + N2δ < 0, (26)

N1κ1 + N2
(
2δ − 10

)
< 0, N2

(
δ + 2δ (1 − l)2

)
−N1

l
2
< 0, (27)

and

|µ2|

2

√

1 − d −
ξ
2

e−λτ̄(1 − d) + N1κ2 + N2δ < 0. (28)

At this point it follows that there exist two positive constants γ1 and γ2 such that for any t ≥ t0,

L′(t) ≤ −γ1E (t) + γ2
(
1 ◦ ∇xu

)
. (29)
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We multiply (29) by ζ (t) which is ζ′ (t) ≤ 0 and from (G2), we use

ζ (t)
(
1 ◦ ∇xu

)
≤ −

(
1′ ◦ ∇xu

)
≤ −2E (t)

we obtain

ζ (t)L′(t) ≤ −γ1ζ (t) E (t) + γ2ζ (t)
(
1 ◦ ∇xu

)
≤ −γ1ζ (t) E (t) − 2γ2E′ (t) . (30)

which implies

ζ (t)L′(t) + 2γ2E′ (t) ≤ −γ1ζ (t) E (t) . (31)

We note E (t) such that

E (t) = ζ (t)L′(t) + 2γ2E′ (t) ,

then E (t) is equivalent to the modified energy E (t) by using (20), which implies there exist two positive
constants β1 and β2 such that

β1E(t) ≤ E (t) ≤ β2E(t). (32)

By using (31) and (32), we infer that for any t ≥ t0,

E
′ (t) ≤ −γ1ζ (t) E (t) ≤ −

γ1

β2
ζ (t)E (t) , (33)

we get

E (t) ≤ E (t0) e−
γ1
β2

∫ t
t0
ζ(s)ds

,

which implies

E(t) ≤
β2

β1
E(t0)e−

γ1
β2

∫ t
t0
ζ(s)ds

. (34)

By renaming the constants, and by the continuity and boundedness of E(t). This completes the proof of
Theorem 2.3. �

Acknowledgments.
The authors wish to thank deeply the anonymous referee for his/here useful remarks and his/here careful
reading of the proofs presented in this paper.

References

[1] C. Abdallah, P. Dorato, J. Benitez-Read, and R. Byrne, Delayed positive feedback can stabilize oscillatory system, Proceedings of
the 1993 American Control Conference, pp. 3106–3107, San Francisco, CA, USA, 1993.

[2] A. Benaissa and S. A. Messaoudi, Global existence and energy decay of solutions for the wave equation with a time varying
delay term in the weakly nonlinear internal feedbacks, J. Math. Phys., 53(2012), 123514, 19pp.

[3] A. Benaissa, A. Benguessoum and S. A. Messaoudi, Global existence and energy decay of solutions to a viscoelastic wave equation
with a delay term in the nonlinear internal feedback, Int. J. Dyna. Sys. Differ. Equa., 5(1)(2014), 1-26.

[4] A. Beniani, A. Benaissa and Kh. Zennir, Polynomial Decay of Solutions to the Cauchy Problem for a Petrovsky-Petrovsky System
in Rn, Acta. Appl. Math. 146 (2016), pp. 67-79.

[5] Q. Dai and Z. Yang, Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay, Z.
Angew. Math. Phys., 65(2014), 885-903.

[6] M. Daoulatli, I. Lasiecka and D. Toundykov, Uniform energy decay for a wave equation with partially supported nonlinear
boundary dissipation without growth restrictions, Discrete Conti. Dyna. Syst., 2(2009), 67-95.



S. Zitouni, Kh. Zennur, L. Bouzettouta / Filomat 33:3 (2019), 961–970 970

[7] R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J.
Control Optim., 26 (1988):697–713.

[8] R. Datko, Two questions concerning the boundary control of certain elastic systems, J. Differential Equations , 92 (1)(1991):27–44,
.

[9] R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations,
SIAM J. Control Optim., 24(1), (1986):152–156.

[10] B. Feng, General decay for a viscoelastic wave equation with density and time delay term in Rn. Taiwanese J. Math. in appear
(2017).

[11] N. I. Karachalios and N. M. Stavrakakis, Existence of global attractor for semilinear dissipative wave equations on Rn, J.
Differential Equations 157 (1999) 183-205.

[12] W. J. Liu, General decay of the solution for viscoelastic wave equation with a time-varying delay term in the internal feedback.
J. Math. Phys., 54(2013), 043504.

[13] W. J. Liu, General decay rate estimate for the energy of a weak viscoelastic equation with an internal time-varying delay term,
Taiwanese J. Math., 17(2013), 2101-2115.

[14] G. Liu and H. Zhang, Well-posedness for a class of wave equation with past history and a delay, Z. Angew. Math. Phys., 67(2016),
DOI 10.1007/s00033-015-0593-z

[15] P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIM Control Optim. Calc. Var. 4(1999)419-
444.

[16] S. Nicaise, C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal
feedbacks, SIAM J. Control Optim., 45(5), (2006): 1561–1585.

[17] S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, Discrete
Contin. Dyn. Syst. Ser. S, 2, (2009): 559–581.

[18] S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differential Integral
Equations 21:9-10 (2008), 935–958.

[19] S. Nicaise and C. Pignotti, Intetior feedback stabilization of wave equations with time dependent delay, Electron. J. Differ. Equ.,
2011(41)(2011), 1-20.

[20] C. Pignotti, Stability for second-order evolution equations with memory and switching time-delay. J. Dyn. Diff. Equat., (2016),
DOI 10.1007/s10884-016-9545-3

[21] I. H. Suh and Z. Bien, Use of time delay action in the controller design, IEEE Trans. Autom. Control 25:3 (1980), 600–603.
[22] Kh. Zennir, General decay of solutions for damped wave equation of Kirchhoff type with density in Rn. Ann Univ Ferrara, 61,

(2015) 381-394.
[23] S. Zitouni and Kh. Zennir, On the existence and decay of solution for viscoelastic wave equation with nonlinear source in

weighted spaces, Rend. Circ. Mat. Palermo, II. Ser, 2016, DOI 10.1007/s12215-016-0257-7.


