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Abstract. In this paper, based on the iteration methods [3,10], we propose a modified multi-step power-
inner-outer (MMPIO) iteration method for solving the PageRank problem. In the MMPIO iteration method,
we use the multi-step matrix splitting iterations instead of the power method, and combine with the inner-
outer iteration [24]. The convergence of the MMPIO iteration method is analyzed in detail, and some
comparison results are also given. Several numerical examples are presented to illustrate the effectiveness
of the proposed algorithm.

1. Introduction

With the booming advance of the Internet and its technology, web search engines have become the most
popular Internet tools to retrieve information. Google’s PageRank is one of the most important algorithms
to determine the importance of Web pages.

In the PageRank problem, the main work is to compute the PageRank vector x∗, which is a probability
vector, i.e.,‖x∗‖1 = 1 , and satisfies the following relation:

Ax∗ = [αP + (1 − α)veT]x∗ = x∗, (1.1)

where α ∈ (0, 1) is the damping vector, P ∈ Rn×n is a column-stochastic matrix, e is a column vector of all
ones, and v is called the personalization or the teleportation vector. The PageRank problem (1.1) often
arises in web ranking[1,4,6,8], for example, the hyperlink structure of the web and modeling the graph by
the Markov chain, etc.

In the last decades, many numerical methods have been proposed for computing the PageRank vector.
However, due to the huge size and sparsity of the matrix A, the fast eigenvector solvers derived from
matrix inversions or decompositions are expensive and prohibitive for computing PageRank vector, then
the iteration methods based on matrix-vector product have attracted more and more attention. The power
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method [5,12] is the original method used for solving the PageRank problem (1.1). The extrapolation
methods [9,11,13,16] were constructed to accelerate the power method when the largest eigenvalue is not
well separated from the second one. Recently, many Krylov subspace methods have also been proposed to
solve the PageRank problem (1.1). The authors [4] gave an Arnoldi-type algorithm, which is a variant of the
restarted Arnoldi method [23]. Combined the power method with the thick restarted Arnoldi algorithm
[19], the Power-Arnoldi algorithm [26] was presented. A Ritz-value-based Arnoldi-Extrapolation algorithm
[28] was developed, which periodically knits extrapolation method with the Arnoldi-type algorithm. In
order to modify the inner-outer method, Gu and Wang gave an Arnoldi-Inout algorithm [18] by using the
thick restarted Arnoldi method.

Note that the PageRank problem (1.1) can be rewritten as the following linear system [17,21,24,25]:

(I − αP)x = (1 − α)v, (1.2)

where I is an n×n identity matrix. Based on the matrix splitting I−αP = (I−βP)− (α−β)P, where 0 < β < α,
an inner-outer iteration method [24] was proposed for solving (1.2). Since the matrix I−αP is a nonsingular
M−matrix [2,20], a class of splitting iteration methods were presented in [7], which are obtained from the
M-splittings of the matrix I − αP.

Recently, Wen et al. [3] developed a multi-step power-inner-outer (MPIO) iteration method, which is a
variant of the PIO iteration [10] by combining multi-step power method with the inner-outer iteration [24].
In this paper, we propose an MMPIO iteration method, which is based on the multi-step matrix splitting
iterations instead of the power method and the inner-outer iteration [24]. Finally, several numerical
examples are used to show the efficiency of the proposed MMPIO iteration.

The remainder of this paper is organized as follows. In Section 2, we review the PIO and MPIO iteration
methods, respectively. Furthermore, we also prove the overall convergence of the MPIO iteration method.
Section 3 is devoted to the MMPIO iteration method, and its convergence property is proved. In Section 4, we
discuss the choices of the parameters in the MMPIO iteration method, and give some heuristical strategies
to choose appropriate parameters. In Section 5, Numerical examples on several PageRank problems are
given to test the effectiveness of the MMPIO iteration method. Finally, we draw some conclusions in Section
6.

2. The PIO and MPIO iteration methods

In this section, we firstly review the PIO and MPIO iteration methods, respectively. Next, we prove that
the MPIO iteration method converges linearly to the exact PageRank vector without any other restriction
on its parameters.

2.1 The PIO iteration method [10]
Applying the power method to solve (1.2), we have the following iteration sequence:

xk+1 = αPxk + (1 − α)v, k = 0, 1, 2, · · · . (2.1)

Gleich et al. [24] proposed an inner-outer iteration method for solving (1.2). At first, they reformulated
(1.2) as

(I − βP)x = (α − β)Px + (1 − α)v, (2.2)

with 0 < β < α, and obtained the following iteration sequence

(I − βP)xk+1 = (α − β)Pxk + (1 − α)v, k = 0, 1, · · · , (2.3)

which is the so-called outer iteration.
In order to efficiently solve the linear system (2.3) with the coefficient matrix I− βP, an inner Richardson

iteration is used to approximate xk+1. First, setting the right-hand side of (2.3) as

f = (α − β)Pxk + (1 − α)v,
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and defining the following inner linear system:

(I − βP)y = f , (2.4)

then (2.4) can be solved by the following inner iteration

y j+1 = βPy j + f , j = 0, 1, 2, · · · , l − 1, (2.5)

where y0 is given by xk as the initial guess and yl is assigned as the new xk+1.
For the outer iteration (2.3), it is stopped by

‖(1 − α)v − (I − αP)xk+1‖1 < τ,

and the inner iteration (2.5) is terminated by

‖ f − (I − βP)y j+1‖1 < η,

where τ and η are the outer and inner tolerances, respectively.
Combining (2.1) with (2.3) and using the idea of two-step matrix splitting iteration, Gu et al. [10]

proposed the following PIO iteration method:
The PIO iteration method: xk+ 1

2
= αPxk + (1 − α)v,

(I − βP)xk+1 = (α − β)Pxk+ 1
2

+ (1 − α)v
(2.6)

with 0 < β < α, 0 < α < 1 and x0 = v as the initial value. For the second iteration in (2.6), the inner-outer
iteration (2.3)-(2.5) is used to get the approximate solution of xk+1.
Theorem 2.1 [10]. The iteration matrix of the PIO iteration (2.6) is given by

RPIO = α(α − β)(I − βP)−1P2,

and the modulus of its eigenvalues is bounded by

s =
α(α − β)

1 − β

with β ∈ (0, α). Therefore, it holds that
ρ(RPIO) ≤ s < 1,

which implies that the PIO iteration method converges to the exact solution of (1.2) for any initial vector x0.

2.2 The MPIO iteration method and its overall convergence
By applying the multi-step power method and the inner-outer iteration [24], the authors [3] presented

the MPIO iteration method as follows:
The MPIO iteration method: 

xk+ 1
m+1

= αPxk + (1 − α)v,

xk+ 2
m+1

= αPxk+ 1
m+1

+ (1 − α)v,

...

xk+ m
m+1

= αPxk+ m−1
m+1

+ (1 − α)v,

(I − βP)xk+1 = (α − β)Pxk+ m
m+1

+ (1 − α)v,

(2.7)

where 0 < β < α and 0 < α < 1, m (m ≥ 2) is the iteration number of using the power method. If m = 1, then
(2.7) reduces to the PIO iteration method (2.6).
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Algorithm 1: The MPIO iteration method
Input: P, α, β, v, τ, η, m(m ≥ 2)
Output: x
1: x← v
2: z← Px
3: while ‖αz + (1 − α)v − x‖1 ≥ τ
4: for i=1:m
5: x← αz + (1 − α)v
6: z← Px
7: end
8: f ← (α − β)z + (1 − α)v
9: repeat
10: x← f + βz
11: z← Px
12: until ‖ f + βz − x‖ < η
13: end while
14: x← αz + (1 − α)v
Theorem 2.2 [3]. The iteration matrix of the MPIO iteration (2.7) is expressed as

RMPIO = αm(α − β)(I − βP)−1Pm+1,

and the modulus of its eigenvalues is given by

s̃ =
αm(α − β)

1 − β
, 0 < α < 1, 0 < β < α.

Therefore, it holds that ρ(RMPIO) ≤ s̃ < 1, i.e., the MPIO iteration method converges to the exact solution of
(1.2) for any initial vector x0.

In [29], the overall convergence of the inner-outer iteration method was given without imposing any
restriction on the damping factors and the stopping tolerances, then the similar conclusion for the MPIO
iteration method can also be obtained, as well as the PIO iteration method. In fact, the MPIO iteration
method can be written as the following two-stage matrix splitting iteration framework [22]:


xk,0 = xk, xk+1 = xk,mk ,

xk, j+1 = βPxk, j + (α − β)αmPm+1xk + (1 − α)((α − β)
m−1∑
s=0

(αP)sP + I)v, k = 0, 1, 2, · · · ,

j = 0, 1, 2, · · · ,mk − 1.

(2.8)

Theorem 2.3. Let 0 < β < α and mk be the number of the inner iteration steps at the k−th outer iteration
with mk ≥ 1. Then the iteration sequence {xk}

∞

k=0 generated by (2.8) converges linearly to the exact PageRank
vector x∗.
Proof. From (2.8), we have

xk, j+1 =

(βP) j+1 + (α − β)αm
j∑

t=0

(βP)tPm+1

 xk + (1 − α)
j∑

t=0

(βP)t

(α − β)
m−1∑
s=0

(αP)sP + I

 v.

Then it follows that
xk+1 = Ekxk + Fkv, k = 0, 1, 2, · · · , (2.9)
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where 
Ek = (βP)mk + (α − β)αm

mk−1∑
t=0

(βP)tPm+1,

Fk = (1 − α)
mk−1∑
t=0

(βP)t

(α − β)
m−1∑
s=0

(αP)sP + I

 , k = 0, 1, 2, · · · .

Since x∗ is the exact PageRank vector, then from (2.9) we obtain

x∗ = Ekx∗ + Fkv, k = 0, 1, 2, · · · . (2.10)

Subtracting (2.10) from (2.9), then

xk+1 − x∗ = Ek(xk − x∗) = · · · = EkEk−1 · · ·E0(x0 − x∗), k = 0, 1, 2, · · ·

and

Ek = (βP)mk + (α − β)αm
mk−1∑
t=0

(βP)tPm+1

= (βP)mk + αm
mk−1∑
t=0

(βP)t[(I − βP) − (I − αP)]Pm

= (βP)mk + (αP)m(I − (βP)mk ) − (αP)m
mk−1∑
t=0

(βP)t(I − αP).

(2.11)

Since eTP = eT, then from (2.11) it is clear that

eTEk = βmk eT + (αm
− αmβmk )eT

− αmeT
mk−1∑
t=0

(βP)t(I − αP)

= (βmk + αm
− αmβmk )eT

− αm(1 − α)
mk−1∑
t=0

βteT

=
(βmk +αm

−αmβmk )(1−β)−αm(1−α)(1−βmk )
1−β eT

=
((1−αm)βmk +αm)(1−β)−αm(1−α)(1−βmk )

1−β eT.

(2.12)

Since Ek (k = 0, 1, 2, · · · ) are nonnegative matrices and 0 < β < 1, then from (2.12) we have

‖Ek‖1 =
((1−αm)βmk +αm)(1−β)−αm(1−α)(1−βmk )

1−β

<
((1−αm)βmk +αm)(1−β)

1−β

<
(1−αm+αm)(1−β)

1−β = 1.

Let χ = max
k
{δk} < 1 (k = 0, 1, 2, · · · ) with δk = ‖Ek‖1. Then

‖xk+1 − x∗‖1 ≤ ‖EkEk−1 · · ·E0‖1‖x0 − x∗‖1
≤ ‖Ek‖1‖Ek−1‖1 · · · ‖E0‖1‖x0 − x∗‖1
= δkδk−1 · · · δ0‖x0 − x∗‖1
≤ χk+1

‖x0 − x∗‖1.

(2.13)

Hence, from (2.13) the iteration sequence generated by (2.8) converges to the exact PageRank vector x∗ as
k→∞, and the proof is completed. �

Let m = 1, the two-stage matrix splitting iteration frame of the PIO iteration (2.6) can be obtained from
(2.8): 

xk,0 = xk, xk+1 = xk,mk ,

xk, j+1 = βPxk, j + α(α − β)P2xk + (1 − α)((α − β)P + I)v,
k = 0, 1, 2, · · · , j = 0, 1, 2, · · · ,mk − 1.

(2.14)
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Theorem 2.4. Assume that 0 < β < α and mk is the number of the inner iteration steps at the k−th outer
iteration with mk ≥ 1. Then the iteration sequence {xk}

∞

k=0 derived from (2.14) converges to the exact
PageRank vector x∗.

3. The MMPIO iteration method

Let
I − αP = M −N (3.1)

be a matrix splitting of I − αP and M be an invertible matrix. Then the iteration sequence based on (3.1) for
solving the PageRank problem (1.1) is given by

Mxk+1 = Nxk + (1 − α)v, k = 0, 1, 2, · · · . (3.2)

Substituting the multi-step power iterations by the multi-step iterations (3.2), then we obtain the fol-
lowing MMPIO iteration method:

Mxk+ 1
m+1

= Nxk + (1 − α)v,

Mxk+ 2
m+1

= Nxk+ 1
m+1

+ (1 − α)v,

...

Mxk+ m
m+1

= Nxk+ m−1
m+1

+ (1 − α)v,

(I − βP)xk+1 = (α − β)Pxk+ m
m+1

+ (1 − α)v.

(3.3)

If M = I and N = αP, then (3.3) becomes the MPIO iteration method.
Algorithm 2: The MMPIO iteration method
Input: P, M, N, α, β, v, τ̂, mk ≥ 2, m (m ≥ 2)
Output: x
1: x← v
2: z← Px
3: while ‖αz + (1 − α)v − x‖1 ≥ τ̂
4: for i=1:m
5: Mx← Nx + (1 − α)v
6: end
7: z← Px
8: f ← (α − β)z + (1 − α)v
9: for i=1:mk
10: x← f + βz
11: z← Px
12: end
13: end while
14: x← αz + (1 − α)v
Lemma 3.1 [15]. Let ‖AB‖ ≤ ‖A‖ · ‖B‖. Then ‖X‖ < 1 implies that I − X is invertible, (I − X)−1 =

∑
∞

i=0 Xi, and
‖(I − X)−1

‖ ≤
1

1−‖X‖ .
Lemma 3.2. Let I − αP = M − N be a matrix splitting and ρ(R) < ρ(αP), where R = M−1N. If {xk}

∞

k=0 are
generated by the iteration sequence (3.2) and {yk}

∞

k=0 are derived from power iteration (2.1) for the same
initial value x0, then ‖Rm(xk − x∗)‖1 < ‖(αP)m(yk − x∗)‖1 for some k.
Proof. Since ρ(R) < ρ(αP), then it follows that

‖xk+m − x∗‖1 < ‖yk+m − x∗‖1 (3.4)

for some k. Since
‖xk+m − x∗‖1 = ‖Rm(xk − x∗)‖1
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and
‖yk+m − x∗‖1 = ‖(αP)m(yk − x∗)‖1,

then from (3.4) we have
‖Rm(xk − x∗)‖1 < ‖(αP)m(yk − x∗)‖1

and complete the proof. �
Theorem 3.1. Let I − αP = M − N be a matrix splitting. If ρ(R) < ρ(αP), then the iteration sequence {xk}

∞

k=0
generated by (3.3) converges to the exact PageRank vector x∗ for any initial value x0.
Proof. From (3.3), it is clear that

xk+1 = (α − β)(I − βP)−1PRmxk + (I − βP)−1

(1 − α)v + (α − β)
m−1∑
i=0

PRic

 , (3.5)

where c = (1 − α)M−1v.
Since x∗ is the exact PageRank vector, then from (3.3) we have

x∗ = (α − β)(I − βP)−1PRmx∗ + (I − βP)−1

(1 − α)v + (α − β)
m−1∑
i=0

PRic

 . (3.6)

Subtracting (3.6) from (3.5), then

xk+1 − x∗ = (α − β)(I − βP)−1PRm(xk − x∗). (3.7)

From Lemmas 3.1, 3.2 and (3.7), we obtain

‖xk+1 − x∗‖1 = ‖(α − β)(I − βP)−1PRm(xk − x∗)‖1
≤ ‖(α − β)(I − βP)−1P‖1‖Rm(xk − x∗)‖1
< ‖(α − β)(I − βP)−1P‖1‖(αP)m(yk − x∗)‖1
≤ ‖(α − β)(I − βP)−1P‖1‖(αP)m

‖1‖yk − x∗‖1
≤

αm(α−β)
1−β ‖yk − x∗‖1

≤ ψαk
‖y0 − x∗‖1,

(3.8)

where ψ =
αm(α−β)

1−β and ‖P‖1 = 1. It follows from (3.8) that ‖xk+1 − x∗‖1 → 0 as k → ∞, and the proof is
completed. �

Let m = 1, The modified PIO iteration method can be derived from (3.3):Mxk+ 1
2

= Nxk + (1 − α)v,

(I − βP)xk+1 = (α − β)Pxk+ 1
2

+ (1 − α)v.
(3.9)

Theorem 3.2. If I − αP = M − N is a matrix splitting and ρ(R) < ρ(αP), then the iteration sequence {xk}
∞

k=0
obtained from (3.9) converges to the exact PageRank vector x∗ for any initial vector x0.
Proof. The proof is similar to that of Theorem 3.1. �

Let P = D + L + U, where D is the diagonal part of P, L is the strictly lower triangular part of P, and U is
the strictly upper triangular part of P, respectively. Then the matrix splitting of the AOR iteration method
[20] for solving (1.2) is

MA =
1
ω

(I − αD − γαL), NA =
1
ω

((1 − ω)(I − αD) + (ω − γ)αL + ωαU), (3.10)

where ω, γ are two real parameters with ω , 0. For different ω and γ, we can get the corresponding
iteration methods from (3.10):

(1) Jacobi method: ω = 1, γ = 0.
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(2) Gauss-Seidel method: ω = 1, γ = 1.
(3) SOR method: ω = γ.
Since I − αP is a nonsingular M−matrix, then we give the following convergence theorem of the AOR

method based on the matrix splitting (3.10) for solving (1.2).
Theorem 3.3. Let GA = M−1

A NA and J = (I−αD)−1(αL +αU) be the AOR iteration matrix and Jacobi iteration
matrix for solving (1.2), respectively. If 0 < ω < 2

1+ρ(J) and 0 ≤ γ ≤ ω, then

ρ(GA) ≤ |1 − ω| + ωρ(J) < 1.

Proof. Let

T = (I − αD − γαL)−1(|1 − ω|(I − αD) + (ω − γ)αL + ωαU)
= (I − γL̃)−1(|1 − ω|I + (ω − γ)L̃ + ωŨ),

where L̃ = (I−αD)−1αL and Ũ = (I−αD)−1αU, respectively. From Lemma 3.1 and I−αD > 0, it follows that
T is a nonnegative matrix [2]. Then by Theorem 2.7 [14] there exists an eigenvector x ≥ 0, x , 0 such that

Tx = ρ(T)x,

i.e.,
(|1 − ω|I + (ω − γ)L̃ + ωŨ)x = ρ(T)(I − γL̃)x (3.11)

Multiplying by 1
ω , then from(3.11) we have(

ω − γ + γρ(T)
ω

L̃ + Ũ
)

x =

(
ρ(T)
ω
−

∣∣∣∣∣1 − 1
ω

∣∣∣∣∣) x.

Since L̃ ≥ 0 and Ũ ≥ 0, it is clear that
(
ω−γ+γρ(T)

ω L̃ + Ũ
)
≥ 0, then we get

ρ(T)
ω
−

∣∣∣∣∣1 − 1
ω

∣∣∣∣∣ ≤ ρ (
ω − γ + γρ(T)

ω
L̃ + Ũ

)
.

If ρ(T) ≥ 1, then

1 ≤
ω − γ + γρ(T)

ω
≤ ρ(T)

holds. Therefore,
ρ(T)
ω
−

∣∣∣∣∣1 − 1
ω

∣∣∣∣∣ ≤ ω − γ + γρ(T)
ω

ρ(L̃ + Ũ) ≤ ρ(T)ρ(J) (3.12)

with ρ(J) = ρ(L̃ + Ũ), then
ρ(T)
ω
−

∣∣∣∣∣1 − 1
ω

∣∣∣∣∣ ≤ ρ(T)ρ(J) (3.13)

Case 1: ω ≤ 1. For this case, we have

ρ(T)
ω
−

1
ω

+ 1 ≤ ρ(T)ρ(J) < ρ(T)

and ( 1
ω
− 1

)
(ρ(T) − 1) < 0,

which contradicts 1
ω − 1 ≥ 0 and ρ(T) ≥ 1.

Case 2: ω > 1. From (3.13) we get

ρ(T)
ω

+
1
ω
− 1 ≤ ρ(T)ρ(J).
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Since ω < 2
1+ρ(J) , it implies

1
2

(1 + ρ(J))(1 + ρ(T)) − 1 < ρ(T)ρ(J)

and
(1 − ρ(J))(ρ(T) − 1) < 0,

which also contradicts 1 − ρ(J) > 0 and ρ(T) − 1 ≥ 0.
From the above discussion we know that ρ(T) < 1 holds. From (3.12) we have

ω − γ + γρ(T)
ω

< 1

and
ρ(T)
ω
−

∣∣∣∣∣1 − 1
ω

∣∣∣∣∣ ≤ ρ(J),

then
ρ(T) ≤ ωρ(J) + |1 − ω|. (3.14)

Moreover, it is clear that |GA| ≤ T, then from Lemma 2.4 [14] we have

ρ(GA) ≤ ρ(T) (3.15)

If ω ≤ 1, then
ωρ(J) + |1 − ω| = ωρ(J) + 1 − ω < 1. (3.16)

While if ω > 1, we obtain

ωρ(J) + |1 − ω| = ωρ(J) + ω − 1
= ω(ρ(J) + 1) − 1
< 2

1+ρ(J) (ρ(J) + 1) − 1
= 1.

(3.17)

Then the proof is completed from (3.14)-(3.17). �
Theorem 3.4. Let I − αP = M−N be a matrix splitting. If ‖R‖1 < α and 0 < β < α, then the MMPIO iteration
method based on the matrix splitting (M,N) converges faster than the MPIO iteration method.
Proof. From Theorem 2.2, it is clear that the iteration matrix of the MPIO iteration is

RMPIO = αm(α − β)(I − βP)−1Pm+1

and

ρ(RMPIO) =
αm(α − β)

1 − β
.

According to (3.5), the iteration matrix of the MMPIO iteration is

RMMPIO = (α − β)(I − βP)−1PRm.

Then
ρ(RMMPIO) ≤ ‖(α − β)(I − βP)−1PRm

‖1
≤ ‖(α − β)(I − βP)−1P‖1‖Rm

‖1

≤
α−β
1−β ‖R‖

m
1

<
αm(α−β)

1−β
= ρ(RMPIO)

and the proof is completed. �
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Theorem 3.5. Let I − αP = M − N be a matrix splitting and R = M−1N. If ‖R‖χ < α and ‖P‖χ ≤ 1 for some
operator norm ‖ · ‖χ, then the MMPIO iteration method derived from the matrix splitting (M,N) is faster
than the MPIO iteration method with 0 < β < α.
Proof. From Theorem 3.4, we have

ρ(RMPIO) =
αm(α − β)

1 − β
.

Since 0 < β < 1 and ‖P‖χ ≤ 1, then ‖βP‖χ < 1. From Lemma 3.1, it follows that

‖(I − βP)−1
‖χ ≤

1
1 − β‖P‖χ

.

Then
ρ(RMMPIO) ≤ ‖(α − β)(1 − βP)−1PRm

‖χ

≤ ‖(α − β)(1 − βP)−1P‖χ‖Rm
‖χ

≤ (α − β) ‖P‖χ
1−β‖P‖χ

‖R‖mχ
≤ (α − β) 1

1−β‖R‖
m
χ

<
αm(α−β)

1−β
= ρ(RMPIO)

and the proof is completed. �
Remark 1. If ρ(R) < ρ(αP), then from (2.7) and (3.3) we learn that xk+ m

m+1
obtained from (3.3) is closer to

the exact PageRank vector x∗ than xk+ m
m+1

generated by (2.7), so the MMPIO iteration method has more
effectiveness than the MPIO iteration method for solving (1.2).
Remark 2. From Theorem 3.3, we can construct the MMPIO iteration method based on the AOR splitting
(3.10). Furthermore, for different ω and γ in (3.10), the MMPIO iteration method with the corresponding
splitting can be obtained, such as the Jacobi splitting, Gauss-Seidel splitting and SOR splitting, etc.

4. The choices of the parameters

In this section, we pay attention to the choices of the parameters in the MMPIO iteration method. From
the numerical examples in Section 5, we find that the appropriate parameters can partly improve the con-
vergence performance of the MMPIO iteration method in term of the iteration number and computational
time, then it is essential to discuss the choices of the parameters, such as β and mk, etc.

First, we discuss the choice of the parameter β. From (3.5), it follows that the iteration matrix of the
MMPIO iteration method is

RMMPIO = (α − β)(I − βP)−1PRm. (4.1)

Then

ρ(RMMPIO) ≤
α − β

1 − β
‖Rm
‖1.

Let f (β) =
α−β
1−β , by simple calculation, we have

f ′(β) =
α − 1

(1 − β)2 < 0

with 0 < α < 1. Then f (β) is monotonically decreasing, and f (β) is smaller for a larger β. However, from
the analysis in [24], we know that the outer iterations (2.3) converge faster if β is close to α, but the inner
iterations (2.5) converge faster if β is close to zero. Then β ∈ [0.5, α) is an appropriate choice, and β = 0.5
is adopted in our numerical examples in Section 5. We emphasize that, an appropriate parameter β only
reduces the upper bound of the spectral radius of the iteration matrix (4.1), but does not decrease the
spectral radius itself. However, the choices of parameter β ∈ [0.5, α) can achieve better numerical results,
which is illustrated clearly in Section 5.
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Next, for the parameter mk in Algorithm 2, just as the analysis of η in [24], which is also true for mk.
A larger mk may result in spending a long computational time performing inner iterations (2.5), just to
compute a single outer iteration (2.3) at a time, and slow the overall convergence. For a smaller mk, on the
other hand, may lead to inner iterations (2.5) that do not sufficiently approximate the exact solution of (2.4),
then do not yield sufficient progress for the exact PageRank vector, and mk = 2 or 3 may be an appropriate
choice.

5. Numerical results

In this section, we illustrate the effectiveness of the MMPIO iteration compared with the PIO iteration
and the MPIO iteration, respectively. The numerical experiments are performed in Matlab R2010 on an
Intel dual core processor (2.30 GHz, 8GB RAM). We use four iteration parameters to test these iteration
methods, which are the iteration step (denoted as IT), the computing time in seconds (denoted as CPU), the
number of matrix-vectors (denoted as MV), and the relative residual (denoted as RES) defined as ‖rk‖2

‖(1−α)v‖2
with rk = (1 − α)v − (I − αP)xk.

Five test matrices P are listed in Table 1, where ”Average Nonzeros” means the average number of the
nonzero elements per row. All the data files are available from [27]. For the sake of justice, we take the
teleportation vector x0 = v as the initial guess for all the test matrices. All algorithms are terminated once
the residual norms RES< 10−8. The damping factors are chosen as α = 0.85, 0.90, 0.95, 0.99 in all numerical
experiments.

Table 1: Five test matrices for (1.2).

Name Size Nonzeros Average Nonzeros
Minnesota 2,642× 2,642 6,606 2.50

Wb-cs-stanford 9,914×9,914 36,854 3.71
Usroads 129,164×129,164 330,870 2.56

Flickr 820,878×820,878 9,837,214 1.45 × 10−5

Wikipedia-20051105 1,634,989×1,634,989 19,753,078 7.38 × 10−6

Example 1. In this example, we compare the MMPIO iteration method based on (3.10) with the MPIO
iteration method, where we choose β = 0.5 and mk = 2. The test matrix is the Minnesota matrix.

Numerical results are listed in Table 2. From table 2, we notice that the MMPIO iteration method with
ω = 1.2 and γ = 1.1 performs better than the MPIO iteration method in both iteration number and CPU time
for different values of m, which is more obvious when α tends to 1. Fig.1 depicts the convergence curves
of these algorithms with ω = γ = 1.2. It shows that the MMPIO iteration method with the SOR splitting
converges faster than the MPIO iteration method for different values of m.

Just as the MPIO iteration method, the effectiveness of the MMPIO iteration method is also parameter-
dependent. For α = 0.85, 0.90 in Table 2, the number of matrix-vectors and CPU time firstly decrease with
the choices of m increasing, then they begin to increase, such as m = 7, 10.
Example 2. This example is devoted to the convergence performance of the MMPIO iteration method for
different choices of the parameters β and mk, respectively. The test matrix is the Wb-cs-stanford matrix.

Fig. 2 shows the iteration number of the MMPIO iteration method for different values of β, where we
choose mk = 2, ω = γ = 1.2 and m = 1, 3, 5, 7, respectively. From Fig. 2, it follows that the MMPIO iteration
method converges faster for a larger β, which is more evident for a smaller m, such as m = 1. For larger
m, we observe that the iteration count does not change dramatically for β ≥ 0.5, then it is appropriate to
choose the values of β in the interval [0.5, α), which is consistent with the discussion in Section 4.

The numerical results for the MMPIO iteration method with different mk are reported in Table 3, where
β = 0.5, ω = γ = 1.2 and m = 2, respectively. From Table 3, it is clear that the MMPIO iteration method
needs less iteration number for a larger mk. However, it also needs more CPU time and the number of
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Table 2: Numerical results for the Minnesota matrix.

MPIO MMPIO
α m IT(MV) CPU RES IT(MV) CPU RES

m=1 30(120) 0.7633 9.18 × 10−9 28(68) 0.4372 4.11 × 10−9

m=3 17(102) 0.6003 6.68 × 10−9 8(48) 0.3077 2.65 × 10−9

0.85 m=5 12(96) 0.5473 5.02 × 10−9 6(48) 0.2845 5.88 × 10−9

m=7 9(90) 0.5036 6.47 × 10−9 5(50) 0.2843 1.91 × 10−9

m=10 7(91) 0.5079 3.16 × 10−9 4(52) 0.2908 2.70 × 10−9

m=1 46(184) 1.1753 9.36 × 10−9 24(96) 0.6202 9.61 × 10−9

0.90 m=3 26(156) 0.9157 7.19 × 10−9 9(54) 0.3286 3.15 × 10−9

m=5 18(144) 0.8439 7.10 × 10−9 6(48) 0.2810 3.51 × 10−9

m=7 14(140) 0.7752 5.60 × 10−9 5(50) 0.2877 8.92 × 10−9

m=10 10(130) 0.7270 8.82 × 10−9 4(52) 0.3205 4.99 × 10−9

m=1 93(372) 2.3589 9.81 × 10−9 48(192) 1.2134 7.71 × 10−9

0.95 m=3 52(312) 1.8462 8.85 × 10−9 15(90) 0.5379 5.63 × 10−9

m=5 36(288) 1.6340 8.80 × 10−9 9(72) 0.4147 5.28 × 10−9

m=7 28(280) 1.5580 6.98 × 10−9 7(70) 0.3878 1.40 × 10−9

m=10 21(273) 1.4808 5.70 × 10−9 5(65) 0.3609 8.93 × 10−9

m=1 443(1772) 11.235 9.97 × 10−9 225(900) 5.7270 9.85 × 10−9

0.99 m=3 247(1482) 8.7218 9.48 × 10−9 75(450) 2.6520 8.69 × 10−9

m=5 171(1368) 7.7608 9.47 × 10−9 45(360) 2.0430 8.67 × 10−9

m=7 131(1310) 7.2132 9.24 × 10−9 33(330) 1.8401 6.48 × 10−9

m=10 97(1261) 6.9041 9.01 × 10−9 23(299) 1.6288 6.98 × 10−9
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Figure 1: Convergence curves for the Minnesota matrix
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Figure 2: The iteration number for the Wb-cs-stanford matrix with different β.

Table 3: Numerical results for the Wb-cs-stanford matrix with different mk.

mk = 2 mk = 3 mk = 4 mk = 5
IT(MV) 16(80) 15(90) 15(105) 15(120)

α = 0.85 CPU 0.0268 0.0274 0.0297 0.0308
RES 3.06 × 10−9 6.95 × 10−9 5.37 × 10−9 4.91 × 10−9

IT(MV) 24(120) 23(138) 23(161) 23(184)
α = 0.90 CPU 0.0477 0.0430 0.0428 0.0461

RES 4.82 × 10−9 6.95 × 10−9 5.22 × 10−9 4.69 × 10−9

IT(MV) 47(235) 45(270) 45(315) 44(352)
α = 0.95 CPU 0.0745 0.0791 0.0897 0.0829

RES 6.96 × 10−9 9.80 × 10−9 7.18 × 10−9 9.58 × 10−9

IT(MV) 196(980) 190(1140) 187(1309) 186(1488)
α = 0.99 CPU 0.3076 0.3111 0.3281 0.3594

RES 9.24 × 10−9 9.80 × 10−9 9.78 × 10−9 9.48 × 10−9
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matrix-vectors, for example, the case mk = 2 compared with that of mk = 5. Thus, mk = 2, 3 may be good
choices for the MMPIO iteration method, which is in concord with our conclusions in Section 4.
Example 3. In this example, we compare the convergence performance of the MMPIO iteration method
with the MPIO iteration method for large test matrices, and discuss the choice of the parameter ω in (3.10).
The test matrices are the Usroads, Flickr and Wikipedia-20051105 matrices, respectively.

First, by setting β = 0.5, ω = 1.2, γ = 0 and mk = 2, we make a comparison between the MMPIO iteration
method and the MPIO iteration method for the Flickr and Wikipedia-20051105 matrices, respectively. The
numerical results are listed in Tables 4, 5, from which we find that the MMPIO iteration method has more
effectiveness than the MPIO iteration method in terms of iteration number and CPU time for different m,
the advantage is more obvious for larger α, especially for the case α = 0.99 with m = 3 in Table 5.

Next, we discuss the choice of the parameters ω in (3.10) for the MMPIO iteration method with β =
0.5,mk = 2, γ = 0 and m = 3 . The test matrix is the Usroads matrix. The numerical results are listed in
Table 6 and Fig. 3, from which we observe that the MMPIO iteration method converges faster for ω > 1,
the choices of the parameter ω near 1.4 are satisfactory in this example.

Table 4: Numerical results for the Flickr matrix.

MPIO MMPIO
α m IT(MV) CPU RES IT(MV) CPU RES

m=1 40(160) 9.5510 7.03 × 10−9 36(144) 8.7198 9.92 × 10−9

0.85 m=3 22(132) 7.4372 7.84 × 10−9 19(114) 6.5285 8.79 × 10−9

m=5 16(128) 6.6620 2.93 × 10−9 13(104) 5.7535 7.33 × 10−9

m=1 58(232) 14.0082 7.75 × 10−9 53(212) 13.0407 8.75 × 10−9

0.90 m=3 32(192) 10.5722 8.36 × 10−9 28(168) 9.5482 8.02 × 10−9

m=5 22(176) 9.2301 9.35 × 10−9 19(152) 8.2301 7.98 × 10−9

m=1 100(400) 24.0234 9.70 × 10−9 93(372) 22.6101 8.26 × 10−9

0.95 m=3 56(336) 18.3204 8.04 × 10−9 49(294) 16.4515 8.42 × 10−9

m=5 39(312) 16.3757 7.07 × 10−9 33(264) 14.4027 9.89 × 10−9

m=1 345(1380) 82.2261 9.98 × 10−9 320(1280) 77.1992 9.65 × 10−9

0.99 m=3 192(1152) 63.5606 9.70 × 10−9 169(1014) 56.6707 9.87 × 10−9

m=5 133(1064) 55.8008 9.61 × 10−9 115(920) 50.1393 9.74 × 10−9

Table 5: Numerical results for the Wikipedia-20051105 matrix.

MPIO MMPIO
α m IT(MV) CPU RES IT(MV) CPU RES

m=1 41(164) 45.1763 7.10 × 10−9 33(132) 37.2843 7.00 × 10−9

0.85 m=3 23(138) 34.8688 5.52 × 10−9 17(102) 25.4535 6.38 × 10−9

m=5 16(128) 31.2787 4.91 × 10−9 13(104) 25.1067 5.84 × 10−9

m=1 61(244) 65.7905 9.97 × 10−9 50(200) 53.7981 8.01 × 10−9

0.90 m=3 34(204) 50.9168 8.98 × 10−9 26(156) 39.0796 6.43 × 10−9

m=5 24(192) 45.6513 6.21 × 10−9 22(176) 41.8118 6.36 × 10−9

m=1 120(480) 131.5475 8.90 × 10−9 100(400) 108.6591 9.66 × 10−9

0.95 m=3 67(402) 99.5178 7.94 × 10−9 51(306) 75.6271 7.38 × 10−9

m=5 46(368) 88.8287 9.14 × 10−9 37(296) 70.8631 6.98 × 10−9

m=1 516(2064) 564.6483 9.80 × 10−9 507(2028) 542.9624 9.88 × 10−9

0.99 m=3 287(1722) 478.5987 9.57 × 10−9 249(1494) 366.8775 9.51 × 10−9

m=5 235(1645) 390.3816 9.44 × 10−9 206(1442) 344.0656 9.53 × 10−9
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Table 6: Numerical results for the Usroads matrix with different ω.

m=3 α 0.85 0.90 0.95 0.99
Iter(MV) 33(198) 50(300) 101(606) 511(3066)

ω = 0.3 CPU 0.4946 0.7765 1.5101 7.6060
RES 8.32 × 10−9 9.16 × 10−9 9.91 × 10−9 9.84 × 10−9

Iter(MV) 26(156) 39(234) 79(474) 397(2382)
ω = 0.5 CPU 0.3931 0.5878 1.2188 5.9697

RES 7.31 × 10−9 9.09 × 10−9 9.28 × 10−9 9.99 × 10−9

Iter(MV) 21(126) 32(192) 64(384) 324(1944)
ω = 0.7 CPU 0.3264 0.4841 0.9669 4.7504

RES 7.53 × 10−9 7.74 × 10−9 9.82 × 10−9 9.78 × 10−9

Iter(MV) 18(108) 27(162) 54(324) 275(1650)
ω = 0.9 CPU 0.2801 0.4117 0.8359 4.0637

RES 5.31 × 10−9 7.37 × 10−9 9.98 × 10−9 9.56 × 10−9

Iter(MV) 16(96) 25(150) 51(306) 256(1536)
ω = 1.0 CPU 0.2428 0.3758 0.7350 3.7157

RES 9.91 × 10−9 7.85 × 10−9 8.24 × 10−9 9.96 × 10−9

Iter(MV) 15(90) 22(132) 45(270) 230(1380)
ω = 1.2 CPU 0.2304 0.3379 0.6798 3.4513

RES 4.61 × 10−9 9.60 × 10−9 9.89 × 10−9 9.37 × 10−9

Iter(MV) 18(108) 22(132) 42(252) 213(1278)
ω = 1.4 CPU 0.2714 0.3372 0.6332 3.1470

RES 4.26 × 10−9 9.45 × 10−9 9.96 × 10−9 9.51 × 10−9
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Figure 3: The iteration number for the Usroads matrix with different ω.
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6. Conclusion

In this paper, we give an MMPIO iteration method for solving the PageRank problem, in which we
use the multi-step matrix splitting iteration instead of the power method. Numerical results on several
PageRank problems verify that the MMPIO iteration method is superior to the MPIO and PIO iteration
methods, respectively. However, our proposed method is rather parameter-dependent, hence how to
determine the optimal parameters for the MMPIO iteration method is a problem worth researching in the
future work.
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