On the Recursive Sequence $x_{n+1} = \frac{x_{n-7}}{1 + x_{n-3}}$

D. Simseka, P. Esengul Kyzyb, M. Imash Kyzyb

aKyrgyz-Turkish Manas University, 720044 Bishkek, Kyrgyzstan, Konya Technical University, Konya, Turkey
bKyrgyz-Turkish Manas University, 720044 Bishkek, Kyrgyzstan

Abstract. In this paper the solutions of the following difference equation is examined:

$$x_{n+1} = \frac{x_{n-7}}{1 + x_{n-3}}, \quad n = 0, 1, 2, 3, ...$$

where the initial conditions are positive real numbers.

1. Introduction

The study of difference equations is growing continuously for the last decade. Difference equations are always attracting very much interest, because these equations appear in the mathematical models of some problems in biology, ecology and physics, and numerical solutions of differential equations [22-31]. In fact, they occupy a central position in applicable analysis and will continue undoubtedly to play an important role in mathematics as a whole. Recently, a lot of interest in studying the periodic nature of nonlinear difference equations has been revealed. We refer readers to [1, 5-19] for some recent results concerning among other problems and the periodicity of scalar nonlinear difference equations.

Cinar [2, 3, 4] has studied the following problems with positive initial values:

$$x_{n+1} = \frac{x_{n-1}}{1 + ax_{n-1}},$$

$$x_{n+1} = \frac{x_{n-1}}{-1 + ax_{n-1}},$$

$$x_{n+1} = \frac{ax_{n-1}}{1 + bx_{n-1}},$$

for $n = 0, 1, 2, ...$, respectively.

Simsek et al. [20, 21, 22, 25] studied the following problems

$$x_{n+1} = \frac{x_{n-3}}{1 + x_{n-1}},$$

2010 Mathematics Subject Classification. Primary 39A10; Secondary 39A13, 39A45

Keywords. Difference equation, period 8 solution

Received: 26 July 2018; Revised: 12 March 2019; Accepted: 19 March 2019

Communicated by Fahreddin Abdullah

Email addresses: dtsimsek@ktun.edu.tr, dagistan.simsek@manas.edu.kg (D. Simsek), peyil.esengul@manas.edu.kg (P. Esengul Kyzy), imashkyzy@gmail.com (M. Imash Kyzy)
Consider the difference equation:

\[x_{n+1} = \frac{x_{n-1}}{1 + x_n}, \quad \text{for } n = 0, 1, 2, \ldots, \]

where \(x_1, x_0 \in (0, \infty)\). This result was generalized to the equation of the following form:

\[x_{n+1} = \frac{x_{n-1}}{g(x_n)}, \quad \text{for } n = 0, 1, 2, \ldots, \]

where \(x_1, x_0 \in (0, \infty)\).

In this paper we investigated the following nonlinear difference equation:

\[x_{n+1} = \frac{x_{n-7}}{1 + x_{n-3}}, \quad n = 0, 1, 2, 3, \ldots \]
(1)

where \(x_7, x_6, x_5, x_4, x_3, x_2, x_1, x_0 \in (0, \infty)\).

2. Main Result

Theorem 2.1. Consider the difference equation (1). Then the following statements are true.

a) The sequences \(\{x_{8n-7}\}, \{x_{8n-6}\}, \{x_{8n-5}\}, \{x_{8n-4}\}, \{x_{8n-3}\}, \{x_{8n-2}\}, \{x_{8n-1}\}, \{x_{8n}\}\) are decreasing and there exist \(a_1, a_2, \ldots, a_8 \geq 0\) such that

\[
\lim_{n \to \infty} x_{8n-7} = a_1, \quad \lim_{n \to \infty} x_{8n-6} = a_2, \quad \lim_{n \to \infty} x_{8n-5} = a_3, \quad \lim_{n \to \infty} x_{8n-4} = a_4, \quad \lim_{n \to \infty} x_{8n-3} = a_5, \\
\lim_{n \to \infty} x_{8n-2} = a_6, \quad \lim_{n \to \infty} x_{8n-1} = a_7, \quad \lim_{n \to \infty} x_{8n} = a_8, \\
\]

b) \(\lim_{n \to \infty} x_{8n-7} = \lim_{n \to \infty} x_{8n-6} = \lim_{n \to \infty} x_{8n-5} = \lim_{n \to \infty} x_{8n-4} = \lim_{n \to \infty} x_{8n-3} = \lim_{n \to \infty} x_{8n-2} = 0, \lim_{n \to \infty} x_{8n-1} = 0, \lim_{n \to \infty} x_{8n} = 0, \)

or \(a_1a_5 = 0, a_2a_6 = 0, a_3a_7 = 0, a_4a_8 = 0\).

c) If there exist \(n_0 \in \mathbb{N} = \mathbb{Z}_+\) such that \(x_{n+1} \leq x_{n-3}\) for all \(n \geq n_0\), then \(\lim_{n \to \infty} x_n = 0\).

d) The following formulas hold:

\[
x_{8n+1} - x_{-7} = (x_1 - x_{-7}) \sum_{j=0}^{n} \prod_{i=1}^{2j} \frac{1}{1 + x_{4i-3}}; \\
x_{8n+2} - x_{-6} = (x_2 - x_{-6}) \sum_{j=0}^{n} \prod_{i=1}^{2j} \frac{1}{1 + x_{4i-2}}; \\
x_{8n+3} - x_{-5} = (x_3 - x_{-5}) \sum_{j=0}^{n} \prod_{i=1}^{2j} \frac{1}{1 + x_{4i-1}}; \\
x_{8n+4} - x_{-4} = (x_4 - x_{-4}) \sum_{j=0}^{n} \prod_{i=1}^{2j} \frac{1}{1 + x_{4i}};
\]
\[
x_{8n+5} - x_3 = (x_1 - x_7) \sum_{j=0}^{n} \frac{1}{1 + x_4^{j+1}};
\]
\[
x_{8n+6} - x_2 = (x_2 - x_6) \sum_{j=0}^{n} \frac{1}{1 + x_4^{j+1}};
\]
\[
x_{8n+7} - x_1 = (x_3 - x_5) \sum_{j=0}^{n} \frac{1}{1 + x_4^{j+1}};
\]
\[
x_{8n+8} - x_0 = (x_4 - x_4) \sum_{j=0}^{n} \frac{1}{1 + x_4^{j+1}}.
\]

e) If \(x_{8n+1} \to a_1 \neq 0\) then \(x_{8n+5} \to 0\) as \(n \to \infty\). If \(x_{8n+2} \to a_2 \neq 0\) then \(x_{8n+6} \to 0\) as \(n \to \infty\). If \(x_{8n+3} \to a_3 \neq 0\) then \(x_{8n+7} \to 0\) as \(n \to \infty\). If \(x_{8n+4} \to a_4 \neq 0\) then \(x_{8n+8} \to 0\) as \(n \to \infty\).

Proof.
a) Firstly, we consider the equation (1). From this equation we obtain
\[
x_{n+1}(1 + x_{n-3}) = x_{n-7}.
\]
If \(x_{n-3} \in (0, +\infty)\), then \((1 + x_{n-3}) \in (1, +\infty)\). Since \(x_{n-7} > x_{n+1}, n \in \mathbb{N}\), we obtain that
\[
\lim_{n \to \infty} x_{8n-7} = a_1, \quad \lim_{n \to \infty} x_{8n-6} = a_2, \quad \lim_{n \to \infty} x_{8n-5} = a_3, \quad \lim_{n \to \infty} x_{8n-4} = a_4, \quad \lim_{n \to \infty} x_{8n-3} = a_5,
\]
\[
\lim_{n \to \infty} x_{8n-2} = a_6, \quad \lim_{n \to \infty} x_{8n-1} = a_7, \quad \lim_{n \to \infty} x_{8n} = a_8.
\]
b) In view of the equation (1), we obtain
\[
x_{8n+1} = \frac{x_{8n-7}}{1 + x_{8n-3}}.
\]
Taking limit as \(n \to \infty\) on both sides of the above equality, we get
\[
n = 8n \implies \lim_{n \to \infty} x_{8n-7} \lim_{n \to \infty} x_{8n-3} = 0 \quad \text{or} \quad a_1a_5 = 0.
\]
Similarly,
\[
n = 8n + 1 \implies \lim_{n \to \infty} x_{8n-6} \lim_{n \to \infty} x_{8n-2} = 0 \quad \text{or} \quad a_2a_6 = 0;
\]
\[
n = 8n + 2 \implies \lim_{n \to \infty} x_{8n-5} \lim_{n \to \infty} x_{8n-1} = 0 \quad \text{or} \quad a_3a_7 = 0;
\]
\[
n = 8n + 3 \implies \lim_{n \to \infty} x_{8n-4} \lim_{n \to \infty} x_{8n} = 0 \quad \text{or} \quad a_4a_8 = 0.
\]
c) If there exist \(n_0 \in \mathbb{N}\) such that \(x_{n-3} \geq x_{n+1}\) for all \(n \geq n_0\), then \(a_2 \leq a_6 \leq a_2, a_3 \leq a_7 \leq a_3, a_4 \leq a_8 \leq a_4, a_5 \leq a_1 \leq a_5\). Using (b), we get
\[
a_1a_5 = 0, \quad a_2a_6 = 0, \quad a_3a_7 = 0, \quad a_4a_8 = 0.
\]
Then, we see that
\[
\lim_{n \to \infty} x_n = 0.
\]
d) Subtracting \(x_{n-7}\) from the left and right-hand sides of equation (1), we obtain
\[
x_{n+1} - x_{n-7} = \frac{1}{1 + x_{n-3}}(x_{n-3} - x_{n-11}). \quad (2)
\]
From (2), the following formula holds. Replacing \(n \) by \(2j \) in (3) and summing from \(j = 0 \) to \(j = n \) we obtain

\[
(n = 0, 1, 2, \ldots) \begin{cases}
\begin{align*}
x_{8n+1} - x_7 &= (x_1 - x_7) \sum_{i=0}^{n} \prod_{j=1}^{2i} \frac{1}{1 + x_{4i+3}}; \\
x_{8n+2} - x_6 &= (x_2 - x_6) \sum_{j=0}^{n} \prod_{i=1}^{2j} \frac{1}{1 + x_{2i+2}}; \\
x_{8n+3} - x_5 &= (x_3 - x_5) \sum_{j=0}^{n} \prod_{i=1}^{2j} \frac{1}{1 + x_{4i+1}}; \\
x_{8n+4} - x_4 &= (x_4 - x_4) \sum_{j=0}^{n} \prod_{i=1}^{2j} \frac{1}{1 + x_{2i+1}}.
\end{align*}
\end{cases}
\]

Also, replacing \(n \) by \(2j + 1 \) in (3) and summing up elements from \(j = 0 \) to \(j = n \) we obtain

\[
(n = 0, 1, 2, \ldots) \begin{cases}
\begin{align*}
x_{8n+5} - x_3 &= (x_1 - x_7) \sum_{i=0}^{n} \prod_{j=1}^{2i+1} \frac{1}{1 + x_{4i+3}}; \\
x_{8n+6} - x_2 &= (x_2 - x_6) \sum_{j=0}^{n} \prod_{i=1}^{2j+1} \frac{1}{1 + x_{2i+2}}; \\
x_{8n+7} - x_1 &= (x_3 - x_5) \sum_{j=0}^{n} \prod_{i=1}^{2j+1} \frac{1}{1 + x_{4i+1}}; \\
x_{8n+8} - x_0 &= (x_4 - x_4) \sum_{j=0}^{n} \prod_{i=1}^{2j+1} \frac{1}{1 + x_{2i+1}}.
\end{align*}
\end{cases}
\]

Now, we obtained of the above formulas,

\[
\begin{align*}
x_{8n+1} &= x_7(1 - \frac{x_3}{1 + x_3} \sum_{j=0}^{n} \prod_{i=1}^{2j} \frac{1}{1 + x_{4i+3}}); \\
x_{8n+2} &= x_6(1 - \frac{x_2}{1 + x_2} \sum_{j=0}^{n} \prod_{i=1}^{2j} \frac{1}{1 + x_{2i+2}}); \\
x_{8n+3} &= x_5(1 - \frac{x_1}{1 + x_1} \sum_{j=0}^{n} \prod_{i=1}^{2j} \frac{1}{1 + x_{4i+1}}); \\
x_{8n+4} &= x_4(1 - \frac{x_4}{1 + x_4} \sum_{j=0}^{n} \prod_{i=1}^{2j} \frac{1}{1 + x_{2i+1}}).
\end{align*}
\]

\[
\begin{align*}
x_{8n+5} &= x_3(1 - \frac{x_3}{1 + x_3} \sum_{j=0}^{n} \prod_{i=1}^{2j+1} \frac{1}{1 + x_{4i+3}}); \\
x_{8n+6} &= x_2(1 - \frac{x_2}{1 + x_2} \sum_{j=0}^{n} \prod_{i=1}^{2j+1} \frac{1}{1 + x_{2i+2}}); \\
x_{8n+7} &= x_1(1 - \frac{x_1}{1 + x_1} \sum_{j=0}^{n} \prod_{i=1}^{2j+1} \frac{1}{1 + x_{4i+1}}); \\
x_{8n+8} &= x_0(1 - \frac{x_4}{1 + x_4} \sum_{j=0}^{n} \prod_{i=1}^{2j+1} \frac{1}{1 + x_{2i+1}}).
\end{align*}
\]

e) Suppose that \(a_1 = a_5 = 0 \). By d) we have

\[
\lim_{n \to \infty} x_{8n+1} = \lim_{n \to \infty} x_7(1 - \frac{x_3}{1 + x_3} \sum_{j=0}^{n} \prod_{i=1}^{2j} \frac{1}{1 + x_{4i+3}}); \\
a_1 = x_7(1 - \frac{x_3}{1 + x_3} \sum_{j=0}^{\infty} \prod_{i=1}^{2j} \frac{1}{1 + x_{4i+3}}); \\
a_1 = 0 \Rightarrow \frac{1 + x_3}{x_3} = \sum_{j=0}^{\infty} \prod_{i=1}^{2j} \frac{1}{1 + x_{4i+3}}.
\]

Similarly,

\[
\lim_{n \to \infty} x_{8n+5} = \lim_{n \to \infty} x_3(1 - \frac{x_7}{1 + x_3} \sum_{j=0}^{n} \prod_{i=1}^{2j+1} \frac{1}{1 + x_{4i+3}}); \\
\]
From (8) and (9),

$$\frac{1 + x_{-3}}{x_{-3}} = \sum_{j=0}^{\infty} \prod_{i=1}^{2j+1} \frac{1}{1 + x_{4i-3}},$$

(10)

thus, $x_{-3} > x_{-3}$. If we take $x_{8n-7} > x_{8n-3}$ and are taking limit as $n \to \infty$ on both sides, we get

$$\lim_{n \to \infty} x_{8n-7} > \lim_{n \to \infty} x_{8n-3} \Rightarrow a_1 > a_5.$$

Suppose that $a_2 = a_6 = 0$. Hence similar to the previous we have

$$\frac{1 + x_{-2}}{x_{-2}} = \sum_{j=0}^{\infty} \prod_{i=1}^{2j} \frac{1}{1 + x_{4i-2}} > \frac{1 + x_{-2}}{x_{-2}} = \sum_{j=0}^{\infty} \prod_{i=1}^{2j+1} \frac{1}{1 + x_{4i-2}}$$

(11)

thus, $x_{-2} > x_{-2}$. If we take $x_{8n-6} > x_{8n-2}$ and are taking limit as $n \to \infty$ on both sides, we get

$$\lim_{n \to \infty} x_{8n-6} > \lim_{n \to \infty} x_{8n-2} \Rightarrow a_2 > a_6.$$

Suppose that $a_3 = a_7 = 0$. Hence similar to the previous we have

$$\frac{1 + x_{-1}}{x_{-1}} = \sum_{j=0}^{\infty} \prod_{i=1}^{2j} \frac{1}{1 + x_{4i-1}} > \frac{1 + x_{-1}}{x_{-1}} = \sum_{j=0}^{\infty} \prod_{i=1}^{2j+1} \frac{1}{1 + x_{4i-1}}$$

(12)

thus, $x_{-1} > x_{-1}$. If we take $x_{8n-5} > x_{8n-1}$ and are taking limit as $n \to \infty$ on both sides, we get

$$\lim_{n \to \infty} x_{8n-5} > \lim_{n \to \infty} x_{8n-1} \Rightarrow a_3 > a_7.$$

Suppose that $a_4 = a_8 = 0$. Hence similar to the previous we have

$$\frac{1 + x_0}{x_0} = \sum_{j=0}^{\infty} \prod_{i=1}^{2j} \frac{1}{1 + x_{4i}} > \frac{1 + x_0}{x_0} = \sum_{j=0}^{\infty} \prod_{i=1}^{2j+1} \frac{1}{1 + x_{4i}}$$

(13)

thus, $x_{0} > x_{0}$. If we take $x_{8n-4} > x_{8n}$ and are taking limit as $n \to \infty$ on both sides, we get

$$\lim_{n \to \infty} x_{8n-4} > \lim_{n \to \infty} x_{8n} \Rightarrow a_4 > a_8.$$

Hence we obtain $x_{-4} > x_{0}, x_{-3} > x_{-1}, x_{-2} > x_{-2}, x_{-7} > x_{-3}$. We face a contradiction which completes the proof of the theorem. □

References

[2] C. Cinar, On the positive solutions of the difference equation $x_{n+1} = \frac{\alpha x_{n-1}}{1 + \beta x_{n-1}}$, Appl. Math. Comp. 156 3 (2004) 587–590.