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Recurrent Equiaffine Projective Euclidean Spaces
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Abstract. In this paper, we study n-dimensional recurrent equiaffine projective Euclidean manifolds, i.e.
manifolds with absolute recurrent curvature tensor, which admit geodesic mappings onto Euclidean space,
and they are equiaffine (where was obtained the symmetric Ricci tensor). We obtained main conditions of
recurrent projective Euclidean spaces and constructed their examples.

1. Introduction

This paper is devoted to n-dimensional recurrent projective Euclidean equiaffine manifolds An.
Let An = (M,∇) be n-dimensional manifold M with affine connection ∇ without torsion. Symmetric,

semisymmetric and recurrent space, respectively, is manifold An in which the curvature tensor R satisfies,
respectively, one of the following condition

(a) ∇R = 0, (b) R ◦ R = 0, (c) ∇R = ϕ · R, (1)

where ϕ is a linear form which is called recurrence tensor.
It is known, that P.A. Shirokov (see [18]) began to study symmetric and semisymmetric spaces. They

implicitly started to study the conditions ∇R = 0 and R ◦R = 0 (as integrability conditions of ∇R = 0). The
names symmetric and semisymmetric were explicitly introduced by É. Cartan and N.S. Sinyukov, respectively,
see [3, 8, 9, 20]. Recurrent spaces were introduced by H.S. Ruse [14, 24]. These spaces play an important role
in the theory of relativity, because they describe spaces with gravitational waves.

Symmetric and recurrent (with gradient-like field ϕ) spaces are semisymmetric. The geometry of sym-
metric, recurrent and semisymmetric spaces play an important role in the theory of Riemannian manifolds
and their generalizations, as well as applications in theoretical physics, especially, general theory of rela-
tivity. The great interest in semisymmetric spaces had Nomizu hypothesis [10], which was out casted later
[23], see also papers by Szabó [21, 22]. Nowadays, study of the symmetric and recurrent spaces and their
generalization is devoted to many works, for example [1, 2, 4, 5, 9].

Diffeomorphism between manifolds with affine connection is called a geodesic mapping if it preserves
geodesics. Geodesic mappigs of symmetric, recurrent and semisymmetric manifolds and their generaliza-
tions were studied by Sinyukov, Prvanović, Mikeš, and others, see [6–9, 13, 19, 20].
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A. Sabykanov et al. / Filomat 33:4 (2019), 1053–1058 1054

Projective Euclidean spaces were investigated in many different ways. These spaces are geodesically
equivalent to Euclidean spaces. Components of affine connection of symmetric projective Euclidean spaces
were obtained by P.A. Shirokov, see [16, 18]. The study of these spaces is devoted to dissertation work by
Sabykanov [15]. We continued in that way and obtained components of linear connection ∇ of semisym-
metric projective Euclidean spaces [11]. There were proved that semisymmetric projective Euclidean spaces
are necessary equiaffine, for which Ricci tensor is symmetric.

In this paper, we continued to study of the recurrent equiaffine projective Euclidean manifolds. We
obtained main conditions of recurrent projective Euclidean spaces and showed their examples.

2. Equiaffine projective Euclidean spaces

Let An and Ān be equiaffine spaces with affine connection ∇ and ∇̄, respectively, without torsion. In an
equiaffine space, the Ricci tensor is symmetric, i.e. Rik = Rki = Rαiαk.

Bellow, we will remind a well-know facts about geodesic mappings, see [7–9, 12, 20].
A diffeomorphism f : An → Ān is called a geodesic mapping if any geodesic curve in An is mapped

onto geodesic curve in Ān. The necessary and sufficient condition of geodesic mapping f : An → Ān is the
Levi-Civita equation

Γ̄h
ij(x) = Γh

ij(x) + δh
iψ j(x) + δh

jψi(x), (2)

where Γh
ij and Γ̄h

ij are components of ∇ and ∇̄, x = (x1, x2, . . . , xn) is a common coordinate respective f , and
ψi are components of a linear form, which are gradient-like, i.e. ψi = ∂iΨ, ∂i = ∂/∂xi.

For curvature, Ricci and Weyl projective tensor in An and Ān the following formulas hold:

(a) R̄h
ijk = Rh

ijk + δh
kψi j − δ

h
jψik , (b) R̄i j = Ri j − (n − 1) ψi j , (c) W̄h

ijk = Wh
ijk , (3)

where ψi j = ψi, j − ψiψ j. Here and in the following, comma “ , ” denotes the covariant derivative on ∇.
The Weyl tensor of projective curvature in equiaffine An has the following form:

Wh
ijk = Rh

ijk +
1

n − 1
(δh

kRi j − δ
h
j Rik).

Space An is called flat (or affine), if there exists an affine coordinate system x for which Γh
ij(x) = 0. It is

known that the tensor criterion for these spaces is that the curvature and torsion tensor are vanished.
In natural way, in flat spaces An we can implement Euclidean and pseudo-Euclidean metrics thus we

call them Euclidean spaces En.

Space An is projective Euclidean if it admits a geodesic mapping onto an Euclidean space. For n > 2 the
space An is projective Euclidean if and only if Wh

ijk = 0 and equivalently from (3) for equiaffine space An,
the curvature tensor R has the following form:

Rh
ijk = δh

jψik − δ
h
kψi j, (4)

whereψi j is a symmetric tensor. The Ricci tensor of this space has form Ri j = (n−1)ψi j and from the Bianchi
identity it is known:

ψi j,k = ψ ji,k. (5)

Since 1925 P.A. Shirokov [17, 18] studied symmetric projective Euclidean space. He proved that in
non-flat symmetric projective Euclidean space, there exists a projective coordinate system x in which the
components of an affine connection ∇ have form:

Γh
ij = δh

iψ j + δh
jψi, ψi = ∂iΨ, Ψ = − ln

√ ∣∣∣ aαβxαxβ + bαxα + c
∣∣∣ ,
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where ai j, bi, c are real constants and ai j = a ji . 0.
From this result, it follows that a set of symmetric projective Euclidean spaces depend on (n + 1)(n + 2)/2

real parameters, which are ai j (= a ji), bi and c.
In [11], we proved that a projective Euclidean space An is semisymmetric if and only if it is equiaffine,

and in a projective coordinate system x components of an affine connection ∇ take the form of

Γh
ij = δh

iψ j + δh
jψi, ψi = ∂iΨ,

where Ψ is a function.

3. Recurrent and semisymmetric spaces

Conditions (1c) of absolute recurrence of the curvature tensor R, which characterize recurrent space An,
are written in a coordinate form in the following way [14, 24]:

Rh
ijk,l = ϕl Rh

ijk. (6)

A.G. Walker [24] proved that a recurrent Riemannian space is semisymmetric. If An is a recurrent space
with an affine connection, then this property is generally not valid. Now, we covariantly differentiate (6)
with respect to xm, and after that, we alternate the indices l and m. We get

Rh
ijk,[lm] = ϕ[l,m] Rh

ijk, (7)

where the square bracket denote alternation of given indices.
We remind that conditions of semisymmetric spaces (1b) has in common coordinate system the form

Rh
ijk,[lm] = 0. Therefore, from (7) follows that recurrent space An is semisymmetric if and only if the form ϕ is

locally gradient-like, i.e. locally there exists a function Φ for which

ϕi = ∂iΦ

holds. This follows from the following term:

ϕi = ∂iΦ if and only if ϕl,m = ϕm,l (⇔ ∂mϕl = ∂lϕm).

In the paper [11], it was proved that a recurrent projective Euclidean space An is semisymmetric if and only if
it is equiaffine.

4. Main condition of recurrent equiaffine projective Euclidean spaces

Let An be a recurrent equiaffine projective Euclidean space. Then formula (6) with ϕl = ∂lΦ holds, and
the curvature tensor R has form (4).

By substituting condition (4) to (6), we have δh
kψi jl − δh

jψikl = 0, where ψi jl = ψi j,l − ϕlψi j. From this, it
follows that ψi jk = 0, so we have

ψi j,l = ϕlψi j. (8)

Because in a projective Euclidean space An formula (5) holds too, then from (8) follows ϕkψi j = ϕ jψik.
Now, let us suppose that ϕk , 0. Due to this, there exists a vector field ak, for which akϕk = 1. Now, we

contract the last formula with ak. We get ψi j = ϕ jψikak and from the symmetry of the tensor ψi j it follows

ϕ jψikak = ϕiψ jkak.

Now, we will contract the last formula with respect to a j and obtain ψikak = ψiψ jka jak.
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Finally, we have:

ψi j = κϕiϕ j, (9)

where κ is a function.
Because An is non-flat space, the function κ and ϕi are non-vanishing. By substituting (9) to (8), we

obtain:

κ,l ϕiϕ j + κϕi,lϕ j + κϕiϕ j,l = κϕlϕiϕ j.

Now, we can rewrite this formula into following form:

ϕi(κϕ j,l + ϕ jκ,l − 1/2κϕ jϕl) + ϕ j(κϕi,l + ϕiκ,l − 1/2κϕiϕl) = 0.

Because ϕi and κ does not vanish, from the last formula we get

ϕi,l =
1
2
ϕiϕl − ϕi

κ,l
κ
.

The vector field ϕi is locally gradient-like, i.e. ϕi = ∂iΦ. Therefore from ϕi,l = ϕl,i follows ϕiκ,l = ϕlκ,i.
It is clear to see that function κ is a function of the argument Φ, i.e., we can write κ = κ(Φ). This function
is differentiable, i.e. κ ∈ C1.

Because κ,i = κ′ · ϕi we have

ϕi, j =
1
2

(
1 −
κ′

κ

)
ϕiϕ j. (10)

On the other hand, we can see that if the curvature tensor R has the form (4) and the conditions (9)
and (10) hold, the space An is recurrent eqiuaffine projective Euclidean. Finally, we proved the following

Theorem 4.1. Space An with affine connection is a recurrent equiaffine projective Euclidean space if and only if its
components of the curvature tensor R have the following form

Rh
ijk = δh

kψi j − δ
h
jψik,

where ψi j = κ(Φ)ϕiϕ j, ϕi, j =
1
2

(
1 −
κ′

κ

)
ϕiϕ j, ϕi = ∂iΦ, κ ∈ C1, symbol “ , ” is a covariant derivative.

5. On the existence of recurrent projective Euclidean spaces

Theorem 4.1 does not give us answer to the questions: Does there exist any recurrent projective Euclidean
space? How many such spaces are there? Answers on these questions are in the set of recurrent equiaffine
projective Euclidean spaces.

Let An be a recurrent equiaffine projective Euclidean space and Ēn be a projective equiaffine Euclidean
space. Components of affine connections of An and Ēn are connected to the Levi-Civita equation (2):

Γ̄h
ij = Γh

ij + δh
iψ j + δh

jψi.

Because

ψi j = ψi, j − ψiψ j, ψi, j = ∂ jψi − ψαΓαi j, ψi| j = ∂ jψi − ψαΓ̄αi j, ϕi, j = ∂ jϕi − ϕαΓαi j and ϕi| j = ∂ jϕi − ϕαΓ̄αi j,

we can rewrite the equations in the Theorem 4.1 (i.e. the conditions (9) and (10)) as follows

Φ|i = ϕi,

ψi| j = 2ψiψ j + κ(Φ)ϕiϕ j ,

ϕi| j = ϕiψ j + ϕ jψi +
1
2

(
1 −
κ′

κ

)
ϕiϕ j ,

(11)
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where symbol “ | ” denotes a covariant derivative, respective connection ∇̄ of Ēn.
For apriori defined functions κ ∈ C1, the conditions (11) are a nonlinear system of partial differential

equations of Cauchy type in covariant derivative with respect to unknown function Φ(x), ϕi(x) and ψi(x).
Therefore, for given function κ ∈ C1, the system (11) with initial conditions at the point x0

Φ(x0) =
0
Φ, ϕi(x0) =

0
ϕi, ψi(x0) =

0
ψi, (12)

can have only one solution.
On the other hand, by checking the integrability conditions of the system (11), we can find out, the

mentioned system is absolute integrable (whenκ ∈ C2) and thus it has solution for any initial conditions (12).
Thus the set of the solution (11) and also the set of those spaces depend only on one function κ and 2n + 1
parameters.

Theorem 5.1. The set of recurrent equiaffine projective Euclidean spaces An are generalized by the system of partial
differential equations (11) in covariant derivative. For any function κ ∈ C2 and initial conditions (12), that system
has solution. The set of those spaces depend only on one function κ ∈ C1 and 2n + 1 real parameters.

Finally, we remark that if in Ān is affine coordinate x, then system (11) has form of partial differential
equations

∂iΦ = ϕi, ∂ jψi = 2ψiψ j + κ(Φ)ϕiϕ j , ∂ jϕi = ϕiψ j + ϕ jψi +
1
2

(
1 −
κ′

κ

)
ϕiϕ j .

6. Example of recurrent equiaffine projective Euclidean spaces

Finding the general solution of system (11) is practically impossible. We will try to find some solutions.
We will assume that we have the functions Ψ and Φ, which generate gradient vectorsψi = ∂iΨ andϕi = ∂iΦ,
depending on variable x1.

On the base of formula (2), components of an affine connection in the recurrent equiaffine projective
spaces have the following form:

Γh
ij = s(x1) · (δh

i δ
1
j + δh

jδ
1
i ) (13)

where s is a function of x1 variable. By calculation, we convince ourselves that the curvature tensor R
(Rh

ijk = ∂ jΓ
h
ik − ∂kΓ

h
ij + ΓαikΓ

h
α j − Γαi jΓ

h
αk) takes the form of:

Rh
ijk = (s′ − s2) δ1

i (δh
kδ

1
j − δ

h
jδ

1
k). (14)

Because δ1
i, j = −2s · δ1

i δ
1
j , then from (14) follows,

Rh
ijk,l = ϕl Rh

ijk,

where ϕl = ((ln |s′ − s2
|)′ − 4s) δ1

l .

The following theorem holds.

Theorem 6.1. A space An with the affine connection (13) and with s(x1) ∈ C1 is a recurrent equiaffine projective
Euclidean space. If the equation (ln |s′ − s2

|)′ = 4s is fulfilled, then An is symmetric.
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