Filomat 33:4 (2019), 1117–1124 https://doi.org/10.2298/FIL1904117A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Riemannian Generalized C-spaces with Homogeneous Geodesics

Andreas Arvanitoyeorgos^a, Huajun Qin^b, Yu Wang^c, Guosong Zhao^d

^aUniversity of Patras, Department of Mathematics, GR-26500 Patras, Greece
 ^bSichuan university, Chengdu, 610064, China
 ^cSichuan university of Science and Engineering, Zigong, 643000, China
 ^dSichuan university, Chengdu, 610064, China

Abstract. We investigate homogeneous geodesics in a class of homogeneous spaces G/K' called generalized *C*-spaces. We give necessary conditions so that a *G*-invariant metric on G/K' is a g.o. metric.

1. Introduction

Let (M, g) be a homogeneous Riemannian manifold, i.e. a connected Riemannian manifold on which the largest connected group *G* of isometries acts transitively. Then *M* can be expressed as a homogeneous space (G/K, g), where *K* is the isotropy group at a fixed pointed *o* of *M*, and *g* is a *G*-invariant metric. A geodesic $\gamma(t)$ through the origin *o* of M = G/K is called *homogeneous* if it is an orbit of a one-parameter subgroup of *G*, that is

$$\gamma(t) = \exp(tX)(o), \quad t \in \mathbb{R},$$

(1)

where g is the Lie algebra of G and X is a non zero vector of g.

A homogeneous Riemannian manifold M = G/K is called a *g.o. manifold*, if all geodesics are homogeneous with respect to the largest connected group of isometries $I_o(M)$. A *G*-invariant metric *g* on *M* is called *G-g.o.* if all geodesics are homogeneous with respect to the group $G \subseteq I_o(M)$. Of course a *G*-g.o. metric is a g.o. metric, but the converse is not true in general. *In this paper we only consider G-g.o. metrics, which we also call them g.o. metrics*.

Naturally reductive spaces, symmetric spaces and weekly symmetric spaces are g.o. spaces ([9], [11], [17], [23]). In [18] O. Kowalski and L. Vanhecke gave an explicit classification of all naturally reductive spaces of dim \leq 5. In [19] O. Kowalski and L. Vanhecke gave a classification of all g.o. spaces, which are in no way naturally reductive, up to dimension six. In [16] C. Gordon described g.o. spaces which are

²⁰¹⁰ Mathematics Subject Classification. Primary 53C25; Secondary 53C30

Keywords. Generalized flag manifold; generalized *C*-space; isotropy representation; *M*-space; t-roots; homogeneous geodesic; geodesic vector; g.o. space.

Received: 21 September 2018; Accepted: 15 December 2018

Communicated by Mića S. Stanković

The first author was supported by a Grant from the Empirikion Foundation in Athens. The third author is supported by NSFC11701397, NSFC 11726608 and by Foundation of Science&Technology Department of Sichuan Province Grant No. 2019YJ0456. The fourth author is supported by NSFC 11571242.

Corresponding author: Huajun Qin, Tel: 18081146796

Email addresses: arvanito@math.upatras.gr (Andreas Arvanitoyeorgos), qinhj028@sina.com (Huajun Qin),

wangyu_813@163.com (Yu Wang), gszhao@scu.edu.cn (Guosong Zhao)

nilmanifolds, and in [21] H. Tamaru classified homogeneous g.o. spaces which are fibered over irreducible symmetric spaces. In [13] and [14] O. Kowalski and Z. Dušek investigated homogeneous geodesics in Heisenberg groups and some *H*-type groups. Examples of g.o. spaces in dimension seven were obtained by Dušek, O. Kowalski and S. Nikčević in [15]. In [1] the first author and D.V. Alekseevsky classified generalized flag manifolds which are g.o. spaces. Recently, A. Arvanitoyeorgos, Y. Wang and G.S. Zhao classified generalized Wallach spaces and *M*-spaces which are g.o. spaces ([6], [7], [8]). Also, in [12] Z. Chen and Yu. Nikonorov classified compact simply connected g.o. spaces with two isotropy summands. Finally, the notion of homogeneous geodesics can be extended to geodesics which are orbits of a product of two exponential factors (cf. [4], [5]).

The general problem of classification of compact homogeneous Riemannian manifolds (M = G/K, g) with homogeneous geodesics remains open.

Let *G* be compact semisimple Lie group. By a *C*-subgroup of *G* we mean a closed and connected subgroup whose semisimple part coincides with the semisimple part of the centraliser of a toral subgroup of *G* (c.f. [22], p.13).

Definition 1.1. Let G be a compact semisimple Lie group and K' be a C-subgroup of G. The homogeneous space G/K' is called a generalized C-space.

In [22] H.C. Wang introduced and studied *M*-spaces, which are defined as follows: Let G/K be a generalized flag manifold with $K = C(S) = S \times K_1$, where *S* is a torus in a compact simple Lie group *G* and K_1 is the semisimple part of *K*. Then the *corresponding M*-space is the homogeneous space G/K_1 .

It is easy to see that generalized flag manifolds and *M*-spaces are generalized *C*-spaces. The classification of homogeneous geodesics in generalized flag manifolds and *M*-spaces has been done([1], [7], [8]).

The object of this paper is to investigate homogeneous geodesics in generalized *C*-spaces G/K' associated to a generalized flag manifold G/K with $K_1 \subset K' \subset K$.

Let G/K with $K = C(S) = S \times K_1$ be a generalized flag manifold and g and t be the Lie algebras of the Lie groups G and K respectively. Let $g = t \oplus m$ be an Ad(K)-invariant reductive decomposition of the Lie algebra g, where $m \cong T_o(G/K)$. This is orthogonal with respect to B = -Killing from on g. Assume that

$$\mathfrak{m} = \mathfrak{m}_1 \oplus \cdots \oplus \mathfrak{m}_s$$

(2)

is a *B*-orthogonal decomposition of m into pairwise inequivalent irreducible ad(f)-modules. We choose an intermediate subgroup $K_1 \subset K' \subset K$ such that K_1 is the semisimple part of K'. Then for the corresponding *M*-space G/K_1 we have that $G/K \subseteq G/K' \subseteq G/K_1$, and we call G/K' a generalized *C*-space determined by a generalized flag manifold G/K.

Lemma 1.2. Let G/K' be a generalized C-space determined by a generalized flag manifold G/K. Then we have that $K' = S' \times K_1$, where $S' \subseteq S$ a toral subgroup, $K = C(S) = S \times K_1$, S is a torus in G, and K_1 is the semisimple part for both K and K'.

Let \mathfrak{s}' and \mathfrak{t}_1 be the Lie algebras of S' and K_1 respectively. We denote by \mathfrak{n} the tangent space $T_o(G/K')$, where o = eK'. Then it follows that $\mathfrak{n} = \mathfrak{s}_1 \oplus \mathfrak{m}$, where \mathfrak{s}_1 is the Lie algebra of $S \setminus S'$. A *G*-invariant metric *g* on *G*/*K'* induces a scalar product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} which is Ad(K')-invariant. Such an Ad(K')-invariant scalar product $\langle \cdot, \cdot \rangle$ on \mathfrak{n} can be expressed as $\langle x, y \rangle = B(\Lambda x, y)$ ($x, y \in \mathfrak{n}$), where Λ is an Ad(K')-equivariant positive definite symmetric operator on \mathfrak{n} . Conversely, any such operator Λ determines an Ad(K')-invariant scalar product $\langle x, y \rangle = B(\Lambda x, y)$ on \mathfrak{n} , which in turn determines a *G*-invariant Riemannian metric *g* on \mathfrak{n} . We say that Λ is the *operator associated* to the metric *q*, or simply the *associated operator*.

If a flag manifold G/K has $s \le 2$ in the decomposition (2), it follows that its second Betti number $b_2(G/K)$ is equal to 1. This implies that there do not exist generalized *C*-spaces G/K' determined by G/K with $K_1 \subset K' \subset K$. Hence we only consider homogeneous geodesics in generalized *C*-spaces determined by flag manifolds G/K with $s \ge 3$ in the decomposition (2).

In this paper we investigate homogeneous geodesics in a generalized *C*-space G/K' which is determined by a generalized flag manifold G/K with *G* simple Lie group.

The main result is the following:

Theorem 1.3. Let G/K be a generalized flag manifold for a compact simple Lie group with $s \ge 3$ in the decomposition (2). Let G/K' be a generalized C-space determined by the generalized flag manifold G/K with $K_1 \subset K' \subset K$, $K = C(S) = S \times K_1$, S a torus in G, and K_1 the semisimple part of K. If (G/K', g) is a g.o. space, then

$$g = \langle \cdot, \cdot \rangle = \Lambda \mid_{\mathfrak{s}_1} + \lambda B(\cdot, \cdot) \mid_{\mathfrak{m}}, \ (\lambda > 0),$$

where Λ is the operator associated to the metric g.

The paper is organized as follows: In Section 1 we recall certain Lie theoretic properties of a generalized flag manifold G/K and generalized *C*-space G/K'. In Section 2 we recall basic facts about g.o. spaces. In Section 3 we give the proofs of Lemma 1.2 and Theorem 1.3.

Acknowledgements. The first author was supported by a Grant from the Empirikion Foundation in Athens. The third author is supported by NSFC 11501390, NSFC 11726608.

The fourth author is supported by NSFC 11571242.

2. Generalized flag manifolds and generalized C-spaces

Let G/K = G/C(S) be a generalized flag manifold, where G is a compact semisimple Lie group and S is a torus in G, here C(S) denotes the centralizer of S in G. Let \mathfrak{g} and \mathfrak{t} be the Lie algebras of the Lie groups G and K respectively, and $\mathfrak{g}^{\mathbb{C}}$ and $\mathfrak{t}^{\mathbb{C}}$ be the complexifications of \mathfrak{g} and \mathfrak{t} respectively. Let $\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{m}$ be a reductive decomposition with respect to B = -Killing form on \mathfrak{g} with $[\mathfrak{t},\mathfrak{m}] \subset \mathfrak{m}$. Let T be a maximal torus of G containing S. Then this is a maximal torus in K. Let \mathfrak{a} be the Lie algebra of T and $\mathfrak{a}^{\mathbb{C}}$ its complexification. Then $\mathfrak{a}^{\mathbb{C}}$ is a Cartan subalgebra of $\mathfrak{g}^{\mathbb{C}}$. Let R be a root system of $\mathfrak{g}^{\mathbb{C}}$ with respect to $\mathfrak{a}^{\mathbb{C}}$ and $\Pi = \{\alpha_1, \ldots, \alpha_l\}, (l = \dim_{\mathbb{C}} \mathfrak{a}^{\mathbb{C}})$ be a system of simple roots of R, and $\{\Lambda_1, \ldots, \Lambda_l\}$ be the fundamental weights of $\mathfrak{g}^{\mathbb{C}}$ corresponding to Π , that is $\frac{2B(\Lambda_i, \alpha_j)}{B(\alpha_j, \alpha_j)} = \delta_{ij}, (1 \le i, j \le l)$. We can identify $(\mathfrak{a}^{\mathbb{C}})^*$ with $\mathfrak{a}^{\mathbb{C}}$ as follows: For every $\alpha \in (\mathfrak{a}^{\mathbb{C}})^*$ it corresponds to $h_{\alpha} \in \mathfrak{a}^{\mathbb{C}}$ by the equation $B(H, h_{\alpha}) = \alpha(H)$ for all $H \in \mathfrak{a}^{\mathbb{C}}$. Let

$$\mathfrak{g}^{\mathbb{C}} = \mathfrak{a}^{\mathbb{C}} \oplus \sum_{\alpha \in R} \mathfrak{g}^{\mathbb{C}}_{\alpha} \tag{3}$$

be the root space decomposition, where

$$\mathfrak{g}^{\mathbb{C}}_{\alpha} = \{ X \in \mathfrak{g}^{\mathbb{C}} : [H, X] = \alpha(H)X \ \forall H \in \mathfrak{a}^{\mathbb{C}} \}.$$

$$\tag{4}$$

Since $\mathfrak{t}^{\mathbb{C}}$ contains $\mathfrak{a}^{\mathbb{C}}$, there is a subset R_K of R such that $\mathfrak{t}^{\mathbb{C}} = \mathfrak{a}^{\mathbb{C}} \oplus \sum_{\alpha \in R_K} \mathfrak{g}^{\mathbb{C}}_{\alpha}$. We choose a system of simple roots Π_K of R_K and a system of simple roots Π of R so that $\Pi_K \subset \Pi$. We choose an ordering in R^+ . Then there is a natural ordering in R_K^+ , so that $R_K^+ \subset R^+$. Set $R_M = R \setminus R_K$ (complementary roots). Then $\mathfrak{m}^{\mathbb{C}} = \sum_{\alpha \in R_M} \mathfrak{g}^{\mathbb{C}}$.

Definition 2.1. An invariant ordering R_M^+ in R_M is a choice of a subset $R_M^+ \subset R_M$ such that (i) $R = R_K \sqcup R_M^+ \sqcup R_M^-$, where $R_M^- = \{-\alpha : \alpha \in R_M^+\}$, (ii) If $\alpha, \beta \in R_M^+$ and $\alpha + \beta \in R_M$, we have $\alpha + \beta \in R_M^+$, (iii) If $\alpha \in R_M^+, \beta \in R_K^+$ and $\alpha + \beta \in R$, we have $\alpha + \beta \in R_M^+$. For any $\alpha, \beta \in R_M^+$ we define $\alpha > \beta$ if and only if $\alpha - \beta \in R_M^+$.

We choose a Weyl basis $\{E_{\alpha}, H_{\alpha} : \alpha \in R\}$ in $\mathfrak{g}^{\mathbb{C}}$ with $B(E_{\alpha}, E_{-\alpha}) = 1, [E_{\alpha}, E_{-\alpha}] = H_{\alpha}$ and

$$[E_{\alpha}, E_{\beta}] = \begin{cases} 0, & \text{if } \alpha + \beta \notin R \text{ and } \alpha + \beta \neq 0, \\ N_{\alpha,\beta}E_{\alpha+\beta}, & \text{if } \alpha + \beta \in R, \end{cases}$$
(5)

where the structural constants $N_{\alpha,\beta}$ ($\neq 0$) satisfy $N_{\alpha,\beta} = -N_{-\alpha,-\beta}$ and $N_{\beta,\alpha} = -N_{\alpha,\beta}$. Then we have that

$$\mathfrak{g}^{\mathbb{C}} = \mathfrak{a}^{\mathbb{C}} \oplus \sum_{\alpha \in R_K} \mathfrak{g}^{\mathbb{C}}_{\alpha} \oplus \sum_{\alpha \in R_M} \mathfrak{g}^{\mathbb{C}}_{\alpha}, \tag{6}$$

and $\{E_{\alpha} : \alpha \in R_M\}$ is a basis of $\mathfrak{m}^{\mathbb{C}}$. It is well known that

$$g_{\mu} = \sum_{\alpha \in \mathbb{R}^{+}} \mathbb{R} \sqrt{-1} H_{\alpha} \oplus \sum_{\alpha \in \mathbb{R}^{+}} (\mathbb{R} A_{\alpha} + \mathbb{R} B_{\alpha}),$$
(7)

where $A_{\alpha} = E_{\alpha} - E_{-\alpha}$, $B_{\alpha} = \sqrt{-1}(E_{\alpha} + E_{-\alpha})$ ($\alpha \in R^+$) is a compact real form of $\mathfrak{g}^{\mathbb{C}}$. Hence we can identify \mathfrak{g} with \mathfrak{g}_u . In fact $\mathfrak{g} = \mathfrak{g}_u$ is the fixed point set of the conjugation $X + \sqrt{-1}Y \mapsto \overline{X} + \sqrt{-1}Y = X - \sqrt{-1}Y$ in $\mathfrak{g}^{\mathbb{C}}$ so that $\overline{E_{\alpha}} = -E_{-\alpha}$. Hence $\mathfrak{k} = \sum_{\alpha \in R^+} \mathbb{R} \sqrt{-1}H_{\alpha} \oplus \sum_{\alpha \in R_k^+} (\mathbb{R}A_{\alpha} + \mathbb{R}B_{\alpha})$. We set $R_M^+ = R^+ \setminus R_K^+$. Then

$$\mathfrak{m} = \sum_{\alpha \in R_{M}^{+}} (\mathbb{R}A_{\alpha} + \mathbb{R}B_{\alpha}).$$
(8)

The next lemma gives us information about the Lie algebra structure of g.

Lemma 2.2. The Lie bracket among the elements of $\{A_{\alpha}, B_{\alpha}, \sqrt{-1}H_{\beta} : \alpha \in \mathbb{R}^+, \beta \in \Pi\}$ of g are given by

$$\begin{split} \left[\sqrt{-1}H_{\alpha}, A_{\beta} \right] &= \beta(H_{\alpha})B_{\beta}, \\ \left[\sqrt{-1}H_{\alpha}, B_{\beta} \right] &= -\beta(H_{\alpha})A_{\beta}, \\ \left[\sqrt{-1}H_{\alpha}, B_{\beta} \right] &= -\beta(H_{\alpha})A_{\beta}, \\ \left[A_{\alpha}, B_{\beta} \right] &= -N_{\alpha,\beta}A_{\alpha+\beta} - N_{\alpha,-\beta}A_{\alpha-\beta} \ (\alpha \neq \beta), \\ \left[A_{\alpha}, B_{\alpha} \right] &= 2\sqrt{-1}H_{\alpha}, \\ \end{split}$$

where $N_{\alpha,\beta}$ are the structural constants and $\alpha + \beta$, $\alpha - \beta$ are roots in (5).

An important invariant of a generalized flag manifold G/K is the set R_t of t-roots. Their importance arises from the fact that the knowledge of R_t gives us crucial information about the decomposition of the isotropy representation of the flag manifold G/K.

From now on we fix a system of simple roots $\Pi = \{\alpha_1, ..., \alpha_r, \phi_1, ..., \phi_k\}$ of R, so that $\Pi_K = \{\phi_1, ..., \phi_k\}$ is a basis of the root system R_K and $\Pi_M = \Pi \setminus \Pi_K = \{\alpha_1, ..., \alpha_r\}$ (r + k = l).

We consider the decomposition $R = R_K \cup R_M$ and let

$$\mathfrak{t} = \mathfrak{z}(\mathfrak{f}^{\mathbb{C}}) \cap \sqrt{-1\mathfrak{a}} = \{ X \in \sqrt{-1\mathfrak{a}} : \phi(X) = 0, \text{ for all } \phi \in R_K \},$$
(9)

where $\mathfrak{Z}(\mathfrak{f}^{\mathbb{C}})$ is the center of $\mathfrak{f}^{\mathbb{C}}$. Consider the restriction map $\kappa : (\mathfrak{a}^{\mathbb{C}})^* \to \mathfrak{t}^*$ defined by $\kappa(\alpha) = \alpha \mid_{\mathfrak{t}}$, and set $R_{\mathfrak{t}} = \kappa(R) = \kappa(R_M)$. Note that $\kappa(R_K) = 0$ and $\kappa(0) = 0$.

The elements of R_t are called *t*-roots. For an invariant ordering $R_M^+ = R^+ \setminus R_K^+$ in R_M , we set $R_t^+ = \kappa(R_M^+)$ and $R_t^- = -R_t^+ = \{-\xi : \xi \in R_t^+\}$. It is obvious that $R_t^- = \kappa(R_M^-)$, thus the splitting $R_t = R_t^- \cup R_t^+$ defines an ordering in R_t . A t-root $\xi \in R_t^+$ (respectively $\xi \in R_t^-$) will be called *positive* (respectively negative). A t-root is called *simple* if it is not a sum of two positive t-roots. The set Π_t of all simple t-roots is called a t-*basis* of t^{*}, in the sense that any t-root can be written as a linear combination of its elements with integer coefficients of the same sign.

Definition 2.3 ([1]). (1) Two t-roots $\xi, \eta \in R_t$ are called adjacent if one of the following occurs:

(*i*) If η is a multiple of ξ , then $\eta \neq \pm 2\xi$ and $\xi \neq \pm 2\eta$.

(*ii*) If η is not a multiple of ξ , then $\xi + \eta \in R_t$ or $\xi - \eta \in R_t$.

(2) Two t-roots $\xi, \eta \in R_t$ are called connected if there is a chain of t-roots

 $\xi = \xi_1, \xi_2, \dots, \xi_k = \eta$

such that ξ_i, ξ_{i+1} are adjacent $(i = 1, \dots, k-1)$.

We remark that ξ and $\pm \xi$ are connected, and if ξ , 2ξ are the only positive t-roots, then these are not connected. We define the relation

 $\xi \sim \eta \Leftrightarrow \xi, \eta \text{ are connected.}$ (10)

One can easily check that this is an equivalence relation. Let R^i be the equivalent classes consisting of mutually connected t-roots. Then the set R_t is decomposed into a disjoint union

$$R_t = R^1 \cup \dots \cup R^r. \tag{11}$$

Definition 2.4. *The set of* t*-roots* R_t *is called connected if* r = 1*.*

By a result in [1] if G is simple, then for $s \ge 3$ in the decomposition (2), the set of t-roots is connected.

Proposition 2.5 ([3]). There is one-to-one correspondence between t-roots and complex irreducible $ad(\mathfrak{t}^{\mathbb{C}})$ -submodules \mathfrak{m}_{ξ} of $\mathfrak{m}^{\mathbb{C}}$. This correspondence is given by

$$R_t \ni \xi \leftrightarrow \mathfrak{m}_{\xi} = \sum_{\alpha \in R_M: \kappa(\alpha) = \xi} \mathbb{C} E_{\alpha}.$$

Thus $\mathfrak{m}^{\mathbb{C}} = \sum_{\xi \in \mathbb{R}^{d}} \mathfrak{m}_{\xi}$. Moreover, these submodules are inequivalent as $\mathrm{ad}(\mathfrak{t}^{\mathbb{C}})$ -modules.

Since the complex conjugation $\tau : \mathfrak{g}^{\mathbb{C}} \to \mathfrak{g}^{\mathbb{C}}$, $X + \sqrt{-1}Y \mapsto X - \sqrt{-1}Y$ ($X, Y \in \mathfrak{g}$) of $\mathfrak{g}^{\mathbb{C}}$ with respect to the compact real form \mathfrak{g} interchanges the root spaces, i.e. $\tau(E_{\alpha}) = E_{-\alpha}$ and $\tau(E_{-\alpha}) = E_{\alpha}$, a decomposition of the real Ad(K)-module $\mathfrak{m} = (\mathfrak{m}^{\mathbb{C}})^{\tau}$ into real irreducible Ad(K)-submodule is given by

$$\mathfrak{m} = \sum_{\xi \in R_{\mathfrak{t}}^+ = \kappa(R_{\mathfrak{M}}^+)} (\mathfrak{m}_{\xi} \oplus \mathfrak{m}_{-\xi})^{\tau}, \tag{12}$$

where V^{τ} denotes the set of fixed points of the complex conjugation τ in a vector subspace $V \subset \mathfrak{g}^{\mathbb{C}}$. If, for simplicity, we set $R_t^+ = \{\xi_1, \ldots, \xi_s\}$, then according to (12) each real irreducible Ad(K)-submodule $\mathfrak{m}_i = (\mathfrak{m}_{\xi_i} \oplus \mathfrak{m}_{-\xi_i})^{\tau}$ $(1 \le i \le s)$ corresponding to the positive t-roots ξ_i , is given by

$$\mathfrak{m}_{i} = \sum_{\alpha \in R_{M}^{+}:\kappa(\alpha) = \xi_{i}} (\mathbb{R}A_{\alpha} + \mathbb{R}B_{\alpha}).$$
(13)

In [22] the author gave the definition of C-spaces as following:

Definition 2.6 ([22]). Simply-connected and compact homogeneous complex manifolds are called C-spaces.

It is well known that each closed homogeneous complex manifold is analytically homeomorphic with a complex coset space([22], p.3). In order to describe *C*-spaces definitely we should give the definition of a *C*-subgroup of a compact semi-simple Lie group.

Definition 2.7 ([22]). Let G be a compact semi-simple Lie group. By a C-subgroup of G, we mean a closed and connected subgroup whose semi-simple part coincides with the semi-simple part of the centraliser of a toral subgroup of G.

The following two theorems are very important for us to understand a C-space.

Theorem 2.8 ([22]). Each C-space is homeomorphic with a coset space G/K', where G denotes a compact semi-simple Lie group, and K' is a C-subgroup of G.

Theorem 2.9 ([22]). Let K' be a C-subgroup of a simply connected compact semi-simple Lie group G. If G/K' is even dimension, then G/K' has a homogeneous complex structure, or in other words, G/K' is homeomorphic with a C-space.

In fact, any generalized C-space G/K' has a relation with some generalized flag manifold G/K and corresponding M-space G/K_1 .

Definition 2.10. We call that a generalized C-space G/K' is determined by a generalized flag manifold G/K, if $K_1 \subseteq K' \subseteq K$, where $K = C(S) = S \times K_1$, and S is a torus in G and K_1 is the semi-simple part of both K and K'.

3. Riemannian g.o. spaces

Let (M = G/K, g) be a homogeneous Riemannian manifold with G a compact connected semisimple Lie group. Let g and t be the Lie algebras of G and K respectively and $g = t \oplus m$ be a reductive decomposition.

Definition 3.1. A nonzero vector $X \in \mathfrak{g}$ is called a geodesic vector if the curve (1) is a geodesic.

Lemma 3.2 ([19]). A nonzero vector $X \in g$ is a geodesic vector if and only if

$$\langle [X, Y]_{\mathfrak{m}}, X_{\mathfrak{m}} \rangle = 0 \tag{14}$$

for all $Y \in m$. Here the subscript m denotes the projection into m.

A useful description characterization of g.o. spaces is the following:

Proposition 3.3 ([1]). Let (M = G/K, g) be a homogeneous Riemannian manifold. Then (M = G/K, g) is a g.o. space if and only if for every $x \in m$ there exists an $a(x) \in \mathfrak{t}$ such that

 $[a(x) + x, \Lambda x] \in \mathfrak{k}.$ (15)

For later use we recall the following:

Proposition 3.4. ([2, Proposition 5]) Let (M = G/H, g) be a compact g.o. space with associated operator Λ . Let $X, Y \in \mathfrak{m}$ be eigenvectors of Λ with different eigenvalues of λ, μ . Then

$$[X,Y] = \frac{\lambda}{\lambda - \mu} [h,X] + \frac{\mu}{\lambda - \mu} [h,Y]$$
(16)

for some $h \in \mathfrak{h}$.

Proposition 3.5. ([20, Corollary 4]) The inner product $\langle \cdot, \cdot \rangle$, generating the metric of a geodesic orbit Riemannian space (G/H, g), is not only Ad(H)-invariant but also $Ad(N_G(H_0))$ -invariant, where $N_G(H_0)$ is the normalizer of the unit component H_0 of the group H in G.

The above proposition will be crucial for simplifying metrics, which are g.o..

4. Proof of Lemma 1 and Theorem 1

Let G/K be a generalized flag manifold with $K = C(S) = S \times K_1$, where *S* is a torus in the simple compact Lie group *G* and K_1 is the semisimple part of *K*. Let G/K' be a given generalized *C*-space determined by a generalized flag manifold G/K.

Proof of Lemma 1.2. Since K' is a C-subgroup of G, it follows that K' is connected. This implies that K' can be decomposed into a product $K' = G_1 \times R_1$ of a maximal semi-simple subgroup G_1 and the radical R_1 , such that $G_1 \cap R_1$ is a discrete subgroup of K'. Since K_1 is a maximal semi-simple subgroup of K, therefore K_1 is a maximal semi-simple subgroup of K, therefore K_1 is a maximal semi-simple subgroup of K, therefore K_1 is a maximal semi-simple subgroup of K', that is $K' = K_1 \times R_1$. Since $K' \subseteq K$, we obtain that $R_1 \subseteq S$, that is $R_1 = S'$. This completes the proof.

Let g, ť, ť₁, s and s' be the Lie algebras of *G*, *K*, *K*₁, *S* and *S*' respectively, and let s₁ = s \ s'. Let B = -Killing form on g^C. Assume that $\mathfrak{m} = T_o(G/K)$. Then the module \mathfrak{m} decomposes into a direct sum of Ad(K)-invariant irreducible submodules pairwise orthogonal with respect to *B* (cf. (2)). Let $\langle \cdot, \cdot \rangle = B(\Lambda \cdot, \cdot)$ be an Ad(*K*)-invariant scalar product on \mathfrak{m} , where Λ is the associated operator. Therefore, *G*-invariant metrics on *G*/*K* which are Ad(*K*)-invariant are defined by

$$\langle \cdot, \cdot \rangle = \lambda_1 B(\cdot, \cdot)|_{\mathfrak{m}_1} + \dots + \lambda_s B(\cdot, \cdot)|_{\mathfrak{m}_s}.$$
(17)

1122

Proof of Theorem 1.3. For a given generalized *C*-space G/K', K' is connected and $K \subset N_G(K')$, where $N_G(K')$ is the normalizer of the group K' in G. Indeed, at the Lie algebra level we have that $\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{m}$ and $[\mathfrak{m}, \mathfrak{t}'] \subset \mathfrak{m}$, and $[\mathfrak{t}, \mathfrak{t}'] = [\mathfrak{s} \oplus \mathfrak{t}_1, \mathfrak{t}'] = ([\mathfrak{s}, \mathfrak{t}'] + [\mathfrak{t}_1, \mathfrak{t}']) \subset \mathfrak{t}'$. So, Proposition 3.5 implies that if the metric defined on G/K' is a g.o. metric, then it is not only Ad(K')-invariant but also Ad(K)-invariant. Also, the eigenspaces of Λ are Ad(K)-invariant. Therefore if the metric defined on G/K_1 is a g.o. metric, it reduces to

$$\langle \cdot, \cdot \rangle = \Lambda|_{\mathfrak{s}_1} + \lambda_1 B(\cdot, \cdot)|_{\mathfrak{m}_1} + \dots + \lambda_s B(\cdot, \cdot)|_{\mathfrak{m}_s}.$$
(18)

Let $R_t^+ = \{\xi_1, ..., \xi_s\}$ be the set of positive t-roots of the generalized flag manifold G/K with $s \ge 3$, so R_t^+ is connected. Then for any $\xi, \eta \in R_t^+$ there exists (without loss of generality) a chain of positive t-roots

$$\xi = \zeta_1, \zeta_2, \dots, \zeta_k = \eta, \tag{19}$$

where ζ_i, ζ_{i+1} are adjacent $(i = 1, \dots, k-1)$.

We define the subset $\{\mathfrak{m}_{i_1}, \mathfrak{m}_{i_2}, \ldots, \mathfrak{m}_{i_k}\}$ of $\{\mathfrak{m}_1, \mathfrak{m}_2, \ldots, \mathfrak{m}_s\}$ by

$$\mathfrak{m}_{i_q} = \sum_{\alpha \in \mathbb{R}^+_M: \kappa(\alpha) = \zeta_q} (\mathbb{R}A_\alpha + \mathbb{R}B_\alpha), \ (q = 1, \dots, k).$$

$$(20)$$

If $\gamma_1 = k\gamma_2$ for $\gamma_1, \gamma_2 \in R_t^+$ and $(k \ge 2)$, we always have that either $\gamma_1 + \gamma_2 \in R_t$ or $\gamma_1 - \gamma_2 \in R_t$. Also, since ζ_q, ζ_{q+1} (q = 1, ..., k-1) are adjacent, it follows that either $\zeta_q + \zeta_{q+1} \in R_t$ or $\zeta_{q+1} - \zeta_q \in R_t$. Therefore, we have

$$[\mathfrak{m}_{i_q},\mathfrak{m}_{i_{q+1}}] \subseteq \left(\sum_{\alpha \in \mathcal{R}^+_M:\kappa(\alpha) = \zeta_q + \zeta_{q+1}} (\mathbb{R}A_\alpha + \mathbb{R}B_\alpha)\right) \oplus \left(\sum_{\alpha \in \mathcal{R}_M:\kappa(\alpha) = \zeta_{q+1} - \zeta_q} (\mathbb{R}A_\alpha + \mathbb{R}B_\alpha)\right).$$

If $\zeta_q + \zeta_{q+1} \notin R_t$, then $\sum_{\alpha \in R_M^+:\kappa(\alpha) = \zeta_{q+1} + \zeta_q} (\mathbb{R}A_\alpha + \mathbb{R}B_\alpha) = \{0\}$. If $\zeta_{q+1} - \zeta_q \notin R_t$, then $\sum_{\alpha \in R_M:\kappa(\alpha) = \zeta_{q+1} - \zeta_q} (\mathbb{R}A_\alpha + \mathbb{R}B_\alpha) = \{0\}$. Since $\zeta_q + \zeta_{q+1} \neq \pm \zeta_q$, $\zeta_q + \zeta_{q+1} \neq \pm \zeta_{q+1}$ and $\zeta_q - \zeta_{q+1} \neq \pm \zeta_q$, $\zeta_q - \zeta_{q+1} \neq \pm \zeta_{q+1}$, it follows that

$$\left(\sum_{\alpha\in R_{M}^{+}:\kappa(\alpha)=\zeta_{q}+\zeta_{q+1}}(\mathbb{R}A_{\alpha}+\mathbb{R}B_{\alpha})\oplus\sum_{\alpha\in R_{M}:\kappa(\alpha)=\zeta_{q+1}-\zeta_{q}}(\mathbb{R}A_{\alpha}+\mathbb{R}B_{\alpha})\right)\cap\left(\mathfrak{m}_{i_{q}}\oplus\mathfrak{m}_{i_{q+1}}\right)=\{0\}.$$

Therefore we get that

$$[\mathfrak{m}_{i_{q}},\mathfrak{m}_{i_{q+1}}] \cap (\mathfrak{m}_{i_{q}} \oplus \mathfrak{m}_{i_{q+1}}) = \{0\}.$$
(21)

Also, since ζ_q, ζ_{q+1} are adjacent (q = 1, ..., k - 1) in (19), there exist $X \in \mathfrak{m}_{i_q}, Y \in \mathfrak{m}_{i_{q+1}}$ eigenvectors of Λ such that $[X, Y] \neq 0$. If we had that $\lambda_{i_q} \neq \lambda_{i_{q+1}}$, then Proposition 3.4 implies that $[X, Y] \subset \mathfrak{m}_{i_q} \oplus \mathfrak{m}_{i_{q+1}}$, which contradicts (21), hence $\lambda_{i_q} = \lambda_{i_{q+1}}, (q = 1, ..., k - 1)$. Since this is true for any $\xi, \eta \in R_t^+$ we obtain that $\lambda_1 = \lambda_2 = \cdots = \lambda_s$, and the conclusion follows.

References

- D.V. Alekseevsky and A. Arvanitoyeorgos: *Riemannian flag manifolds with homogeneous geodesics*, Trans. Amer. Math. Soc. 359 (2007) 3769–3789.
- [2] D.V. Alekseevsky and Yu. G. Nikonorov: Compact Riemannian manifolds with homogeneous geodesics, SIGMA: Symmetry Integrability Geom. Methods Appl. 5(93) (2009) 16 pages.
- [3] D. V. Alekseevsky and A. M. Perelomov: Invariant Kähler-Einstein metrics on compact homogeneous spaces, Funct. Anal. Appl. 20 (1986) 171–182.
- [4] A. Arvanitoyeorgos and N.P. Souris: Geodesics in generalized Wallach spaces, J. Geom. 106 (2015) 583–603.
- [5] A. Arvanitoyeorgos and N.P. Souris: Two-step Homogeneous Geodesics in Homogeneous Spaces, Taiwanse J. Math. 20(6) (2016) 1313–1333.
- [6] A. Arvanitoyeorgos and Y. Wang: Homogeneous geodesics in generalized Wallach spaces, Bull. Belgian Math. Soc. Simon Stevin 24(2) (2017) 257–270.
- [7] A.Arvanitoyeorgos, Y.Wang and G.S.Zhao: Riemannian g.o. metrics in certain M-spaces, Diff. Geom. Appl. 54 (2017) 59–70.

- [8] A.Arvanitoyeorgos, Y.Wang and G.S.Zhao: Riemannian M-spaces with homogeneous geodesics, Ann. Global Anal. Geom. 54(3) (2018) 315–328.
- [9] J. Berndt, O. Kowalski and L. Vanhecke: Geodesies in weakly symmetric spaces, Ann. Global Anal. Geom. 15(2) (1997) 153–156.
- [10] É. Cartan: Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math. France 54 (1926) 214–264.
- [11] É. Cartan: Sur une classe remarquable d'espaces de Riemann. II, Bull. Soc. Math. France 55 (1927) 114–134.
- [12] Z.Chen and Yu. Nikonorov: Geodesics orbit Riemannian spaces with two isotropy summands. I, Geom. Dedicata (2019), in press https://doi.org/10.1007/s10711-019-00432-6.
- [13] Z. Dušek: Explicit geodesic graphs on some H-type groups, Rend. Circ. Mat. Palermo Ser. II, Suppl. 69 (2002) 77–88.
- [14] Z. Dušek and O. Kowalski: Geodesic graphs on the 13-dimensional group of Heisenberg type, Math. Nachr. (254-255) (2003) 87-96.
- [15] Z. Dušek, O. Kowalski and S. Nikčević: New examples of g.o. spaces in dimension 7, Differential Geom. Appl. 21 (2004) 65–78.
- [16] C. S. Gordon: Homogeneous manifolds whose geodesics are orbits, in: Topics in Geometry in Memory of Joseph D'Atri, Birkhä user, Basel, 1996, 155–174.
- [17] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry II, Interscience Publisher, NewYork, 1969.
- [18] O. Kowalski and L. Vanhecke: Classification of five-dimensional naturally reductive spaces, Math. Proc. Cambridge Phil. Soc. 97 (1985) 445–463.
- [19] O. Kowalski and L. Vanhecke: Riemannian manifolds with homogeneous geodesics, Boll. Un. Mat. Ital. 5 (1991) 189–246.
- [20] Yu. Nikonorov: On the structure of geodesic orbit Riemmannian spaces, Ann. Glob. Anal. Geom. 52(3) (2017) 289–311.
- [21] H. Tamaru: Riemannian g.o. spaces fibered over irreducible symmetric spaces, Osaka J. Math. 36 (1999) 835–851.
- [22] H. C. Wang: Closed manifolds with homogeneous complex structure, Amer. J. Math. 76(1) (1954) 1–32. 177–194.
- [23] W. Ziller: Weakly symmetric spaces, Topics in Geometry: In Memory of Joseph D'Atri (Ed. S. Gindikin), Progress in Nonlinear Differential Equations 20, Birkhauser-Verlag, Boston, Basel, Berlin, 1996, 355–368.
- [24] Y. Wang and G.S. Zhao: Equigeodesics on generalized flag manifolds with $b_2(G/K) = 1$, ResultsMath. 64 (2013) 77–90.