Generalized Weighted Composition Operators from the Bloch-Type Spaces to the Weighted Zygmund Spaces

Ebrahim Abbasia, Hamid Vaezia

aDepartment of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.

Abstract. The boundedness and compactness of generalized weighted composition operators from Bloch-type spaces and little Bloch-type spaces into weighted Zygmund spaces on the unit disc are characterized, in this paper.

1. Introduction

Let D be the open unit disc in the complex plane \mathbb{C}, $H(D)$ the class of all analytic functions on D, and $H^\infty = H^\infty(D)$ the space of bounded analytic functions on D with the norm $\|f\|_\infty = \sup_{z \in D} |f(z)|$. For $0 < \alpha < \infty$, a function $f \in H(D)$ is said to be in the Bloch-type spaces $B^\alpha = B^\alpha(D)$, if

$$b_\alpha(f) = \sup_{z \in D} (1 - |z|^2)^\alpha |f'(z)| < \infty.$$

The space B^α becomes a Banach space under the norm $\|f\|_{B^\alpha} = |f(0)| + b_\alpha(f)$. The little Bloch-type space B^α_0, is a subspace of B^α, consisting of all $f \in H(D)$ such that

$$\lim_{|z| \to 1} (1 - |z|^2)^\alpha |f'(z)| = 0.$$

When $\alpha = 1$, $B^1 = B$ is the well-known Bloch space, while $B^1_0 = B_0$ is the well-known little Bloch space. For more information on Bloch-type spaces see [12, 13].

Every positive and continuous function on D is called a weight. Let $\mu(z)$ be a weight. The weighted Zygmund space $Z_\mu = Z_\mu(D)$ is the space of all analytic functions f on D such that

$$b_{W_\mu}(f) = \sup_{z \in D} \mu(z) |f''(z)| < \infty.$$

The space Z_μ becomes a Banach space with the following norm

$$\|f\|_{Z_\mu} = |f(0)| + |f'(0)| + b_{W_\mu}(f).$$
When \(\mu(z) = (1 - |z|^2) \), \(\mathcal{Z}_\mu = \mathcal{Z} \) is the well-known Zygmund space. More information on the Zygmund-type space on the unit disc or the unit ball, can be found in [9, 14, 17].

Let \(\varphi \) be an analytic self-map of \(\mathbb{D} \) and \(u \in H(\mathbb{D}) \). The weighted composition operator \(uC_\varphi \), which induced by \(\varphi \) and \(u \), is defined as follows

\[
(uC_\varphi f)(z) = u(z)f(\varphi(z)), \quad f \in H(\mathbb{D}), \quad z \in \mathbb{D}.
\]

If \(u(z) \equiv 1 \), then the weighted composition operator is reduced to the composition operator, usually denoted by \(C_\varphi \), while for \(\varphi(z) = z \), it is reduced to the multiplication operator, usually denoted by \(M_u \).

Let \(D \) be the differentiation operator and \(n \) be a nonnegative integer. Write

\[
Df = f', \quad D^n f = f^{(n)}, \quad f \in H(\mathbb{D}).
\]

The generalized weighted composition operator, denoted by \(D_n^{\varphi,n} \), is defined as follows (see [15, 16, 18, 20])

\[
(D_n^{\varphi,n} f)(z) = u(z)f^{(n)}(\varphi(z)), \quad f \in H(\mathbb{D}), \quad z \in \mathbb{D}.
\]

When \(n = 0 \), then \(D_n^{\varphi,n} \) becomes the weighted composition operator. If \(n = 0 \) and \(u(z) = 1 \), then \(D_n^{\varphi,n} = C_\varphi \).

If \(n = 1 \) and \(u(z) = \varphi'(z) \), then \(D_n^{\varphi,n} = DC_\varphi \). If \(n = 1 \) and \(u(z) = 1 \), then \(D_n^{\varphi,n} = C_\varphi D \).

The operators \(DC_\varphi \) and \(C_\varphi D \) were studied in [2, 5, 6, 8, 11].

Stević in [10] has found some characterizations for boundedness and compactness of generalized weighted composition operators \(D_n^{\varphi,n} \) from \(H^\infty \) and Bloch space to \(n \)th weighted-type spaces on the unit disc. In addition, Zhu in [19, 21] has found some characterizations for boundedness and compactness of operator \(D_n^{\varphi,n} \) from \(\mathcal{B} \) to \(H^\infty \) and \(\mathcal{B}^a \) to \(\mathcal{B}^b \).

Li and Stević in [7] provide some results for boundedness and compactness of \(D_n^{\varphi,n} \) from \(\mathcal{B}^a \) to \(H^\infty \). In this paper, inspired by previous works, we attempt to study boundedness and compactness of generalized weighted composition operators from \(\mathcal{B}^a \) to \(\mathcal{Z}_\mu \).

Throughout this paper, \(C \) is used to denote a positive constant which may differ from one occurrence to the other. We say that \(A \leq B \) if there exists a constant \(C \) such that \(A \leq CB \). The symbol \(A \approx B \) means that \(A \leq B \leq A \).

\section{Boundedness of \(D_n^{\varphi,n} : \mathcal{B}^a(\mathcal{B}^2_0) \rightarrow \mathcal{Z}_\mu \)}

In this section, we give some characterizations for boundedness of generalized weighted composition operators from the Bloch-type spaces into the weighted Zygmund spaces.

For \(a \in \mathbb{D} \) and \(0 < a < \infty \), set

\[
f_a(z) = \frac{1 - |a|^2}{(1 - az)^2}, \quad h_a(z) = \frac{(1 - |a|^2)^2}{(1 - az)^{3+1}}, \quad g_a(z) = \frac{(1 - |a|^2)^3}{(1 - az)^{5+2}}, \quad z \in \mathbb{D}.
\]

We have

\[
f_a^{(n)}(z) = \frac{(1 - |a|^2)a^n}{(1 - az)^{n+1}} \prod_{j=0}^{n-1} (\alpha + j),
\]

\[
h_a^{(n)}(z) = \frac{(1 - |a|^2)^2a^n}{(1 - az)^{n+1}} \prod_{j=1}^{n} (\alpha + j),
\]

\[
g_a^{(n)}(z) = \frac{(1 - |a|^2)^3a^n}{(1 - az)^{n+2}} \prod_{j=2}^{n+1} (\alpha + j).
\]
By using \(f_a\), \(h_a\) and \(g_a\), for any \(n \in \mathbb{N}\) we define \(m_{n,a}\), \(l_{n,a}\) and \(k_{n,a}\) as follows

\[
m_{n,a}(z) = f_a(z) - \frac{\alpha(2\alpha + 2n + 3)}{(\alpha + n)(\alpha + n + 2)} h_a(z) + \frac{\alpha(\alpha + 1)}{(\alpha + n)(\alpha + n + 2)} g_a(z),
\]

\[
l_{n,a}(z) = f_a(z) - \frac{2\alpha}{\alpha + n + 1} h_a(z) + \frac{\alpha(\alpha + 1)}{(\alpha + n + 1)(\alpha + n + 2)} g_a(z),
\]

\[
k_{n,a}(z) = f_a(z) - \frac{2\alpha}{\alpha + n} h_a(z) + \frac{\alpha(\alpha + 1)}{(\alpha + n)(\alpha + n + 1)} g_a(z).
\]

Lemma 2.1. For any \(a \in \mathbb{D}\) and \(n \in \mathbb{N}\), \(m_{n,a}^{(n)}(a) = m_{n,a}^{(n+2)}(a) = 0\) and

\[
m_{n,a}^{(n+1)}(a) = -\frac{\alpha^{n+1}}{(\alpha + n + 2)(1 - |a|^2)^{\alpha + n}} \prod_{j=0}^{n-1} (\alpha + j).
\]

Proof.

\[
m_{n,a}^{(n)}(a) = \frac{\alpha^n}{(1 - |a|^2)^{\alpha + n - 1}} \prod_{j=0}^{n-1} (\alpha + j) - \frac{\alpha^n}{(1 - |a|^2)^{\alpha + n - 1}} \frac{\alpha(2\alpha + 2n + 3)}{(\alpha + n)(\alpha + n + 2)} \prod_{j=1}^{n} (\alpha + j)
\]

\[+ \frac{\alpha^n}{(1 - |a|^2)^{\alpha + n - 1}} \frac{\alpha(\alpha + 1)}{(\alpha + n)(\alpha + n + 2)} \prod_{j=2}^{n+1} (\alpha + j)
\]

\[= \frac{\alpha^n}{(1 - |a|^2)^{\alpha + n - 1}} \prod_{j=0}^{n-1} (\alpha + j)(1 - \frac{2\alpha + 2n + 3}{\alpha + n + 2} + \frac{\alpha + n + 1}{\alpha + n + 2})
\]

\[= 0,
\]

\[
m_{n,a}^{(n+1)}(a) = \frac{\alpha^{n+1}}{(1 - |a|^2)^{\alpha + n}} \prod_{j=0}^{n} (\alpha + j) - \frac{\alpha^{n+1}}{(1 - |a|^2)^{\alpha + n}} \frac{\alpha(2\alpha + 2n + 3)}{(\alpha + n)(\alpha + n + 2)} \prod_{j=1}^{n+1} (\alpha + j)
\]

\[+ \frac{\alpha^{n+1}}{(1 - |a|^2)^{\alpha + n}} \frac{\alpha(\alpha + 1)}{(\alpha + n)(\alpha + n + 2)} \prod_{j=2}^{n+2} (\alpha + j)
\]

\[= \frac{\alpha^{n+1}}{(1 - |a|^2)^{\alpha + n}} \prod_{j=0}^{n-1} (\alpha + j)(\alpha + n - \frac{(2\alpha + 2n + 3)(\alpha + n + 1)}{\alpha + n + 2} + \alpha + n + 1)
\]

\[= -\frac{\alpha^{n+1}}{(\alpha + n + 2)(1 - |a|^2)^{\alpha + n}} \prod_{j=0}^{n-1} (\alpha + j)
\]

and

\[
m_{n,a}^{(n+2)}(a) = \frac{\alpha^{n+2}}{(1 - |a|^2)^{\alpha + n + 1}} \prod_{j=0}^{n+1} (\alpha + j) - \frac{\alpha^{n+2}}{(1 - |a|^2)^{\alpha + n + 1}} \frac{\alpha(2\alpha + 2n + 3)}{(\alpha + n)(\alpha + n + 2)} \prod_{j=1}^{n+2} (\alpha + j)
\]

\[+ \frac{\alpha^{n+2}}{(1 - |a|^2)^{\alpha + n + 1}} \frac{\alpha(\alpha + 1)}{(\alpha + n)(\alpha + n + 2)} \prod_{j=2}^{n+3} (\alpha + j)
\]

\[= \frac{\alpha^{n+2}}{(1 - |a|^2)^{\alpha + n + 1}} \prod_{j=0}^{n+1} (\alpha + j)(1 - \frac{2\alpha + 2n + 3}{\alpha + n} + \frac{\alpha + n + 3}{\alpha + n})
\]

\[= 0.
\]
The proofs of the next lemmas are similar to the proof of Lemma 2.1 and are omitted.

Lemma 2.2. For any \(a \in \mathbb{D} \) and \(n \in \mathbb{N} \), \(l_{n,a}^{(n)}(a) = l_{n,a}^{(n+1)}(a) = 0 \) and

\[
l_{n,a}^{(n)}(a) = \frac{2a^n}{(\alpha + n + 1)(\alpha + n + 2)(1 - |a|^2)^{n+1}} \prod_{j=0}^{n-1} (\alpha + j).
\]

Lemma 2.3. For any \(a \in \mathbb{D} \) and \(n \in \mathbb{N} \), \(k_{n,a}^{(n)}(a) = k_{n,a}^{(n+1)}(a) = 0 \) and

\[
k_{n,a}^{(n+1)}(a) = \frac{2a^{n+2}}{(1 - |a|^2)^{n+1}} \prod_{j=0}^{n-1} (\alpha + j).
\]

Theorem 2.4. Let \(n \) be a positive integer, \(0 < \alpha < \infty \), \(u \in H(\mathbb{D}) \), \(\mu \) be a weight and \(\varphi \) be an analytic self-map of \(\mathbb{D} \). Then the following statements are equivalent.

(a) The operator \(D_{\varphi,\mu}^n : \mathcal{B}_{\varphi} \rightarrow \mathcal{Z}_\mu \) is bounded.
(b) The operator \(D_{\varphi,\mu}^n : \mathcal{B}_0 \rightarrow \mathcal{Z}_\mu \) is bounded.
(c) \(\sup_{j \geq n} \beta_{j-1}||D_{\varphi,\mu}^n||_{\mathcal{B}_0} < \infty \), where \(p_j(z) = z^j \).
(d) \(u \in \mathcal{Z}_\mu \), \(\sup_{z \in \mathbb{D}} \mu(z) | u(z) | | q'v(z) |^2 < \infty \), \(\sup_{z \in \mathbb{D}} \mu(z) | 2q'v(z)u'(z) + q''v(z)u(z) | < \infty \) and

\[
\sup_{z \in \mathbb{D}} |D_{\varphi,\mu}^n f_n|_{\mathcal{Z}_\mu} < \infty, \quad \sup_{z \in \mathbb{D}} |D_{\varphi,\mu}^n h_n|_{\mathcal{Z}_\mu} < \infty, \quad \sup_{z \in \mathbb{D}} |D_{\varphi,\mu}^n g_n|_{\mathcal{Z}_\mu} < \infty,
\]

where \(f_n, h_n \) and \(g_n \) are defined in (1).

(e)

\[
\sup_{z \in \mathbb{D}} \mu(z) \left| \frac{2q'v(z)u'(z) + q''v(z)u(z)}{(1 - |q(z)|^2)^{n+1}} \right| < \infty, \quad \sup_{z \in \mathbb{D}} \mu(z) \left| \frac{u'(z)}{(1 - |q(z)|^2)^{n+1}} \right| < \infty, \quad \sup_{z \in \mathbb{D}} \mu(z) \left| \frac{q''v(z)}{(1 - |q(z)|^2)^{n+1}} \right| < \infty.
\]

Proof. (a) \(\Rightarrow \) (b) This implication is obvious.

(b) \(\Rightarrow \) (c) The sequence \(\{ p_{j-1} \}_{j=1}^{\infty} \) is bounded in \(\mathcal{B}_0 \) and \(\lim_{j \rightarrow \infty} \beta_{j-1}||p_j||_{\mathcal{B}_0} = (\frac{2}{\pi})^n \) (see Lemma 2.1 in [3]). Hence,

\[
\sup_{j \geq 1} \beta_{j-1}||D_{\varphi,\mu}^n p_j||_{\mathcal{B}_0} < \infty.
\]

Since for \(j < n \), \(D_{\varphi,\mu}^n p_j = 0 \), we obtain \(\sup_{j \geq n} \beta_{j-1}||D_{\varphi,\mu}^n p_j||_{\mathcal{Z}_\mu} < \infty \).

(c) \(\Rightarrow \) (d) Suppose (c) holds. Applying the operator \(D_{\varphi,\mu}^n \) for \(p_j \) with \(j = n, n + 1 \) and \(n + 2 \), we obtain

\[
(D_{\varphi,\mu}^n p_n)(z) = n!u(z), \quad (D_{\varphi,\mu}^n p_{n+1})(z) = (n+1)!q(z)u(z), \quad (D_{\varphi,\mu}^n p_{n+2})(z) = \frac{(n + 2)!}{2} q^2(z)u(z).
\]

Thus from (2), we have

\[
\sup_{z \in \mathbb{D}} \mu(z) |u''(z)| \leq \frac{1}{n!} ||D_{\varphi,\mu}^n p_n||_{\mathcal{Z}_\mu} < \infty.
\]

So, \(u \in \mathcal{Z}_\mu \). By using (2), we get

\[
\sup_{z \in \mathbb{D}} \mu(z) \left| q''v(z)u(z) + 2q'v(z)u'(z) + q(z)u''(z) \right| \leq \frac{1}{(n+1)!} ||D_{\varphi,\mu}^n p_{n+1}||_{\mathcal{Z}_\mu} < \infty.
\]

From the boundedness of the function \(\varphi \) and (3),

\[
\sup_{z \in \mathbb{D}} \mu(z) \left| q''v(z)u(z) + 2q'v(z)u'(z) \right| < \infty.
\]
By using (2),
\[\sup_{z \in D} \mu(z) \left| 2q'(z)^2 u(z) + 2\left(q''(z)u(z) + 2q'(z)u'(z)\right)q(z) + q^2(z)u''(z) \right| \leq \frac{2}{(n + 2)!} \| D^n_{q,p} \|_{z_p} < \infty. \]

Finally, from boundedness of the function \(q \), (3) and (4)
\[\sup_{z \in D} \mu(z) |q'(z)|^2 |u(z)| < \infty. \]

We set \(Q := \sup_{\beta \leq 1} j^{-1} \| D^n_{q,p} \|_{z_p} \). For any \(a \in D \), it is easy to check that \(f_a, h_a \) and \(g_a \) are in \(\mathcal{B}^a \). By simple calculation, we obtain
\[
\begin{align*}
 f_a(z) &= (1 - |a|) \sum_{j=0}^{\infty} \frac{\Gamma(j + \alpha)}{\beta \Gamma(\alpha)} |\bar{a}|^j z^j, \\
 h_a(z) &= (1 - |a|)^2 \sum_{j=0}^{\infty} \frac{\Gamma(j + 1 + \alpha)}{\beta \Gamma(1 + \alpha)} |\bar{a}|^j z^j, \\
 g_a(z) &= (1 - |a|)^3 \sum_{j=0}^{\infty} \frac{\Gamma(j + 2 + \alpha)}{\beta \Gamma(2 + \alpha)} |\bar{a}|^j z^j.
\end{align*}
\]

From Stirling’s formula, we have \(\frac{\Gamma(j + \alpha)}{\beta \Gamma(\alpha)} = j^{\alpha - 1} \) as \(j \to \infty \). Using linearity, we get
\[
\begin{align*}
 \| D^n_{q,p} f_a \|_{z_p} &\leq C(1 - |a|) \sum_{j=0}^{\infty} \frac{\| D^n_{q,p} \|_{z_p}}{\beta} j^{-1} \| D^n_{q,p} \|_{z_p} \leq \frac{CQ(1 - |a|^2)}{1 - |a|} \leq 2CQ, \\
 \| D^n_{q,p} h_a \|_{z_p} &\leq C(1 - |a|)^2 \sum_{j=0}^{\infty} \frac{\| D^n_{q,p} \|_{z_p}}{\beta} j^{-1} \| D^n_{q,p} \|_{z_p} \leq \frac{CQ(1 - |a|^2)^2}{1 - |a|^2} \leq 4CQ, \\
 \| D^n_{q,p} g_a \|_{z_p} &\leq C(1 - |a|)^3 \sum_{j=0}^{\infty} \frac{\| D^n_{q,p} \|_{z_p}}{\beta} j^{-1} \| D^n_{q,p} \|_{z_p} \leq \frac{CQ(1 - |a|^2)^3}{1 - |a|^3} \leq 16CQ.
\end{align*}
\]

Since \(a \) is arbitrary, so
\[\sup_{a \in D} \| D^n_{q,p} f_a \|_{z_p} < \infty, \quad \sup_{a \in D} \| D^n_{q,p} h_a \|_{z_p} < \infty \quad \text{and} \quad \sup_{a \in D} \| D^n_{q,p} g_a \|_{z_p} < \infty. \]

\((d) \Rightarrow (e)\) Assume that \((d)\) holds. Set
\[C_1 = \sup_{a \in D} \| D^n_{q,p} f_a \|_{z_p}, \quad C_2 = \sup_{a \in D} \| D^n_{q,p} h_a \|_{z_p} \quad \text{and} \quad C_3 = \sup_{a \in D} \| D^n_{q,p} g_a \|_{z_p}. \]

It is obvious that for any \(a \in D \) and \(n \in \mathbb{N} \) the functions \(m_{n,a}, h_{n,a} \) and \(k_{n,a} \) are in \(\mathcal{B}^a \). Moreover
\[
\sup_{a \in D} \| D^n_{q,p} m_{n,a} \|_{z_p} \leq \sup_{a \in D} \| D^n_{q,p} f_a \|_{z_p} + \frac{a(\alpha + 2n + 3)}{(\alpha + n)(\alpha + n + 2)} \sup_{a \in D} \| D^n_{q,p} h_a \|_{z_p} + \frac{a(\alpha + 1)}{(\alpha + n)(\alpha + n + 2)} \sup_{a \in D} \| D^n_{q,p} g_a \|_{z_p} \]
\[\leq C_1 + \frac{a(\alpha + 2n + 3)}{(\alpha + n)(\alpha + n + 2)} C_2 + \frac{a(\alpha + 1)}{(\alpha + n)(\alpha + n + 2)} C_3. \]

Hence, for any \(\lambda \in D \) it follows from Lemma 2.1 and (8) that
\[m^{(n)}_{n,\mu,\lambda}(\phi(\lambda)) = m^{(n+2)}_{n,\mu,\lambda}(\phi(\lambda)) = 0. \]
\[
\begin{align*}
\mu(\lambda) | 2\varphi'(\lambda)u'(\lambda) + \varphi''(\lambda) u(\lambda) | & \leq \frac{\mu(\lambda)^{(n+1)}}{(1 - |\varphi(\lambda)|^2)^{n+1}} \prod_{j=0}^{n+1} (\alpha + j) \mu(\lambda) \left(|2u'(\lambda)\varphi'(\lambda) + u(\lambda)\varphi''(\lambda)| \right) \|D^n_{\varphi,u,n}\|_{\mathcal{Z}_\varphi} \leq C_1 + \frac{\alpha(\alpha + 1)}{(\alpha + n)(\alpha + n + 2)} C_3.
\end{align*}
\]

So,
\[
\mu(\lambda) | \varphi(\lambda)|^{n+1} | 2\varphi'(\lambda)u'(\lambda) + \varphi''(\lambda) u(\lambda) | \leq \frac{\alpha + n + 2}{\alpha(\alpha + 1) \cdots (\alpha + n)} (C_1 + \frac{\alpha(2\alpha + 2n + 3)}{(\alpha + n)(\alpha + n + 2)} C_2 + \frac{\alpha(\alpha + 1)}{(\alpha + n)(\alpha + n + 2)} C_3).
\]

Therefore,
\[
\sup_{\lambda \in \mathbb{D}} \mu(\lambda) | \varphi(\lambda)|^{n+1} | 2\varphi'(\lambda)u'(\lambda) + \varphi''(\lambda) u(\lambda) | < \infty.
\]

For any fixed \(r \in (0, 1) \) from (10), we obtain
\[
\sup_{|\varphi(\lambda)| > r} \mu(\lambda) | 2\varphi'(\lambda)u'(\lambda) + \varphi''(\lambda) u(\lambda) | \leq \frac{1}{r^{n+1}} \sup_{|\varphi(\lambda)| > r} \mu(\lambda) | \varphi(\lambda)|^{n+1} | 2\varphi'(\lambda)u'(\lambda) + \varphi''(\lambda) u(\lambda) | < \infty.
\]

On the other hand from (d),
\[
\sup_{|\varphi(\lambda)| \leq r} \mu(\lambda) | 2\varphi'(\lambda)u'(\lambda) + \varphi''(\lambda) u(\lambda) | \leq \sup_{|\varphi(\lambda)| \leq r} \mu(\lambda) | 2\varphi'(\lambda)u'(\lambda) + \varphi''(\lambda) u(\lambda) | < \infty.
\]

For any \(\sigma \in \mathbb{D} \),
\[
\|D^n_{\varphi,u,n}\|_{\mathcal{Z}_\varphi} \leq C_1 + \frac{2\alpha}{\alpha + n + 1} C_2 + \frac{\alpha(\alpha + 1)}{(\alpha + n + 1)(\alpha + n + 2)} C_3.
\]

So, \(\sup_{\sigma \in \mathbb{D}} \|D^n_{\varphi,u,n}\|_{\mathcal{Z}_\varphi} < \infty \). From Lemma 2.2,
\[
\left(T^{n+1}_{u(\lambda),\varphi(\lambda)} \right)(\varphi(\lambda)) = 0.
\]

Hence, by a similar calculation as in (9), we obtain
\[
\begin{align*}
\mu(\lambda) | \varphi(\lambda)|^{n+1} | 2\varphi'(\lambda)u'(\lambda) + \varphi''(\lambda) u(\lambda) | \leq \frac{\alpha(\alpha + 1)}{(\alpha + n + 1)(\alpha + n + 2)} C_3.
\end{align*}
\]

Therefore,
\[
\sup_{\lambda \in \mathbb{D}} \mu(\lambda) | \varphi(\lambda)|^{n+1} | 2\varphi'(\lambda)u'(\lambda) + \varphi''(\lambda) u(\lambda) | < \infty.
\]
Moreover, and with the similar calculation as in (9), we have

\[\sup_{\lambda \in \mathcal{D}} \frac{\mu(\lambda) | u''(\lambda) |}{(1 - | \varphi(\lambda) | ^2)^{a+n-1}} < \infty. \]

For any \(a \in \mathbb{D} \),

\[\|D^n_{\varphi,a}k_{n,a}\|_{Z_\varphi} \leq C_1 + \frac{2a}{\alpha + n} C_2 + \frac{a(\alpha + 1)}{(\alpha + n)(\alpha + n + 1)} C_3. \]

(16)

Hence, \(\sup_{\varphi \in \mathbb{D}} \| D^n_{\varphi,a} k_{n,a} \|_{Z_\varphi} < \infty \). For any \(\lambda \in \mathbb{D} \), from Lemma 2.3

\[k^{(n)}_{n,\varphi(\lambda)}(\varphi(\lambda)) = k^{(n+1)}_{n,\varphi(\lambda)}(\varphi(\lambda)) = 0 \]

and with the similar calculation as in (9), we have

\[\frac{2\mu(\lambda) | \varphi(\lambda) | ^{n+2} | \varphi'(\lambda) | ^2 | u(\lambda) |}{(1 - | \varphi(\lambda) | ^2)^{a+n+1}} \leq C_1 + \frac{2a}{\alpha + n} C_2 + \frac{a(\alpha + 1)}{(\alpha + n)(\alpha + n + 1)} C_3. \]

(17)

Thus,

\[\sup_{\lambda \in \mathcal{D}} \frac{\mu(\lambda) | \varphi'(\lambda) | ^2 | u(\lambda) |}{(1 - | \varphi(\lambda) | ^2)^{a+n+1}} < \infty. \]

(18)

From (d) and (18) with similar calculation as in (11) and (12), we obtain

\[\sup_{\lambda \in \mathcal{D}} \frac{\mu(\lambda) | \varphi'(\lambda) | ^2 | u(\lambda) |}{(1 - | \varphi(\lambda) | ^2)^{a+n+1}} < \infty. \]

(e) \(\Rightarrow \) (a) Assume (e) holds. For any \(f \in \mathcal{B} \),

\[
\mu(z) \left| (D^n_{\varphi,a} f)'(z) \right| = \mu(z) \left| f^{(n+2)}(\varphi(z)) \varphi'(2z)u(z) + f^{(n+1)}(\varphi(z))(2\varphi'(z)u'(z) + \varphi''(z)u(z)) + f^{(n)}(\varphi(z))u''(z) \right|
\]

\[\leq \mu(z) \left| f^{(n+2)}(\varphi(z)) \right| \left| \varphi'(2z)u(z) \right| + \mu(z) \left| f^{(n+1)}(\varphi(z)) \right| \left| 2\varphi'(z)u'(z) + \varphi''(z)u(z) \right| + \mu(z) \left| f^{(n)}(\varphi(z)) \right| \left| u''(z) \right|
\]

\[\leq \frac{\mu(z) | \varphi'(\lambda) | ^2 | u(\lambda) |}{(1 - | \varphi(\lambda) | ^2)^{a+n+1}} C \| f \|_{\mathcal{B}_a} + \frac{\mu(z) | 2\varphi'(\lambda)u'(\lambda) + \varphi''(\lambda)u(\lambda) |}{(1 - | \varphi(\lambda) | ^2)^{a+n}} C \| f \|_{\mathcal{B}_a} + \frac{\mu(z) | u''(\lambda) |}{(1 - | \varphi(\lambda) | ^2)^{a+n-1}} C \| f \|_{\mathcal{B}_a}.
\]

(19)

In the last inequality we use the fact that Proposition 8 in [13]) for \(f \in \mathcal{B} \)

\[\sup_{-1 \leq z \leq 1} | z | | f'(z) | = | f(0) | + \cdots + | f^{(n)}(0) | + \sup_{-1 \leq z \leq 1} | z | | f^{(n+1)}(z) |.
\]

(20)

Moreover,

\[
(D^n_{\varphi,a}f)(0) = \left| \frac{f^{(n)}(\varphi(0))u(0)}{(1 - | \varphi(0) | ^2)^{a+n-1}} C \| f \|_{\mathcal{B}_a}\right|
\]

\[
(D^n_{\varphi,a}f)'(0) = \left| \frac{f^{(n+1)}(\varphi(0))\varphi'(0)u(0) + f^{(n)}(\varphi(0))u'(0)}{(1 - | \varphi(0) | ^2)^{a+n}} C \| f \|_{\mathcal{B}_a} + \left| \frac{u'(0)}{(1 - | \varphi(0) | ^2)^{a+n-1}} C \| f \|_{\mathcal{B}_a}\right|
\]

(21)

From (e), (19) and (21), we conclude that the operator \(D^n_{\varphi,a} : \mathcal{B} \rightarrow \mathcal{Z}_\mu \) is bounded. The proof is complete.
In this section, we obtain several characterizations for compactness of generalized weighted composition operators from the Bloch-type spaces into the weighted Zygmund spaces. To study compactness, we need the following lemma, which can be proved in a standard way (see, for example, Proposition 3.11 in [1]).

Lemma 3.1. Let \(n \) be a positive integer, \(0 < \alpha < \infty \), \(u \) be a weight, \(u \in H(\mathbb{D}) \) and \(\varphi \) be an analytic self-map of \(\mathbb{D} \). Then \(D^n_{\varphi,u} : \mathcal{B}^\alpha \to Z_\mu \) is compact if and only if \(D^n_{\varphi,u} : \mathcal{B}^\alpha \to Z_\mu \) is bounded and for any bounded sequence \((f_k)_{k \in \mathbb{N}} \) in \(\mathcal{B}^\alpha \), which converges to zero uniformly on compact subsets of \(\mathbb{D} \),

\[
\lim_{k \to \infty} \|D^n_{\varphi,u}f_k\|_{Z_\mu} = 0.
\]

Theorem 3.2. Let \(n \) be a positive integer, \(0 < \alpha < \infty \), \(u \in H(\mathbb{D}) \), \(\varphi \) be an analytic self-map of \(\mathbb{D} \) and \(D^n_{\varphi,u} : \mathcal{B}^\alpha \to Z_\mu \) is bounded. Then the following statements are equivalent.

(a) The operator \(D^n_{\varphi,u} : \mathcal{B}^\alpha \to Z_\mu \) is compact.

(b) The operator \(D^n_{\varphi,u} : \mathcal{B}^\alpha_0 \to Z_\mu \) is compact.

(c) \(\lim_{j \to \infty} j^{\alpha-1}\|D^n_{\varphi,u}p_j\|_{Z_\mu} = 0 \).

(d) \(\lim_{|\varphi(z)| \to 1} \|D^n_{\varphi,u}f(\varphi(z))\|_{Z_\mu} = 0 \), \(\lim_{|\varphi(z)| \to 1} \|D^{n+1}_{\varphi,u}h(\varphi(z))\|_{Z_\mu} = 0 \), \(\lim_{|\varphi(z)| \to 1} \|D^n_{\varphi,u}g(\varphi(z))\|_{Z_\mu} = 0 \).

(e) \(\lim_{|\varphi(z)| \to 1} \frac{\mu(z)}{|\varphi(z)|} \left| 2\varphi'(z)u'(z) + \varphi''(z)u(z) \right| = 0 \), \(\lim_{|\varphi(z)| \to 1} \frac{\mu(z)}{|\varphi(z)|^2} \left| u'(z) + \varphi'(z)u(z) \right| = 0 \), \(\lim_{|\varphi(z)| \to 1} \frac{\mu(z)}{|\varphi(z)|^3} \left| u(z) \right| = 0 \).

Proof. (a) \(\Rightarrow \) (b) This implication is clear.

(b) \(\Rightarrow \) (c) The sequence \(\{j^{\alpha-1}p_j\}_{j=1}^\infty \) is bounded in \(\mathcal{B}^\alpha_0 \) and converges to 0 uniformly on compact subsets of \(\mathbb{D} \).

By Lemma 3.1 it follows that \(\lim_{j \to \infty} j^{\alpha-1}\|D^n_{\varphi,u}p_j\|_{Z_\mu} = 0 \).

(c) \(\Rightarrow \) (d) Suppose (c) holds. Since for \(j < n \), \(D^n_{\varphi,u}p_j = 0 \), hence for given \(\epsilon > 0 \) there exists a positive integer \(N \geq n \), such that

\[
j^{\alpha-1}\|D^n_{\varphi,u}p_j\|_{Z_\mu} < \epsilon,
\]

for all \(j \geq N \). Also, from Theorem 2.4 (c), \(Q = \sup_{|z| < 1} j^{\alpha-1}\|D^n_{\varphi,u}p_j\|_{Z_\mu} < \infty \). Let \(\{z_k\}_{k \in \mathbb{N}} \) be a sequence in \(\mathbb{D} \) such that \(\lim_{k \to \infty} |\varphi(z_k)| = 1 \). Similar to the proof of (5), there exists a constant \(C \) such that

\[
\|D^n_{\varphi,u}f(\varphi(z_k))\|_{Z_\mu} \leq C(1 - |\varphi(z_k)|^2) \sum_{j=0}^{\infty} |\varphi(z_k)|^j j^{\alpha-1}\|D^n_{\varphi,u}p_j\|_{Z_\mu} = C(1 - |\varphi(z_k)|^2) \sum_{j=N}^{\infty} |\varphi(z_k)|^j j^{\alpha-1}\|D^n_{\varphi,u}p_j\|_{Z_\mu}
\]

\[
+ C(1 - |\varphi(z_k)|^2) \sum_{j=N}^{\infty} |\varphi(z_k)|^j j^{\alpha-1}\|D^n_{\varphi,u}p_j\|_{Z_\mu} = C(1 - |\varphi(z_k)|^2) \sum_{j=N}^{\infty} \sum_{j=0}^{\infty} |\varphi(z_k)|^j j^{\alpha-1}\|D^n_{\varphi,u}p_j\|_{Z_\mu} \leq 2CQ(1 - |\varphi(z_k)|^N) + 2Ce.
\]

Since \(\lim_{k \to \infty} |\varphi(z_k)| = 1 \), so

\[
\lim_{k \to \infty} \|D^n_{\varphi,u}f(\varphi(z_k))\|_{Z_\mu} \leq 2Ce.
\]

Hence, \(\lim_{|\varphi(z)| \to 1} \|D^n_{\varphi,u}f(\varphi(z))\|_{Z_\mu} = 0 \), because \(\epsilon \) is an arbitrary positive number.

Notice that

\[
\sum_{j=0}^{N-1} (j + 1)r^j = \frac{1 - r^{N+1}}{1 - r^2}, \quad 0 \leq r < 1.
\]
Arguing as in the proof of (6), we get

\begin{align*}
\|D^n_{\psi,u}h_{\psi(z_k)}\|_{z_\nu} & \leq C(1 - |\psi(z_k)|^2) \sum_{j=0}^{\infty} |\psi(z_k)|^j \|D^n_{\psi,u}p_j\|_{z_\nu} \\
& \leq C(1 - |\psi(z_k)|^2) \left(\sum_{j=0}^{N-1} (j+1) |\psi(z_k)|^j \|D^n_{\psi,u}p_j\|_{z_\nu} + \sum_{j=N}^{\infty} (j+1) |\psi(z_k)|^j \|D^n_{\psi,u}p_j\|_{z_\nu} \right) \\
& \leq 4CQ \left(1 - |\psi(z_k)|^N - N|\psi(z_k)|^N(1 - |\psi(z_k)|) \right) + 4Ce.
\end{align*}

Therefore,

\[\lim_{k \to \infty} \|D^n_{\psi,u}h_{\psi(z_k)}\|_{z_\nu} \leq 4Ce \]

and arbitrariness of \(e \) gives us \(\lim_{\|\psi(\sigma)\|_1 \to 1} \|D^n_{\psi,u}h_{\psi(\sigma)}\|_{z_\nu} = 0 \).

Notice that

\[\sum_{j=1}^{N} j^2 r^j = \frac{r(1 + r - (N + 1)^2r^N + (2N^2 + 2N - 1)r^{N+1} - N^2)}{(1 - r)^3}, \quad 0 \leq r < 1. \]

Similar to the proof of (7), we get

\begin{align*}
\|D^n_{\psi,u}g_{\psi(z_k)}\|_{z_\nu} & \leq C(1 - |\psi(z_k)|^2) \sum_{j=0}^{\infty} |\psi(z_k)|^j \|D^n_{\psi,u}p_j\|_{z_\nu} = \\
& \leq C(1 - |\psi(z_k)|^2) \left(\sum_{j=0}^{N-1} j^2 |\psi(z_k)|^j \|D^n_{\psi,u}p_j\|_{z_\nu} + \sum_{j=N}^{\infty} j^2 |\psi(z_k)|^j \|D^n_{\psi,u}p_j\|_{z_\nu} \right) \\
& \leq 8CQ |\psi(z_k)| \left(1 + |\psi(z_k)| - (N + 1)^2 |\psi(z_k)|^N + (2N^2 + 2N - 1) \right) |\psi(z_k)|^{N+1} - N^2 |\psi(z_k)|^{N+2} + 16Ce.
\end{align*}

Therefore,

\[\lim_{k \to \infty} \|D^n_{\psi,u}g_{\psi(z_k)}\|_{z_\nu} \leq 16Ce. \]

Since \(e \) is arbitrary, we obtain \(\lim_{\|\psi(\sigma)\|_1 \to 1} \|D^n_{\psi,u}g_{\psi(\sigma)}\|_{z_\nu} = 0 \).

(d) \(\Rightarrow \) (e) To prove (e), it is sufficient to prove that for any sequence \(\{z_k\} \in \mathbb{D} \) with \(\lim_{k \to \infty} |\psi(z_k)| = 1, \)

\[\lim_{k \to \infty} \frac{\mu(z_k) |2\psi'(z_k)u'(z_k) + \psi''(z_k)u(z_k)|}{(1 - |\psi(z_k)|^2)^{a+n}} = 0, \quad \lim_{k \to \infty} \frac{\mu(z_k) |u''(z_k)|}{(1 - |\psi(z_k)|^2)^{a+n-1}} = 0, \quad \lim_{k \to \infty} \frac{\mu(z_k) |\psi'(z_k)|^2 |u(z_k)|}{(1 - |\psi(z_k)|^2)^{a+n+1}} = 0. \]

Let \(\{z_k\} \in \mathbb{D} \) be any sequence in \(\mathbb{D} \) such that \(\lim_{k \to \infty} |\psi(z_k)| = 1 \). Similar to the proof of (8), we obtain

\[\lim_{k \to \infty} \|D^n_{\psi,u}m_{\sigma_p}(z_k)\|_{z_\nu} \leq \lim_{k \to \infty} \|D^n_{\psi,u}f_{\psi(z_k)}\|_{z_\nu} + \frac{\alpha(2\alpha + 2n + 3)}{(\alpha + n)(\alpha + n + 2)} \lim_{k \to \infty} \|D^n_{\psi,u}h_{\psi(z_k)}\|_{z_\nu} \]

\[+ \frac{\alpha(\alpha + 1)}{(\alpha + n)(\alpha + n + 2)} \lim_{k \to \infty} \|D^n_{\psi,u}g_{\psi(z_k)}\|_{z_\nu} = 0. \] (22)

From (22) and (9), we get

\[\lim_{k \to \infty} \frac{\mu(z_k) |\psi(z_k)|^{p+1} |2\psi'(z_k)u'(z_k) + \psi''(z_k)u(z_k)|}{(1 - |\psi(z_k)|^2)^{a+n}} = 0. \]
Since \(\lim_{k \to \infty} |\varphi(z_k)| = 1 \), therefore
\[
\lim_{k \to \infty} \frac{\mu(z_k) | 2\varphi'(z_k)u'(z_k) + \varphi''(z_k)u(z_k) |}{(1 - |\varphi(z_k)|^2)^{a+n}} = 0.
\]

Similar to the proof of (13), we have
\[
\lim_{k \to \infty} ||D^n_{\varphi,u} f_{\varphi(z_k)}||_{Z_\mu} \leq \lim_{k \to \infty} ||D^n_{\varphi,u} f_{\varphi(z_k)}||_{Z_\mu} + \frac{2a}{\alpha + n} \lim_{k \to \infty} ||D^n_{\varphi,u} h_{\varphi(z_k)}||_{Z_\mu} + \frac{\alpha(\alpha + 1)}{(\alpha + n)(\alpha + n + 2)} \lim_{k \to \infty} ||D^n_{\varphi,u} g_{\varphi(z_k)}||_{Z_\mu} = 0.
\]

By using (14) and (23), we get
\[
\lim_{k \to \infty} \frac{\mu(z_k) | \varphi(z_k) |^2 | u'(z_k) |}{(1 - |\varphi(z_k)|^2)^{a+n-1}} = 0,
\]

since \(\lim_{k \to \infty} |\varphi(z_k)| = 1 \), from the above equation, we obtain
\[
\lim_{k \to \infty} \frac{\mu(z_k) | u''(z_k) |}{(1 - |\varphi(z_k)|^2)^{a+n}} = 0.
\]

Finally, similar to the proof (16)
\[
\lim_{k \to \infty} ||D^n_{\varphi,u} k_{\varphi(z_k)}||_{Z_\mu} \leq \lim_{k \to \infty} ||D^n_{\varphi,u} f_{\varphi(z_k)}||_{Z_\mu} + \frac{2a}{\alpha + n} \lim_{k \to \infty} ||D^n_{\varphi,u} h_{\varphi(z_k)}||_{Z_\mu} + \frac{\alpha(\alpha + 1)}{(\alpha + n)(\alpha + n + 2)} \lim_{k \to \infty} ||D^n_{\varphi,u} g_{\varphi(z_k)}||_{Z_\mu} = 0.
\]

So, by using (17) and (24),
\[
\lim_{k \to \infty} \frac{\mu(z_k) | \varphi(z_k) |^{a+2} | \varphi'(z_k) |^{2} | u(z_k) |}{(1 - |\varphi(z_k)|^2)^{a+n+1}} = 0.
\]

Since \(\lim_{k \to \infty} |\varphi(z_k)| = 1 \), we get
\[
\lim_{k \to \infty} \frac{\mu(z_k) | \varphi'(z_k) |^{2} | u(z_k) |}{(1 - |\varphi(z_k)|^2)^{a+n+1}} = 0.
\]

(e) \(\Rightarrow \) (a) Assume that \((f_k)_{k \in \mathbb{N}} \) is a bounded sequence in \(B^n \) converging to 0 uniformly on compact subsets of \(D \). For any \(\epsilon > 0 \), there exists \(\delta \in (0, 1) \) such that
\[
\frac{\mu(z) | 2\varphi'(z)u'(z) + \varphi''(z)u(z) |}{(1 - |\varphi(z)|^2)^{a+n}} < \epsilon, \quad \frac{\mu(z) | u''(z) |}{(1 - |\varphi(z)|^2)^{a+n}} < \epsilon, \quad \frac{\mu(z) | \varphi'(z) |^{2} | u(z) |}{(1 - |\varphi(z)|^2)^{a+n+1}} < \epsilon
\]
when \(\delta < |\varphi(z)| < 1 \). Since \(D^n_{\varphi,u} : B^n \to Z_\mu \) is bounded, from Theorem 2.4, we have
\[
C_4 = \sup_{z \in \mathbb{D}} \mu(z) | u''(z) | < \infty,
\]
\[
C_5 = \sup_{z \in \mathbb{D}} \mu(z) | u(z) | | \varphi'(z) |^2 < \infty,
\]
\[
C_6 = \sup_{z \in \mathbb{D}} \mu(z) | 2\varphi'(z)u'(z) + \varphi''(z)u(z) | < \infty.
\]
Let \(V = \{ z \in \mathbb{D} : |\varphi(z)| \leq \delta \} \). From (20), (25) and (26), we obtain

\[
\sup_{z \in \mathbb{D}} \mu(z) | (D^n_{\psi, u} f_k)'(z) | \leq \sup_{z \in \mathbb{V}} \mu(z) | f^{(n+2)}_k(\varphi(z)) | + | \varphi'(z) |^2 | u(z) | \\
+ \sup_{z \in \mathbb{V}} \mu(z) | f^{(n+1)}_k(\varphi(z)) | 2 \varphi'(z) u'(z) + \varphi''(z) u(z) | \\
+ \sup_{z \in \mathbb{V}} \mu(z) | f^{(n)}_k(\varphi(z)) | u''(z) + C \sup_{z \in \mathbb{D}-V} \frac{\mu(z) | \varphi'(z) |^2 | u(z) |}{(1 - |\varphi(z)|^2)^n+1} \| f_k \|_{L^p} \\
+ C \sup_{z \in \mathbb{D}-V} \frac{\mu(z) | u''(z) |}{(1 - |\varphi(z)|^2)^n+2} \| f_k \|_{L^p} \\
\leq C_5 \sup_{z \in \mathbb{V}} | f^{(n+2)}_k(\varphi(z)) | + C_6 \sup_{z \in \mathbb{V}} | f^{(n+1)}_k(\varphi(z)) | + C_4 \sup_{z \in \mathbb{V}} | f^{(n)}_k(\varphi(z)) | + C \sup_{z \in \mathbb{V}} \| f_k \|_{L^p}.
\]

Hence,

\[
||D^n_{\psi, u} f_k||_{L^p} \leq C_5 \sup_{|z| \leq \delta} | f^{(n+2)}_k(\varphi(z)) | + C_6 \sup_{|z| \leq \delta} | f^{(n+1)}_k(\varphi(z)) | + C_4 \sup_{|z| \leq \delta} | f^{(n)}_k(\varphi(z)) | + C \sup_{|z| \leq \delta} \| f_k \|_{L^p} + ||u(0)|| \| f^{(n)}_k(\varphi(0)) ||
\]

\[
+ | f^{(n+1)}_k(\varphi(0)) || \varphi'(0) || u(0) || + | f^{(n)}_k(\varphi(0)) || u'(0) ||.
\]

\[\text{(27)}\]

Since \((f_k)_{k \in \mathbb{N}}\) converges to 0 uniformly on compact subsets of \(\mathbb{D} \), by Cauchy’s estimates so do the sequences \((f^{(n)}_k)_{k \in \mathbb{N}}\). From (27), letting \(k \to \infty \) and using the fact that \(\epsilon \) is an arbitrary positive number, we get

\[
\lim_{k \to \infty} ||D^n_{\psi, u} f_k||_{L^p} = 0.
\]

From Lemma 3.1, we deduce that the operator \(D^n_{\psi, u} : \mathcal{B}^n \to \mathcal{Z}_\mu \) is compact. \(\square \)

Setting \(\alpha = 1 \) and \(\mu(z) = 1 - |z|^2 \), in (1) and Theorems 2.4 and 3.2, we obtain the following corollaries.

Corollary 3.3. Let \(n \) be a positive integer, \(u \in H(\mathbb{D}) \) and \(\varphi \) be an analytic self-map of \(\mathbb{D} \). Then the following statements are equivalent.

(a) The operator \(D^n_{\psi, u} : \mathcal{B} \to \mathcal{Z} \) is bounded.

(b) The operator \(D^n_{\psi, u} : \mathcal{B}_0 \to \mathcal{Z} \) is bounded.

(c) \(\sup_{f \in \mathcal{B}_0} ||D^n_{\psi, u} f||_{L^p} \leq \alpha < \infty \), where \(p(z) = z^\alpha \).

(d) \(u \in \mathcal{Z}, \sup_{z \in \mathbb{D}} (1 - |z|^2) | u(z) | \ ||\varphi'(z) || < \infty \) and \(\sup_{z \in \mathbb{D}} (1 - |z|^2) | 2 \varphi'(z) u'(z) + \varphi''(z) u(z) | < \infty \) and

\[
\sup_{z \in \mathbb{D}} ||D^n_{\psi, u} f_k||_{L^p} < \infty, \quad \sup_{z \in \mathbb{D}} ||D^n_{\psi, u} h_k||_{L^p} < \infty, \quad \sup_{z \in \mathbb{D}} ||D^n_{\psi, u} g_k||_{L^p} < \infty
\]

where \(f_k, h_k \) and \(g_k \) are defined in (1).

(e) \(\sup_{z \in \mathbb{D}} (1 - |z|^2) | 2 \varphi'(z) u'(z) + \varphi''(z) u(z) | (1 - |\varphi(z)|^2)^n+2 < \infty \) and \(\sup_{z \in \mathbb{D}} (1 - |z|^2) | \varphi''(z) | (1 - |\varphi(z)|^2)^n+2 < \infty \).

Corollary 3.4. Let \(n \) be a positive integer, \(u \in H(\mathbb{D}) \) and \(\varphi \) be an analytic self-map of \(\mathbb{D} \) and \(D^n_{\psi, u} : \mathcal{B} \to \mathcal{Z} \) is bounded. Then the following statements are equivalent.

(a) The operator \(D^n_{\psi, u} : \mathcal{B} \to \mathcal{Z} \) is compact.
(b) The operator \(D_{\phi,u}^n : B_0 \to \mathcal{Z} \) is compact.
(c) \(\lim_{j \to \infty} \| D_{\phi,u,\phi_0,\phi_j}^n \|_{\mathcal{Z}} = 0 \).
(d) \(\lim_{|r| \to 1} \| D_{\phi,u,\phi_0}^n \|_{\mathcal{Z}} = 0 \), \(\lim_{|r| \to 1} \| D_{\phi,u,\phi_0,\phi}^n \|_{\mathcal{Z}} = 0 \), \(\lim_{|r| \to 1} \| D_{\phi,u,\phi_0,\phi}^n \|_{\mathcal{Z}} = 0 \).
(e)

\[
\lim_{|r| \to 1} (1 - |z|^2) \left| \frac{2q'(z)(u'(z) + q''(z)u(z))}{(1 - |q(z)|^2)^{n+1}} \right| = 0,
\lim_{|r| \to 1} (1 - |z|^2) \left| \frac{u''(z)}{(1 - |q(z)|^2)^n} \right| = 0 \quad \text{and}
\lim_{|r| \to 1} (1 - |z|^2) \left| \frac{q'(z)}{(1 - |q(z)|^2)^{n+2}} \right| = 0.
\]

The equivalence of conditions (a), (b) and (d) of corollaries 3.3 and 3.4 was proved in [4]. Also Stević in [10] proved that the conditions (a), (b) and (e) of above two corollaries are equivalent.

Acknowledgment

The authors would like to express their sincere gratitude to the referees for a very careful reading of the paper and for all the valuable suggestions, which led to improvement in this paper.

References