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Abstract. The article discusses the matrices of the form A1
n, Am

n , Am
N, whose inverses are: tridiagonal matrix

A−1
n (n - dimension of the A−m

N matrix), banded matrix A−m
n (m is the half-width band of the matrix) or block-

tridiagonal matrix A−m
N (N = n x m – full dimension of the block matrix; m - the dimension of the blocks) and

their relationships with the covariance matrices of measurements with ordinary (simple) Markov Random
Processes (MRP), multiconnected MRP and vector MRP, respectively. Such covariance matrices frequently
occur in the problems of optimal filtering, extrapolation and interpolation of MRP and Markov Random
Fields (MRF). It is shown, that the structures of the matrices A1

n, Am
n , Am

N have the same form, but the matrix
elements in the first case are scalar quantities; in the second case matrix elements represent a product of
vectors of dimension m; and in the third case, the off-diagonal elements are the product of matrices and
vectors of dimension m. The properties of such matrices were investigated and a simple formulas of their
inverses were found. Also computational efficiency in the storage and the inverse of such matrices have
been considered. To illustrate the acquired results, an example on the covariance matrix inversions of
two-dimensional MRP is given.

1. Introduction

Research problems of random fields and processes are faced in many applications, such as the study
of spatial and temporal variability of oceanographic fields (flow velocity fields, temperature fields and sea
surface height, density and salinity fields, etc.), the problems of statistical radio engineering and image
fields reconstruction, and many other engineering tasks. The computing algorithms based on the least-
squares method (LSM), weighted and generalized LSM (WLSM, GLSM) or Kalman-Bucy filter are usually
used in estimation, filtering and interpolation of random fields which are based on the field realization
measurements results. If the investigated physical fields can be approximated by simple (ordinary con-
nected), m-connected processes, or vector Markov processes, the computing schemes utilizing tridiagonal,
band and block-banded matrices are used. Therefore, in recent years, much attention is paid to the study
of computational efficiency of such algorithms and the structure of the matrices included in the estimation
algorithms (see e.g., [2–5, 16, 17, 24]).
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The computational schemes where with covariance matrices of measurements, whose inverses have
diagonal structure can arise in physical random processes if they are either Markov random processes in
a wide sense (that is, Gauss-Markov random processes), or when they can be approximated by Markov
processes. Diagonal structures can be one of the following forms:

(i) tridiagonal structure, in case of a simple (one-dimensional, ordinary connected) Markov process;

(ii) band-diagonal structure for m-connected Markov process (in literature they are also refered as the
Gauss-Markov processes of m-th order or m-th order Gauss-Markov process);

(iii) block-tridiagonal structure, in the case of vector ordinary connected Markov process;

(iv) block-band-diagonal structure, in the case of m-connected vector Markov process.

In [5], a data assimilation in large, multi-dimensional, time-dependent fields was considered. Assimilation
was done by accounting the structure of measurements matrix. As a result, four efficient Kalman-Bucy
filter’s algorithm were built, which reduced computing costs up to 2 orders compared to known algorithms.
This improvement became possible in case when the measurement errors are approximated by Markov
random field (MRF). In this case, the inverse covariance matrix of measurement errors field had a band
structure that allows constructing efficient algorithms. The sparse measurements are typical for tasks
considered in the article (e.g., results of satellite scan). Accounting these measurements allows constructing
algorithms that are more efficient compared to existing ones.

In [17] the matrices, whose inverses are banded, were considered. In this case, tridiagonal matrix repre-
sented as a Hadamard product of three matrices. This leads to very interesting result when Gauss-Markov’s
random process represented as the product of three independent processes: forward and backward pro-
cesses with independent increments and a variance-stationary process. Here we can see the connection
between matrices, entering the decomposition of the three-diagonal matrix and the processes involved in
the factorization of Gauss-Markov’s random process. In this sense, the positive defined symmetric matrices
with banded inverses can be viewed as a representation of Gauss-Markov’s random processes. The paper
also considered the problem of the approximation of the covariance matrix of non-stationary general form
Gaussian process. Approximation is done by covariance matrix whose inverse is a band matrix. The infor-
mation loss of such approximation was estimated. This work also shows that for such matrix inversion it
is necessary to know only the direct matrix elements, lying inside the band with the width L.

In [2] inversion algorithms of L-block banded matrices were obtained. Authors showed that their
inverses are also L-block banded matrices. Received algorithms were applied to signal processing problems
in the case of Kalman-Bucy Filtering (KBF) usage. These covariance matrices were approximated by block-
band matrices. The computational complexity of the algorithm is 2 times lower compared to existing
algorithms and makes the KFB algorithm feasible to solve problems of large dimension. There is a large
number of papers devoted to the problems of tridiagonal, block and block-tridiagonal matrices and their
inverses. As the most common and close to the subject of this article, we should note the article by
G. Meurant, 1992 [19], where a detailed review and analysis of studies on the properties of inversions to
symmetric tridiagonal, block-tridiagonal and banded matrices was given. In the article, author summarized
many of the results in this area and showed almost complete (34 titles) bibliography of publications in this
field in the period of time from 1944 to 1992. The review begins from the first publication of D. Moskovitz,
1944 [20], where analytical expressions for the inverse of tridiagonal matrices are given for 1D and 2D
Poisson model problems.

In [19] there is a reference to the work of Barret, [6], which introduced the concept of "trian1le property"
(A matrix R has “triangle property” if Ri j =

(RikRkj)
Rkk

; a matrix with this property whose diagonal elements
are nonzero elements has a tridiagonal inverse and vice versa). It should be noted that "triangle property",
introduced in [6], coincides with a discrete form of the condition on the form of the covariance function
k(s, t) of a Markov process in the wide sense (k(s, t) =

k(s,τ)k(τ,t)
k(τ,τ) , s < τ < t), given in the Doob, 1953 ([12],

Theorem 8.1). We focus on this work, since the results of Doob’s Theorem 8.1 are supported by the results
presented in the second part of this work related to the study of the relationship of the matrices whose
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inverses are tridiagonal, banded or block-tridiagonal matrices with the covariance matrices of ordinary
(simple) Markov processes, multiple connected Markov processes and vector Markov random processes.

Summarizing the content of these papers we can note that in all these works, matrices, the inverse
of which leads to tridiagonal, banded or block-tridiagonal matrices were studied. It is shown that if the
matrices are symmetric and positive definite, then they are covariance matrices of measurements of Gauss-
Markov’s random processes. The application of obtained results to signal processing tasks in the analysis of
space-time random oceanographic fields were considered. The structure of these matrices allows obtaining
efficient computational algorithms applicable to large-scale tasks. The results are coupling to specific
algorithms and programs and their effectiveness tested on examples of real experiments results processing.

The author obtained results that partially go inline with the results obtained by [2–5, 16, 17, 24] in
1988-1992 independently of mentioned works. Unfortunately, these results are presented only in the form
of manuscripts [8, 9] or published in the form of short abstracts of conferences in Russian (see., e.g., [10, 11]).
There is only one article that was translated into English [7].

It can be noted, that the results related to the tridiagonal matrices inversion and the study of Markov
processes were also considered in Russian mathematical literature, namely, in literature on statistical radio
engineering dedicated to various aspects of the random processes study [1, 7–12, 14, 15, 18, 21–23, 25, 26]. But
there are few works in Russian that consider the use of banded and block-banded matrices in data processing
algorithms. Also, the connection between Markov random processes (fields) class and covariance matrices
of measurement of such fields were poorly investigated. There is a few works on the evaluation of the
effectiveness of computational processing circuits of Markov fields’ research results. In [22] the relationship
of Markov processes and stochastic differential equations in partial derivatives were shown and numerous
examples of Markov processes were given.

2. The Task of Optimum Estimating of Random Field’s Mathematical Expectation

In many problems that deal with the analysis of random processes and fields based on experimental
data (measurements), we are dealing with matrices, whose dimensions increase with when the number of
measurements increases. That is, with increasing of the number of measurements the dimension of the
matrix grows rapidly (in many cases proportional to the square of the measurements). Consider one of
the most common and well-known problems of the analysis of random processes (fields) - the problem
of finding the best linear unbiased estimates (BLUE) of unknown parameters of for the random field
mathematical expectation model of the random field. Let a random field Z(t) to be described by the model:

Z(t) = η(t) + ξ(t), t ∈ T, (1)

where η(t) = η(t,B) = f T(t)B is mathematical expectation (deterministic component of the field), de-
scribed by a linear-parameterized model with the vector of known linearly-independent functions f(t) =
( f1(t), . . . , fp(t))T and the vector of unknown parameters B = (B1, . . . ,Bp)T; ξ(t)- noise field (interference,
measurement noise) with the known covariance function k(s, t); T - the interval, in which the model (1) is
true.

Let us assume that there was set a problem defined as follows: find the Best Linear Unbiased Estimates
(BLUE) B̂n parameters B based on discrete measurement Z(t) in the points Tn = {t1 < tn < · · · < tn|ti ∈ T} to
find the Best Linear Unbiased Estimates (BLUE) B̂n parameters B. The solution is well known and defined
by the formula (see. e.g., [1, 23]):

B̂n = DnFnK−1
n Zn (2)

where

Dn = [FnK−1
n FT

n ]−1 (3)

- covariance matrix of BLUE B̂n; Fn = [ f (t1), . . . , f (tn)] - matrix of vector f(t) values at the measurement
points Tn; Zn = Z(ti)|ti ∈ Tn - measurement vector; K−1

n - is inverse to the covariance matrix Kn for Zn:
Kn = k(ti, t j) = ki j (i, j = 1,n) (ti ∈ Tn).



U. Brimkulov / Filomat 33:5 (2019), 1335–1352 1338

In spite of optimality of estimations (2), the use under large number of measurements becomes difficult
or infeasible. This is due to the fact that in the expressions (2) and (3), there is the matrix K−1

n , and the
number of elements of matrix K−1

n is increasing pro rata to the square of measurements. Thus, the process
of computing and storing the matrix K−1

n requires large computational costs (required that is, memory
requirement is in proportional to n2, and the number of operations for the inversion of matrix Kn matrix
inversion in is proportional to n3 [21]).

The same matrix K−1
n is used to calculate the optimal estimates for more general tasks for handling

random processes based on the measurement results. For example, matrix K−1
n is also a part of the formulas

of filtering, interpolation and extrapolation of a random field based on the measurement results. The
weighting matrix of size (n × n) is also included in the evaluation formula, when generalized least-squares
method (GLSM) is used. We do not consider here the well-known results, which can be found in numerous
literature, see e.g. [23], [1]. Thus, the problem of finding a class of random processes (fields), for which the
covariance matrix of the measurement Kn is such, that its inverse matrix K−1

n is sparse and in particular has
the tridiagonal, band or block-tridiagonal structure, is an important problem. In this case, the calculation
of optimal estimates, including BLUE for many problems of random processes and fields analysis is greatly
simplified from a computational point of view by taking into account the structure of the covariance matrix
measurement.

3. Matrices Whose Inverses are Tridiagonal, Band and Block-Tridiagonal

Below we shall consider three classes of square matrices, whose inverses are the tridiagonal, band and
block-tridiagonal matrices. Note that all of these three classes of matrices have the similar structures save
for the following differences

• in tridiagonal matrices, the matrix elements are formed from a scalar quantity;

• in band matrices, the elements of the matrix are the result of multiplication of matrix and vector
quantities;

• in block-diagonal matrices, the elements of the matrix formed from the blocks which are the product
of square matrices of smaller dimension.

3.1. A Class of Matrices Whose inverse Leads to Tridiagonal Matrices
Let matrix A = A1

n (size n × n) be of the following form:

A1
n =



a11 Λ11a11 Λ12a11 . . . Λ1,n−1a11
Γ11a11 a22 Λ22a22 . . . Λ21a11
Γ21a11 Γ22a22 a33 . . . .
. . . . . . .
. . . . . an−1,n−1 Λn−1,n−1an−1,n−1

Γn−1,1a11 Γn−1,2a22 . . . Γn−1,n−1an−1,n−1 an,n


(4)

where Γi j =
∏i

l= j γl (i ≥ j) and Λi j =
∏ j

l=i λl ( j ≥ i) (i, j = 1, 2, . . . ,n − 1), aii (i = 1, 2, . . . ,n), γi, λi

(i = 1, 2, . . . ,n − 1) – arbitrary real numbers. Thus, the off-diagonal elements A1
n are determined by the

expression

ai j =

Γ j,i−1a j j = a j j
∏i−1

l= j γl if i > j
Λi, j−1aii = aii

∏ j−1
l=i λl if j > i

(i, j = 1,n − 1) (5)

Here we can formulate the following theorem.

Theorem 1. Let the matrix An to be of the form (4) and let det An , 0, then
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1. the inverse of matrix (4), A−1
n , will have tridiagonal form

A−1
n =



µ1

α1α2
−
λ1
α2

0 . . . .

−
γ1

α2

µ2

α2α3
−
λ2
α3

0 . . .
0 −

γ2

α3
. . . . .

. 0 . . . . .

. . . . . . 0

. . . . .
µn−1

αn−1αn
−
λn−1
αn

0 . . . 0 −
γn−1

αn

1
αn


(6)

where αi = aii − γi−1λi−1ai−1,i−1 (i = (2,n)), α1 = a11, µi = ai+1,i+1 − γi−1γiλi−1λiai−1,i−1 (i = (2,n − 1)), µ1 =
a22.

2. The determinant of any corner of the sub-matrix A1
i , including the determinant of the complete matrix A1

n, can
be calculated by the expression

det A1
i = Πi

l=1al, (i = (1,n)).

The proof of the theorem uses the method of induction and recursive procedure of matrix inversion by
method of step-by-step bordering (the proof if proof is provided in Appendix).

Note 1. The matrix (4) can also be written as

A1
n =



α11 λ1α11 λ2α12 . . . λn−1a1,n−1
γ1a11 a22 λ2a22 . . . λn−1a2,n−1
γ2α21 γ2α22 α33 . . . .

. . . . . .

. . . . . .

. . . . αn−1,n−1 λn−1αn−1,n−1
γn−1an−1,1 γn−1,2an−1,2 . . . γn−1an−1,n−1 αnn


(7)

where aii(i = (1,n)), γi, λi(i = 1, 2, . . . ,n− 1) - arbitrary real numbers, ai j(i = (1,n − 1|)|i , j) are as determined
in (5). Expressing a31(a13) through a21(a12); a41(a14)throu1ha31(a13), etc., the matrix (7) can be written in the
form (4).

Note 2. The Matrix (4) is completely determined by 3n − 2 elements, which are included into the three
central diagonals A1

n. Other elements of A1
n cancel each other while inversion.

Note 3. The Matrix (4) (or (7)) is just one form of the square matrices representation, whose inverse are
tridiagonal matrices. Many papers devoted to matrices research questions, whose inverses are tridiagonal
matrices (see, for instance, [15] and other). Representation of matrix A1

n in the form (4) (or (7)) is convenient
because the results are easily generalized to the matrices whose inverses are banded or block-tridiagonal
matrices.

3.2. The Class of Matrices Whose inverse Leads to Banded Matrices with the Half-Band’s Width m

The results of Theorem 1 can be generalized to the band matrices with 1 ≤ m ≤ n−1, where n - dimension
of the reversible matrix; m - the half-width band of band inverse matrix.

To formulate the main theorem of this section, a number of new notations is required. For ease of
perception, we divide the square matrix Ai (i - order of matrix) into the sub-matrix as follows:
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Ai =

i
i −m m︷︸︸︷ ︷︸︸︷

−m


1
2
...

i −m

m


i −m + 1
...

i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ai−m Aim

Ami Am[i]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(8)

where Aim- the sub-matrix of size i ×m, representing right m – columns of the matrix Ai; Ami- sub-matrix of
size m × i, representing a lower m-rows of Ai ; Ai−m − (i −m) × (i −m) is a left upper diagonal sub-matrix of
Ai ; Am[i] − (m ×m) lower right diagonal sub-matrix of Ai.

Note 4.

1. Notation [i] shows that index i changes from i −m + 1 to i. If i < m, then index i changes from 1 to i.

2. For i ≤ m, the sub-matrix Ai−m = [0], sub-matrices Aim, Ami and Am[i] coincide with each other and
have sizes (i × i)

Let us consider the trapezoidal real matrices =n−1,m and<m,n−1:

=n−1,m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ1,m
γ2,m−1 γ2,m

...
...

...
γm−1,2 · · · γm−1,m−1 γm−1,m

γm,1 γm,2 · · · γm,m−1 γm,m
...

...
...

γn−1,1 γn−1,2 · · · γn−1,m−1 γn−1,m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γT
1,m
γT

2,m
...

γT
m−1,m
γT

m,m
...

γT
n−1,m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2
...

m − 1
m
...

n − 1

1 2 · · · m − 1 m

(9)

and

<n−1,m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1,m · · · λ1,n−1
λ2,m−1 λ2,m · · · λ2,n−1

...
...

...
...

λm−1,2 · · · λm−1,m−1 λm−1,m · · · λm−1,n−1
λm,1 λm,2 · · · λm,m−1 λm,m · · · λm,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2
...

m − 1
m

1 2 · · · m − 1 m · · · n − 1

(10)

Note 5.

1. Matrices =n−1,m and<m,n−1 has m(n − (m + 1)/2) elements.

2. Row-vectors γT
im and column-vectors λmi for m ≤ i ≤ n− 1 has fixed length of m. For i < m vectors γT

im
and λmi has variable length, which is equal to i (1 ≤ i ≤ m).
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Let the square matrix An = Am
n of order n to be formed as follows:

Am
n =

1 2 3 4 · · · n

1
2
3
4
...
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣ a1,1 A1,mλm,1
γT

1,mAm,1 a2,2

∣∣∣∣∣∣ A2,mλm,2

γT
2,mAm,2 a3,3

∣∣∣∣∣∣∣∣∣ A3,mλm,3

γT
3,mAm,3 a4,4

∣∣∣∣∣∣∣∣∣∣∣ · · ·
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
An−1,mλm,n−1

γT
n−1,mAm,n−1 an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(11)

where aii(i = (1,n))- arbitrary real numbers; γT
im, λmi (i = (1,n − 1))- real vectors, with the length i for (i ≤ m)

and m for m < i ≤ n − 1; (sub)matrix Ami and Ami determined in (8).
In view of these notations, we can formulate the following theorem.

Theorem 2. Suppose that the matrix An = Am
n has the form (11). Then, if det Am

n , 0, the following statements are
true:

1. The matrix A−m
n = [Am

n ]−1 = [ci j]n
i, j=1, has the band form with the half-width m(1 ≤ m ≤ n − 1), i.e. elements

ofA−m
n satisfy the condition: ci j = 0 for |i − j| > m.

2. The non-zero elements of A−m
n , lying inside the band, whose half-width equals m, can be found as follows:

(a) calculating of auxiliary quantities αi, (i = (1,n)):

αi = aii − γ
T
i−1,mAm[i − 1]λm,i−1, (i = 1,n), (12)

where γT
0m = λm0 = Am[0] = 0.

(b) calculating the diagonal elements {cii,i = (1,n)}:

cii =
1
αi

+

∑w
k=0(λm−k,i+kγi+k,m−k)

αi+k+1
(13)

where w = m − 1 if i ≤ n −m and w = n − i − 1 if i > n −m.

(c) calculating the off-diagonal elements of upper {ci,i+k, k = (1,m)} and lower {ci+k,i, k = (1,m)} half-bands
(i = (1,n − 1)):

ci+k,i = −
γi+k−1,m−k+1

αi+k
+

∑w
j=k(λm+k− j,i+ jγi+ j,m− j)

αi+ j+1
(14)

ci,i+k = −
λm−k+1,i+k−1

αi+k
+

∑w
j=k(λm− j,i+ jγi+ j,m+k− j)

αi+ j+1
(15)

where w is defined similarly as w in ([23]). In (13)-(15), if the calculated value of upper limit becomes
smaller than the lower limit, the summarizing should not be executed, i.e. the second term on the right
part of formulas (13)-(15) for w < k is identically equal to 0.

(d) The determinant of any corner sub-matrix Am
i (i = (1,n)), including the determinant of the complete (full)

matrix Am
n , can be calculated using the expression:

det An
i =

∏i
l=1 αl, (i = 1,n)
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Note 6. The matrix Am
n can be written in a form similar to (7) with the replacement of the off-diagonal scalar

elements ai j (i, j = (1,n − 1)|i , j)) and γi, λi(i = (1,n − 1)) by vectors aT
[i], j(i = (1,n − 1); j = (i − 1,n − 1)),

aT
i,[ j] (i = ( j − 1,n − 1; j = n − 1)) and γT

i ,λi (i = (1,n − 1)), respectively. These vectors have a length i for i ≤ m
and length m for m < i ≤ n − 1.

Taking into account the Note 6, the proof of Theorem 2 fully repeats the proof of Theorem 1 with
the replacement of scalar values γi, λi (i = (1,n − 1)) and ai j, a ji (i, j = (1,n − 1)|i , j) with vectors γT

i ,
λi (i = (1,n − 1)) and a[i] j, aT

i[ j] (i, j = (1,n − 1)|i , j).
Note 7. From formulas (12) - (15) it is clear that for the inversion of matrix of the form Am

n it is enough
to know its elements, lying inside the band with a width of 2m + 1. Other elements of Am

n cancel each other
out during inversion. In other words, the matrix Am

n is completely determined by its elements lying inside
the band width 2m + 1.

Note 8. The matrix Am
n depends on w∗ = (2m + 1)n −m(m + 1) of arbitrary selected values {aii, (i = 1,n)},

{γ∗i , λ
∗

i , i = (1,w)}, or, in other words, has w∗ independent elements. Other elements of Am
n are directly

connected with them.
If m = n−1, the number of independent values which depend on the elements of the matrix Am

n becomes
equal to n2, we come to a matrix of general form Am

n = An−1
n = An. In this case, the inverse matrix is

completely filled, i.e. it has n2 nonzero elements.
If m = 1, then the value w∗ = 3n − 2. For Am

n = A1
n its inverse matrix A−m

n = A−1
n will be tridiagonal. For

m = 0,matrixAm
n = A0

n and inverse of this matrix, (A0
n)−1 , will be of a diagonal form.

Note 9. Matrices of the form Am
n can be stored in memory in a compact form. It is sufficient to introduce

the vectors aii = {aii, (i = 1,n)}, γ∗w and λ∗w in memory, i.e. matrices =n−1,m, <m,n−1, which require w∗ ≤ n2

memory cells. With the help of vectors aii,γ∗w andλ∗w, every element of the matrix Am
n can easily be calculated,

if necessary. Thus, if m� n, the gain in the amount of required memory can be reduced considerably .

3.3. The Class of Matrices Whose inverse Leads to a Block Tridiagonal Matrix
Let the matrix AN of size (N × N) have a form: AN = Am

N =
[
Ai j

]n

i, j=1
, where Ai j- square sub-matrices

(blocks) of size (m ×m); (N = n ×m).
Let non-diagonal sub-matrices Am

n to be determined by following expressions (compare with (5)):

Ai j =

Γ j,i−1A j j =
[
Πi−1

l= j Γl
]

A j j, if i > j,

A j jΛi, j−1 = AiiΠ
j−1
l=i λl, if j > i,

(i, j = 1,n − 1) (16)

where Λi (i = 1,n − 1) and Γi (i = 1,n − 1) - matrices of real elements of size (m × m); square (sub)matrices
Λi j and Γi j(i, j = 1,n − 1) of order n can also be written as follows:Γi, j = Γ jΓ j+1 . . . Γi−1Γi, if i > j,

Λi, j = ΛiΛi+1 . . .Λ j−1Λ j, , if j > i,
(i, j = 1,n − 1) (17)

Let the matrix A = Am
N has a form:

Am
N =



A11 A11Λ11 A11Λ12 . . . A11Λ1,n−1
Γ11A11 A22 A22Λ22 . . . A22Λ2,n−1
Γ21A11 Γ22A22 A33 . . . .

. . . . . .

. . . . . .

. . . . An−1,n−1 An−1,n−1Λn−1,n−1
Γn−1,1A1,1 Γn−1,2A2,2 . . . Γn−1,n−1An−1,n−1 Ann


(18)

Elements (blocks) (18) depend only on (3n − 2)m2 scalar quantities. These quantities are sub-matrices
Aii(i = (1,n)),Λi j and Γi j(i, j = (1,n − 1)).

Taking into account given notations we can formulate the following theorem.
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Theorem 3. Matrix Cm
N = (Am

N)−1 = A−m
N , divided into (m ×m) sub matrices Cm

ij , has banded-tridiagonal form with
non-zero blocks:

Cm
ii = Ω−1

i+1

∑
i

Ω−1
i , (i = (1,n − 1), Cm

nn = Ω−1
n , ) (19)

Cm
i,i+1 = −ΛiΩ

−1
i+1, Cm

i+1,i = −ΓiΩ
−1
i+1, (20)

where

Ωi = Aii − Γi−1Ai−1,i−1Λi−1, (i = (2,n)), Ω1 = A11, (21)∑
i

= Ai+1,i+1 − ΓiΓi−1Ai−1,i−1Λi−1Λi, (i = 2,n − 1),
∑

1

= A22 (22)

So, the general form of matrix Cm
N = A−m

N will have the following form:

Cm
N =

Ω−1
2 Σ1Ω

−1
1 −Γ1Ω

−1
2 0

−Ω−1
2 Λ1 Ω−1

3 Σ2Ω
−1
2 −Γ2Ω

−1
3

−Ω−1
3 Λ2 Ω−1

4 Σ3Ω
−1
3

. . .
−Ω−1

4 Λ3

0 · · · Ω−1
n Σn−1Ω

−1
n−1 −Γn−1A−1

n−1
Ω−1

n Λn−1 - Ω−1
n

The determinant of any corner sub-matrix Am
i (i = 1,n), including the determinant of the complete matrix Am

N
can be calculated by the expression

det Am
i =

∏i
l=1 det Ωl.

The proof of Theorem 3 repeats the proof of Theorem 1 with the replacement of scalar quantities in (4)
by the sub-matrices (18).

All the notes which were given for Theorems 1 and 2 are also true for Theorem 3, with only difference
that here we are dealing with block matrices.

4. Reducing of Operations Number and Required Memory for Inverse of a Symmetric Matrix of the
Form Am

n Relative to General Matrix

In the formation of (sub) matrices A−m
N in the symmetric case, only 2n − 1 blocks of the matrix Am

N are
included. These blocks are the elements of its main diagonal of the matrix, and one of the adjacent side of
the diagonal. Thus, it is sufficient to store (2n−1)m2 elements of submatrices Am

N. Thus, there is a substantial
savings in computer memory when N increases. In the case of the covariance matrix of general form, it is
necessary to store N(N + 1)/2 values in a computer memory.

Prior to calculation of non-zero submatrices (Cii (i = 1,n) and C(i, i + 1) (i = (1,n − 1)) of the matrix A−m
N ,

it is necessary to calculate (n − 1) submatrices Ωi (i = 2,n) (sub-matrix Ω1 = A11) and (n − 2) submatrices∑
i (i = (2,n − 1)) sub-matrix

∑
1 = A22).

Calculations show that the required number of operations such as multiplication on submatrices calcu-
lation is equal to:

1. Ωi (i = 1,n)V (n − 1)[m3 + m2(m + 1)/2];

2.
∑

i (i = 2,n − 1)V (n − 2)[m3 + m2(m + 1)/2];
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(a) required memory: (nm)2 V nm2 (b) the number of arithmetical operations (nm)3 V
nm3

Figure 1: The required amount of memory (a) and the number of arithmetic operations (b), which is
necessary for inversion of the matrix of the form Am

N (continuous lines) and general matrices (dashed lines).

3. Cii (i = 1,n)V (n − 1)[m2(m + 1)];

4. Ci,i+1 (i = 1,n − 1)V (n − 1)m2.

Thus, the calculation of the matrix A−m
N requires only nm2(4m + 3) − m2(11m + 7)/2 multiplications. In

addition, there are ≈ (nm2) operations on Ωi (i = (1,n)) submatrices inversion. The last expression shows
that the number of multiplications is proportional to n and m3.

By calculating the exact number of additions and subtractions required for inversion of Am
N, one obtains

an expression (5n − 6, 5)m3
− (2n − 2, 5)m2 + (n − 1)m, which is also proportional to n and m3.

It is known [21], that the number of arithmetic operations required for general matrix inversion of the
size (n × m) × (n × m) is proportional to (n × m)3. Thus, for large values of the ratio n/m (that usually
takes place in the tasks, considered in this study), accounting the structure of the covariance matrix of the
observed Markov process gives an opportunity to simplify the calculation of the required estimates.

The ratio of the number of non-zero elements of the symmetric matrix Am
N to the number of the elements

of the filled symmetric matrix with different values of n and m is shown in Table 1. From the Table 1 it can
be seen that the gain in the required memory amount practically independent of m and proportional to n.

Fig. 1 shows memory saving graphs and the number of arithmetic operations for inversion of matrix
Am

N with respect to n and m.
The ratio of the number of elements of the filled matrix (N ×N) to the number of non-zero elements of

the matrix Am
N with an allowance of their symmetry in given in Table 1:

n/m 5 10 50 100 500 1000
1 1.67 2.89 12.82 25.38 125.38 250.38
2 1.53 2.76 12.75 25.25 125.25 250.25
3 1.48 2.72 12.71 25.21 125.21 250.21
4 1.46 2.70 12.69 25.19 125.19 250.19
5 1.44 2.68 12.68 25.18 125.18 250.18

Table 1: The ratio of the number of elements of the filled matrix (N×N) to the number of non-zero elements
of the matrix Am

N with an allowance of their symmetry

5. The Relationships of Matrices A1
n, Am

n , Am
N

with the Covariance Matrices of Measurements of Ordinary,
m-Cconnected and Vector Markov Processes

5.1. The Covariance Matrix of Markov Process Measurements in a Wide-Sense
Let the observed process Z(t) be a Markov process in the wide-sense (hereinafter referred to as the

"Markov process"). This means that the covariance function k(s, t) of the process Z(t) satisfies the condition
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(8).

k(s, t) =
k(s, τ)k(τ, t)

k(τ, τ)
(s < τ < t) (23)

From the Doob Theorem [12] it can be assumed that the condition (23) is not only necessary but also
sufficient, i.e. positive definite function k(s, t) is the covariance function of a Markov process only in case
when it satisfies the condition (23).

Let the values of γi (i = 1, 2, . . . ) to be defined as follows:

γi =
ki,i+1

kii
(24)

where ki j = k(ti, t j) – values of the covariance function of process Z(t) at the points ti and t j, t j > ti. Thus, γi
are the coefficients of the covariance of neighboring points reduced to a dispersion quantity in the points
with a lower coordinate value. For stationary random processes γi = ρi,i+1, i.e. γi - correlation coefficients
between adjacent measurement process.

Taking into account (23) and (24) we can formulate the following theorem.

Theorem 4. 1. Covariance matrix Kn of measurements of a Markov process ZM(t) at points Tn = {t1 < t2 <

· · · < tn | ti ∈ T} is a special case of the matrix (4) for Λ ji = Γi j =
∏i

l= j γl (i ≥ j), (i, j = 1,n − 1), where γi is as
previously defined in (24).

2. Elements of K−1
n are defined by expression (6), taking into account that λi = γi (i = 1,n − 1) and aii = kii

(i = 1,n). At the same time

αi = kii − γ
2
i−1ki−1,i−1, (i = 1,n), α1 = k11, (25)

µi = ki+1,i+1 − γ
2
i−1γ

2
i ki−1,i−1, (i = 2,n − 1), µ1 = k22. (26)

Theorem 5. (Inverse) Any symmetric positive definite matrix of the form A1
n is the covariance matrix of the Markov

process measurements.

The proofs of Theorems 4 and 5 are given in [7] (see in [7] Theorem 2 and Note 3).
Note 10. As a consequence of the note 2, the matrix K1

n is completely determined by the elements of its
two diagonals (i.e., elements at the main diagonal and at positions parallel to the main diagonal, above or
below it). In other words, the matrix K1

n depends only on the dispersion (variance) values in the measuring
n points and the (n−1) coefficients of the covariance between adjacent measurement points. The covariance
matrix of the measurements of the Markov process is completely determined by small number (2n − 1) of
its elements. Therefore, for effective solution of the Markov random processes of statistics problems it is
sufficient a priori knowledge of the mentioned elements of the covariance matrix.

5.2. The Covariance Function and the Covariance Matrix of Measurement of m-Connected Markov Process
Let Z(t) be an m-connected Markov process. This means that the covariances between discrete measure-

ments of the process Z(t) satisfy the condition

k(ti, t j) = ki j = kT
i,[ j−1] K−1

m [ j − 1]k[ j−1], j, (27)

where ti < · · · < t j−m < t j−m+1 < · · · < t j−1 < t j. The condition (2) can be obtained from (23) by converting it
to the matrix-vector notation .

In (27) the following notations are used:

• kT
i,[ j−1] = (ki, j−m, ki,[ j−m+1], . . . , ki, j−1) - m - dimensional row-vector values k(s, t) at the points Tm[ j − 1] =

t j−m, t j−m+1, . . . , t j−1 and at the point ti;
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• k[ j−1], j = (k j−m, j, k j−m+1, j, . . . , k j−1, j) - m - dimensional column-vector values k(s, t) at the points Tm[ j − 1]
and in the point ti (in other words k[i],l is m -dimensional vector of covariance measurements at points
Tm[i] with measurement at point tl ∈ Tn) ;

• Km[ j−1]- (m×m) covariance matrix of vector values of Z(t) at the points Tm[ j−1], i.e. Km[ j−1] = [k(ts, tl)]
(s, l = j −m, j − 1).

A graphical illustration of notation to the formula (27) is shown on Fig. 2.
Suppose that the m- connected Markov process ZM(t) was measured at the points Tn. Let Kn be the

covariance matrix of these measurements.
For the matrix Kn , the vector k[i], j (i ≥ j) in (27) can be interpreted as a set of elements of j- th column of

the i −m + 1 to i for i ≥ m or from 1 to i under i < m. Thus, the dimension of the vector k[i], j will be equal to
m for i ≥ m and will be equal i for i < m. Thus, matrix Km[i] can be interpreted as a diagonal sub-matrix Kn,
located at the intersection of rows and columns of the same indices from i−m + 1 to i for i ≥ m or from 1 to
i for i < m. Thus, the size of sub-matrix Km[i] will be equal m ×m for i ≥ m and i × i for i < m.

Let the vectors Γi (i = 1,n − 1) be defined as follows:

Γi = K−1
m [i]k[i],i+1, (i = 1,n − 1). (28)

Obviously, the dimension of the vector Γi will be equal m for i ≥ m and i for i < m. Taking into account the
given notation we can formulate the following theorem.

Theorem 6. 1) The covariance matrix Kn for measurements at points Tn of m-connected Markov process is a special
case Am

n when aii = kii (i = 1,n), γT
im = λmi = γi (i = 1,n − 1), Aim = AT

mi = Kim where Kim- sub-matrices of the
matrices Ki (i = 1,n), represent their right m - column of a size (i ×m) for i ≥ m and the size (i × i) for 1 < i < m.

2) The matrix K−m
n , inverse to Km

n , is a band with a half-width band equal to m, whose elements are defined by
expressions

αi = kii − kT
i,[i−1]K

−1
m [i − 1]k[i−1],i = kii − kT

i,[i−1]Γi−1, (i = 1,n), (29)

cii =
1
αi

+

w∑
k=0

γ2
m−k,i+k

αi+k+1
, (i = 1,n), (30)

ci,i+k = −
γi+k−1,m−k+1

αi+k
+

w∑
j=k

γi+ j,m− jγi+ j,m+k− j

/
αi+ j+1, ci+k,i = ci,i+k, (i = 1,n − 1); k = 1,m), (31)

where w = m − 1 for i ≤ n −m and w = n − i − 1 for i > n −m.

Note 11. If in (30) and (31), the calculated upper limit becomes smaller than the lower one, then the
summarizing should not be executed, i.e. in j, k > w and j, k > m, the second term on the right side of
mentioned formula is set to 0.

5.3. The Covariance Function and Covariance Matrix of the Measurement of m-Dimensional (Vector) Markov Process
The matrix of covariance function K(s, t) of the vector of Markov process ZM(t) satisfies the conditions

K(s, t) = K(s, τ)K−1(τ, τ)K(τ, t), (32)

where s < τ < t or s > τ > t. (Condition (32) is a necessary and sufficient condition to determine a Markov
process in a wide-sense.)

Let us now try to find a general view of the covariance matrix of measurement at the points Tn of the
vector Markov process. Let KN be a block covariance matrix measurement at points Tn of m-dimensional
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Figure 2: Graphical illustration of the formula (27)

vector process, consisting of n2 blocks Ki j (i, j = 1,n). Blocks, in their own turn, represent the covariance
matrix measurement of size m×m of components of the vector ZM(t). Let us define the square (sub) matrices
Γi (i = 1,n − 1) and Γi j (i, j = 1,n − 1) of order m as follows:

Γi = K−1
ii Ki,i+1, (33)

Γi j =

ΓiΓi+1 . . . Γ j−1Γ j, for i > j,
ΓT

j ΓT
j+1 . . . Γ

T
i+1Γ

T
i , , for j 6 i,

(i, j = 1,n − 1). (34)

Taking into account the given notations, it is possible formulate the following theorem.

Theorem 7. 1. Covariance matrix KN = Km
N of measurements of m-dimensional Markov process ZM(t) at points

Tn is positive defined and is a special case of (18) for Aii = Kii, (i = 1,n) Λi j = Γ ji (i, j = 1,n − 1). Elements Km
N

depend (taking into account its symmetry) only on (2n− 1)m2 scalar quantities, which are the elements of sub-matrix
Kii (i = 1,n)) and Γi (i = 1,n − 1).

2. The inverse matrix Cm
N = (Km

N)−1 = K−m
N , divided into (m × m) blocks Cm

ij , has a block-tridiagonal form with
non-zero elements:

Cm
ii = A−1

i+1MiA−1
i , (i = 1,n − 1), Cm

nn = A−1
n , (35)

Cm
i,i+1 = −ΓiA−1

i+1, Cm
i+1,i = −A−1

i+1Γ
T
i = Cm

i,i+1, (36)

where

Ai = Kii − ΓT
i−1Ki−1,i−1Γi−1, (i = 2,n), A1 = K11, (37)

Mi = Ki+1,i+1 − ΓT
i ΓT

i−1Ki−1,i−1Γi−1Γi, (i = 2,n − 1), M1 = K22 (38)

The proof of Theorem 7 is similar to that of Theorem 4.

6. An Example of Covariance Matrix Inversion for Vector Markov Process

Despite of their external inconvenience, the formula retrieved above is easy to use in practical calcula-
tions. We will show it by the example of the covariance matrix inversion of the 2D Markov process, when
the covariance function of the analyzed process is given.
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Below, some examples of getting of general expressions for submatrices Kii (i = 1,n), Ki,i+1 and Γi(i =

1,n − 1) of covariance matrix Km
N of measurements at points Tn for the 2D vector process are given. Also,

general expression for the sub-matrices Ai (i = 1,n) and Mi (i = 1,n − 1) was found, with the help of which
we can easily calculate the non-zero sub-matrices of inverse matrix K−m

N , without resorting to the standard
procedures of matrix inversion (formulas (33)-(38)).

Note that in the general case, the separate components of the vector Markov process may be a Markov
and non-Markov. Relationships between the components can also be Markov, non-Markov and semi-
Markov, i.e. when mutual covariance function ki j(s, t) component Zi and Z j (i, j = 1,m) m- dimensional
vector process satisfy (23) for s < τ < t and not satisfy for s > τ > t.

Example 8. Let us consider a 2D non-stationary Markov process Z(t) = (Z1(t), Z2(t))T, defined by the
covariance matrix function

K(s, t) = [ki j(s, t)](i, j = 1, 2)
with elements

K11(s, t) = σ2
1 min(s, t),

K22(s, t) =
σ2

2

2α
[exp(−α|s − t|) − exp(−α(s + t))]

K12 =
σ1σ1

α

exp(−α(t − s)) − exp(−αt), for s < t;
1 − exp(−αt), for s > t.

K12 =
σ1σ1

α

1 − exp(−αs), for s > t;
exp(−α(s − t)) − exp(−αs), for s < t.

It is possible to verify that the matrix function K(s, t) satisfy (32), and its elements satisfy (23), both
ats < τ < t, and s > τ > t. Thus, Z(t) and its components are Markov and Markov related processes in a
wide-sense.

Note 12 ([22]). Under a normal distribution, the centered component Z(t) coincides with the two-
dimensional Markov process representing a solution for t0 = 0and Z1(0) = Z2(0) = 0 of system of stochastic
differential equations (SDE ) dZ1(t)

dt = σ1N(t), dZ2(t)
dt = −αZ1(t) + σ2N(t), excitation by normal white noise N(t)

with unit variance.
Let us write the expression for the submatrices Kii and Ki,i+1 (ti+1 > ti) (see.(33)) of the covariance matrix

KN, which affects the formation of non-zero submatrices of inverse matrix K−m
N :

Kii =
1
α

[
ασ2

1ti σ1σ2(1 − exp(−αti)
σ1σ2(1 − exp(−αti)) σ2

2(1 − exp(−2αti))/2

]

Ki,i+1 =
1
α

[
ασ2

1ti σ1σ2(exp(−α(ti+1 − ti)) − exp(−αti+1)
σ1σ2(1 − exp(−αti)) σ2

2(exp(−α(ti+1 − ti)) − (exp(−α(ti − ti+1))

]
; (i = 1,n − 1).

In this sub-matrix K−1
ii will have the form:

K−1
ii =

1
αdetKii

[
σ22(1 − exp(−2αti))/2 −σ1σ2(1 − exp(−αti))
−σ1σ2(1 − exp(−αti)) ασ2

1ti

]
; (i = 1,n)

where

detKii =
σ2

1σ
2
2

α
[
ti

2
(1 − exp(−2αti)) −

1
a

(1 − exp(−αti))2]



U. Brimkulov / Filomat 33:5 (2019), 1335–1352 1349

To present the matrix Km
N in the form of Km

N it is necessary to calculate sub-matrix Γi (34):

Γi = K−1
ii Ki,i+1 =

[
1 0
0 exp(−α(ti+1 − ti))

]
=

[
γ1i 0
0 γ2i

]
, (i = 1,n − 1)

where γ1i = 1, γ2i = exp(−α(ti+1 − ti)).
Prior to calculation of non-zero submatrices K−m

N it is necessary calculate Ai and A−1
i (i = 1,n) (see formula

(37)):

Ai =
1
a

[
ασ2

1(ti − ti1) σ1σ2(1 − γ2,i−1)
σ1σ2(1 − γ2,i−1) σ2

2(1 − σ2
2,i−1)/2

]
; (i = 2,n)

A1 = K11 =
1
α

[
ασ2

1t1 σ1σ2(1 − exp(−αt1))
σ1σ2(1 − exp(−αt1)) σ22(1 − exp(−2αt1))/2

]
; (t0 = 0)

It is easy to calculate

A−1
i =

1
αdet Ai

[
σ2

2(1 − σ2
2,i−1)/2 −σ1σ2(1 − σ2,i−1)

−σ1σ2(1 − σ2,i−1) ασ2
1(ti − ti−1)

]
(i = 2,n)

where

det Aii =
σ2

1σ
2
2

α
[
1
2

(ti − ti−1)(1 − σ2
2,i−1) −

1
α

(1 − σ2,i−1)2];

A−1
1 =

1
αdet A1

[
σ2

2(1 − exp(−2αt1))/2 −σ1σ2(1 − exp(−αt1))
−σ1σ2(1 − exp(−αt1)) ασ2

1t1

]
; (i = 1,n)

and

det A1 =
σ2

1σ
2
2

a
[
t1

2
(1 − exp(−2αt1)) −

1
a

(1 − exp(−αt1))2]

Mi =
1
α

[
ασ2

1(ti+1 − ti−1) σ1σ2(1 − γ2,i−1γ2,i)
σ1σ2(1 − γ2,i−1γ2i) γ2

2(1 − γ2
2,i−1γ

2
22)/2

]
; (i = 2,n).

M1 =
1
α

[
ασ2

1t2 σ1σ2(1 − exp(−αt2))
σ1σ2(1 − exp(−αt2)) σ2

2(1 − exp(−2αt2))

]
; (t0 = 0)

Simplified expressions are obtained for a uniform measurements Tτn. Let t0 = 0, t1 = τ , t2 = 2τ and etc.
Let σ1σ2 = σ. Then Γ1 = Γ2 = · · · = Γ(n − 1) = Γ; M1 = M2 = · · · = Mn−1 = M;

A =
σ2

α

[
ατ (1 − γ)

(1 − γ) (1 − γ2)/2

]
; A−1 =

σ2

αdet A

[
(1 − γ2)/2 −(1 − γ)
−(1 − γ) ατ

]
;

Γ =

[
1 0
0 γ

]
; M =

σ2

α

[
2ατ (1 − γ2)

(1 − γ2) (1 − γ4)/2

]
;

where γ = exp(−ατ)

det A = (σ4/α2)(1 − σ)[ατ(1 + γ)/2 − (1 − γ)]

Then K−m
N can be represented as a block-tridiagonal matrix consisting of n2 blocks of size (m ×m):
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K−m
N = A−1 =

M AΓ
−ΓTA M −AΓ 0

−ΓTA M −AΓ

−ΓTA
. . .

. . .
. . .

. . . −AΓ
0 −ΓTA M −AΓ

−ΓTA A

A−1

In contrast to the scalar case, for vector processes there are various possible ways of formation of the
covariance matrix of the measurement (CMM). The results, obtained above, relate to the case when CMM
formed of n2 submatrices of the size (m × m), representing measurements m component of vector process
in a given point. But it is possible to form a CMM so that it will consist of m2 blocks of the size (n × n),
representing measurement of one component of the field at the points Tτn. The general form of the matrix
K−m

N for this case have a form:

K−m
N = A−1 =

A1 A2
A2 A1 A2 0

A2 A1 · · ·

· · ·
. . . · · ·

0 · · · A1 A2

A2
A1
2

Γ1 Γ2
Γ3 Γ1 Γ2 0

Γ3 Γ1 · · ·

· · ·
. . . · · ·

0 · · · Γ1 Γ2
Γ1 1

Γ1 Γ3
Γ2 Γ1 Γ3 0

Γ2 Γ1 · · ·

· · ·
. . . · · ·

0 · · · Γ1 Γ3
Γ2 1

Γ4 Γ5
Γ5 Γ4 Γ5 0

Γ5 Γ4 · · ·

· · ·
. . . · · ·

0 · · · Γ4 Γ5

Γ5
Γ1
2

where A1 = 2ατ; A2 = −ατ; Γ1 = 1 − γ2; Γ2 = −γ(1 − γ); Γ3 = −(1 − γ);Γ4 = (1 − γ4)/2; Γ5 = −γ(1 − γ2)/2
i.e. matrix K−m

N consists of m2 tridiagonal blocks of the size (n × n).

7. Conclusion

1. In this paper, forms of square matrix, whose inverses are tridiagonal, band or block-tridiagonal
matrices, convenient for usage, have been represented. In the work they are designated as matrices:
A1

n, where n- dimension of a matrix, 1 – half-width of the band; where m- half-width of the band; and
Am

N, where N - the dimension of the matrix, m- dimension of the blocks (N = n ×m).

2. Although there are many works devoted to the study of such matrices, no common approach and a
general (unique) matrix structure was proposed. In our work it was shown that for all three classes
of matrices, a common approach and a common (unique) matrix structure can be applied. Moreover,
in the first case, the matrix elements A1

n are formed of the scalar quantities; in the second case, Am
n -

of vectors of dimensions m; Am
n where m - half-width of the band and in the third case, Am

N of square
blocks (sub-matrices) of dimension m.

3. For matrices of a given structure, a simple inversion formulas were found. It was shown that the
elements of inverse matrices depend only on:



U. Brimkulov / Filomat 33:5 (2019), 1335–1352 1351

• 3n − 2 elements included in 3 central diagonals for the matrix A1
n;

• (2m + 1)n−m(m + 1) elements lying inside the band of the width 2m + 1 (band’s half-width equals
m) for the matrix Am

n ;

• (3n − 2)(m ×m) elements for the matrix Am
N(N = n ×m).

4. It is shown that if the matrices A1
n, Am

n and Am
N(N = n×m) are symmetric and positive definite, they are

covariance matrices of measurements of simply (ordinary connected), multiple of the connectivity m
and m- dimensional vector Markov processes in a wide-sense, respectively.

5. It is shown that the covariance matrix of the measurement (CMM) of ordinary connected Markov
process in a wide-sense depends only on the variance value at the measuring points and the coefficients
of the covariance between adjacent measurement points. Accordingly, for multiply connected Markov
process CMM depends on the variance and coefficients of covariance between points standing from
each other by an amount equal to or less than the connectivity of process m.

6. The obtained results allow simplifying the solution of many problems of random processes statistics.
In particular, it dramatically simplifies the computational complexity of the estimating tasks, filtering
and interpolation of random processes and fields using BLUE and GLSE, which have been using
inversion of covariance matrix of measurements as a weighting matrix.

There are other related problems such as approximation of an arbitrary random process by Markov m-
connected process; case sparse covariance matrices with number of non-zero elements being greater than
3n − 2 elements, arranged in arbitrary positions; constructing recurrent algorithms. As a future study, a
number of other interesting problems of processing the results of measurements of random processes are
planned to be considered.
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APPENDIX: PROOF OF THEOREM 1

The validity of Theorem 1 is shown by induction, using a recursive procedure by means of a serial
(step-by step, successive) matrix bordering (Faddeev-Faddeeva bordering , see. [13]).

Firstly, let us consider the i-th step of the recurrent procedure of matrix inversion. According to [13], if

Ai+1 =

[
Ai αi+1
αT

i+1 αi+1,i+1

]
; i = 1, 2, 3, . . .

where aT
i+1 = (ai+1,1, . . . , ai+1,i); ai+1 = (a1,i+1, . . . , ai,i+1)T - bordering a row vector and a column vector respec-

tively of i-elements length,

Ai+1 =

A−1
i +

µi+1νi+1

αi+1

(−µi+1)
αi+1

(−νi+1)
αi+1

1
αi+1

 i = 1, 2, 3, . . . (39)

where αi+1 = αi+1,i+1 − αT
i+1µi+1 = αi+1,i+1 − νi+1αi+1; µi+1 = A−1

i αi+1; νi+1 = αT
i+1A−1

i .
Suppose that the matrix A−1

i of size i×i found in the previous (i−1) - step recurrent procedure (1 ≤ i ≤ n−1)
has tridiagonal form corresponding to (6), and the i-dimensional vectors αi+1 and αT

i+1 of the forms:

αT
i+1 = (α∗i+1)T = [

i∏
ι=1

για11,
i∏
ι=2

για22, . . . , γiaii]

αi+1 = α∗i+1 = [
i∏
ι=1

λlα11,
i∏
ι=2

λια22, . . . , λiαii

(40)

Carrying out the necessary calculations, we obtain the following formula:

µi+1 = A−1
i αi+1 = A−1

i a∗i+1 = [0, 0, . . . , 0, λi] = u∗i+1

νi+1 = αT
i+1A−1

i = α∗Ti+1A−1
i = [0, 0, . . . , 0, γi]T = ν∗i+1

(41)

Substituting the values ui+1 and νi+1 from (41) to (39) and performing all necessary operations, we see
that the matrix A−1

i+1 will also be tridiagonal, and the elements A−1
i+1 correspond to (6). Thus, if the initial

matrix, which begins the process of recurrent inverse is tridiagonal and bordering vectors αι, αT
ι , ι = i + 1,n

are selected from the corresponding rows and columns of (4), all subsequent {A−1
i , l = i + 1,n} matrices,

including the latest, are tridiagonal.
Successive (step-by-step) calculation of A−1

1 , A−1
2 , A−1

3 for the matrix A1
i (i = 1, 3) shows that the matrix

A−1
3 is tridiagonal, i.e. the initial part of the procedure (A1) for the matrices (4) also leads to a tridiagonal

matrix. This completes the proof of Theorem 1.


