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Lower Semicontinuity of Approximate Solution Mappings for a
Parametric Generalized Strong Vector Equilibrium Problem
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Abstract. In this paper, by using a property of convex mappings, one establishes the lower semicontinuity
of the approximate solution mapping to a parametric generalized strong vector equilibrium problem
without these assumptions about monotonicity and compactness. Our proof approach is different from the
ones in the literature.

1. Introduction

Given a set E and a bifunction f : E × E→ R, the scalar equilibrium problem for f is to find x0 ∈ E such
that

f (x0, y) ≥ 0,∀y ∈ E.

It is well known that the problem is closely related to the famous Ky Fan minimax inequality(see Refs.
[6, 14]). According to [7], the following classical problems can be cast to this format:

(i) the generalized mathematical programming problem: f (x, y) = 1(y) − 1(x);

(ii) the Gateaux differentiable convex mathematical programming problem: f (x, y) = 〈D1(x), y − x〉;

(iii) the saddle point problem: f (x, y) = h(y1, x2) − h(x1, y2), where x = (x1, x2), y = (y1, y2);

(iv) the fixed point problem: f (x, y) = 〈x − T(x), y − x〉, where T is the operator of the fixed point problem;

(v) the variational inequality problem(in its simplest form): f (x, y) = 〈1(x), y − x〉, where 1 is a mapping;

(vi) the generalized variational inequality problem(in its simplest form):
f (x, y) = maxz∈G(x)〈z, y − x〉, where G is a set-valued mapping;
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(vii) the Nash equilibrium problem in a non-cooperative game: f (x, y) =
∑

i∈I( fi(xi, yi) − fi(x)), where fi is
the loss function of the player i and xi is the vector obtained from x by deleting component i.

Each of these classical problems has numerous applications, including but not limited to equilibrium
problems in economics, game theory, traffic analysis and mechanics. Collectively, the equilibrium problem
covers a vast range of applications. Hence the problem has been researched quite extensively. Oettli and
Schäger [36, 37] generalized the scalar equilibrium problem to vector equilibrium problems. They replaced
the range R by a real topological vector space Z with an ordering cone P(meaning that P , Z is a closed
convex cone with nonempty interior) and considered a set-valued mapping F : E × E → 2Z. Then, the
inequality f (x, y) ≥ 0 can be generalized in several possible ways, for instance as F(x, y) ⊂ P, F(x, y)

⋂
P , ∅,

F(x, y) 1 −intP, F(x, y)
⋂

(−intP) = ∅.
One important problem of vector equilibrium problems is to study the existence of the solution, a

number of papers have been devoted to this subject (see Refs [8, 13, 15–17, 35] and the references therein).
Another important problem is to study the stability of the solution mapping to parametric vector variational
inequalities and parametric vector equilibrium problems (see Refs[1, 2, 9–12, 18–22, 24–27, 29–31, 34, 39–41]).

Exact solutions may not exist in many practical problems because the data of these problems are
not sufficiently regular. Moreover, these mathematical models are usually solved by numerical methods
(iterative procedures or heuristic algorithms) which produce approximations to the exact solutions. So it
is impossible to obtain an exact solution of many practical problems. Naturally, investigating approximate
solutions of parametric equilibrium problems is of interest in both practical applications and computations.
However, to the best of our knowledge, there are only a few results concerning the semicontinuity of
approximate solution mappings for parametric variational inequality or parametric equilibrium problems.
Kimura and Yao [28] have established the existence results for two types of approximate generalized vector
equilibrium problems, and further obtained the semicontinuity of approximate solution mappings. Khanh
and Luu [22] have discussed the semicontinuity of the approximate solution mappings of parametric
multivalued quasivariational inequalities in topological vector spaces. Anh and Khanh [3] have considered
two kinds of approximate solution mappings to parametric generalized vector quasiequilibrium problems
and established the sufficient conditions for their Hausdorff semicontinuity (or Berge semicontinuity). By
using a scalarization method, Li and Li [32] have investigated the Hausdorff continuity (or Berge continuity)
of the approximate solution mapping for a parametric scalar equilibrium problem. By using a scalarization
method, they obtained a sufficient condition of the lower semicontinuity of the approximate solution
mapping for a parametric vector equilibrium problem. By using the monotonicity of the approximate
solution mappings, Li et al. [33] established the Lipschitz continuity of the approximate solution mappings
for a parametric scalar equilibrium problem.

Motivated and inspired by the work reported in [3, 20, 22, 32, 33, 38], the aim of this paper is to establish
the lower semicontinuity of the approximate solution mapping to a parametric generalized strong vector
equilibrium problem. By using a new proof method which is different from the ones used in the literature,
we establish the lower semicontinuity of the approximate solution mapping to a parametric generalized
strong vector equilibrium problem without these assumptions about monotonicity and compactness. Our
results are new and different from the ones in the literature.

The rest of the paper is organized as follows. In Sect. 2, we introduce a parametric generalized strong
vector equilibrium problem, and recall some basic concepts and some of their properties. In Sect. 3, we
discuss the lower semicontinuity of the approximate solution mapping to a parametric generalized strong
vector equilibrium problem.

2. Preliminaries and Notations

Throughout this paper, let m and n be two natural numbers. Let Rm and Rn be m-dimensional spaces
and n-dimensional spaces, respectively. We also assume that C is a pointed closed convex cone in Rn with
its interior intC , ∅. We denote by BRn the closed unit ball in Rn. We also denote by 0Rm the origin of Rm .
Let E be a nonempty subset of Rm and F : E×E→ 2Rn

be a nonempty set-valued mapping. We consider the
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following generalized strong vector equilibrium problem (in short, GSVEP) of finding x ∈ E such that

F(x, y) ⊆ C,∀y ∈ E.

Let l be a natural number. When the set E and the mapping F are perturbed by a parameter µ which varies
over a subset Λ of Rl, we consider the following parametric generalized strong vector equilibrium problem
(in short, PGSVEP) of finding x ∈ E(µ) such that

F(x, y, µ) ⊆ C,∀y ∈ E(µ),

where E : Λ → 2Rm
\ {∅} is a set-valued mapping, F : B × B × Λ ⊂ Rm

× Rm
× Rl

→ 2Rn
\ {∅} is a set-valued

mapping with E(Λ) =
⋃
µ∈Λ E(µ) ⊂ B.

For each µ ∈ Λ and e ∈ Rn, let S(µ, e) denote the approximate solution set of PGSVEP corresponding to
(µ, e), i.e.,

S(µ, e) = {x ∈ E(µ) : F(x, y, µ) + e ⊆ C,∀y ∈ E(µ)}.

Remark 2.1. In general, the e of S(µ, e) belongs to intC (C)(see [22, 32, 33, 42]). Since C ⊂ Rn and we will
establish the lower semicontinuity of S(µ, e) that has nothing to do with e ∈ intC (C), we set e ∈ Rn and our
result about the lower semicontinuity for S(µ, e) can deduce one in general case.

Remark 2.2. Let µ ∈ Λ, e1, e2 ∈ Rn. If e1 − e2 ∈ C, then S(µ, e2) ⊆ S(µ, e1).

Now, we recall some concepts and properties which will be useful in the sequel.

Definition 2.3. Let G be a set-valued mapping from Rm to Rn.

(i) (see [4]) G is said to be lower semicontinuous (in short, l.s.c. ) at x0 ∈ Rm if for any sequence {xn} with
xn → x0 and y0 ∈ G(x0), there exists a sequence {yn} ⊆ G(xn) such that yn → y0. It could be phrased as
follows:
G is said to be lower semicontinuous at x0 ∈ Rm if for any y0 ∈ G(x0) and any neighborhood W(y0) of
y0, there exists a neighborhood V(x0) of x0 such that

G(x)
⋂

W(y0) , ∅, ∀x ∈ V(x0).

G is said to be lower semicontinuous if G is l.s.c. at every point x ∈ Rm.

(ii) (see [23]) G is said to be Hausdorff upper semicontinuous (in short, H-u.s.c. ) at x0 ∈ Rm if for every
neighborhood U of 0Rn , there exists a neighborhood N(x0) of x0 in Rm such that

G(x) ⊂ G(x0) + U,∀x ∈ N(x0).

Definition 2.4. Let E be a convex subset of Rm and G : E→ 2Rn
be a set-valued mapping with G(x) , ∅, for

all x ∈ E. G is said to be

(i) convex on E, if for any x1, x2 ∈ E and λ ∈ (0, 1),

λG(x1) + (1 − λ)G(x2) ⊆ G(λx1 + (1 − λ)x2).

(ii) C-convex on E, if for any x1, x2 ∈ E and λ ∈ (0, 1),

λG(x1) + (1 − λ)G(x2) ⊆ G(λx1 + (1 − λ)x2) + C.

(iii) C-concave on E, if for any x1, x2 ∈ E and λ ∈ (0, 1),

G(λx1 + (1 − λ)x2) ⊆ λG(x1) + (1 − λ)G(x2) + C.
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Definition 2.5. (see [20]) Let P and Q be two topological vector spaces. Let D be a nonempty subset of P.
A set-valued mapping H : P → 2Q is said to be uniformly continuous on D, if for any neighborhood V of
0Q ∈ Q, there exists a neighborhood U of 0P ∈ P such that for any x1, x2 ∈ D with x1 − x2 ∈ U,

H(x1) ⊆ H(x2) + V.

The following two lemmas play an important role in the proof of the lower semicontinuity of the solution
mapping S(·, ·).

Lemma 2.6. (see [38]) Let E be a convex subset of Rm and G : E → 2Rn
be a set-valued mapping with

G(x) , ∅, for all x ∈ E. If G is convex on E and x0 ∈ intE, then G is l.s.c. at x0.

Lemma 2.7. (see [5]) For each neighborhood U of 0Rm , there exists a balanced open neighborhood U1 of 0Rm

such that

U1 + U1 ⊂ U.

3. Lower semicontinuity

In this section, we discuss the lower semicontinuity and upper semicontinuity of the approximate
solution mapping of PGSVEP.

Let µ0 ∈ Λ. We define a set-valued mapping Lµ0 : Rn
→ 2Rm

by

Lµ0 (e) = S(µ0, e),∀e ∈ Rn.

Firstly, we provide a few crucial lemmas to obtain the lower semicontinuity of the approximate solution
mapping S(·, ·) of PGSVEP.

Lemma 3.1. Let µ0 ∈ Λ, E(µ0) be a nonempty convex subset of Rm and domLµ0 , ∅. If, for any y ∈ E(µ0),
F(·, y, µ0) is C-concave on E(µ0), then domLµ0 is convex and Lµ0 (·) is convex on domLµ0 .

Proof. Take any e1, e2 ∈ domLµ0 , x1 ∈ Lµ0 (e1), x2 ∈ Lµ0 (e2) and λ ∈ [0, 1]. Then, by the definition of Lµ0 , for
any y ∈ E(µ0), we have F(x1, y, µ0) + e1 ⊆ C and F(x2, y, µ0) + e2 ⊆ C. Therefore, by the convexity of C, we
have

λ[F(x1, y, µ0) + e1] + (1 − λ)[F(x2, y, µ0) + e2]

= [λF(x1, y, µ0) + (1 − λ)F(x2, y, µ0)] + [λe1 + (1 − λ)e2] ⊆ C,∀y ∈ E(µ0). (1)

Since, for any y ∈ E(µ0), F(·, y, µ0) is C-concave on E(µ0),

F(λx1 + (1 − λ)x2, y, µ0) ⊆ λF(x1, y, µ0) + (1 − λ)F(x2, y, µ0) + C.

Then it follows from (1) that

F(λx1 + (1 − λ)x2, y, µ0) + [λe1 + (1 − λ)e2] ⊆ C + C = C,∀y ∈ E(µ0). (2)

Since E(µ0) is convex, it follows from x1 ∈ Lµ0 (e1) ⊂ E(µ0) and x2 ∈ Lµ0 (e2) ⊂ E(µ0) that

λx1 + (1 − λ)x2 ∈ E(µ0).

Combining this with (2), we have λx1 + (1 − λ)x2 ∈ Lµ0 (λe1 + (1 − λ)e2). Thus domLµ0 is convex and

λLµ0 (e1) + (1 − λ)Lµ0 (e2) ⊆ Lµ0 (λe1 + (1 − λ)e2).

So Lµ0 (·) is convex on domLµ0 , and the proof is complete. �
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Remark 3.2. When F is a function and E(·) ≡ E in Lemma 3.1, it follows from Lemma 3.1 that [32, Lemma
3.3] holds.

Lemma 3.3. Let µ0 ∈ Λ and E(µ0) be a convex subset of Rm. Let e0 ∈ int(domLµ0 ). If for any y ∈ E(µ0),
F(·, y, µ0) is C-concave on E(µ0), then Lµ0 (·) is l.s.c. at e0.

Proof. By Lemma 3.1, domLµ0 is convex and Lµ0 (·) is convex on domLµ0 . So it follows from Lemma 2.6 that
Lµ0 (·) is l.s.c. at e0, and the proof is complete. �

Now we establish the lower semicontinuity of S(·, ·).

Theorem 3.4. Let µ0 ∈ Λ and E(µ0) be a nonempty convex subset of Rm. Let e0 ∈ int(domLµ0 ). Suppose that
the following conditions are satisfied:

(i) for any y ∈ E(µ0), F(·, y, µ0) is C-concave on E(µ0);

(ii) E(·) is H-u.s.c. and l.s.c. at µ0;

(iii) F(·, ·, ·) is uniformly continuous on E(Λ) × E(Λ) ×N(µ0), where N(µ0) is a neighborhood of µ0.

Then S(·, ·) is l.s.c. at (µ0, e0).

Proof. Suppose to the contrary that S(·, ·) is not l.s.c. at (µ0, e0). Then there exist x0 ∈ S(µ0, e0) and a
neighborhood W0 of 0Rm , for any neighborhoods U(µ0) and V(e0) of µ0 and e0, respectively, there exist
µ ∈ U(µ0) and e ∈ V(e0) such that

({x0} + W0)
⋂

S(µ, e) = ∅.

Hence, there exist sequences {µn}with µn → µ0 and {en}with en → e0 such that

({x0} + W0)
⋂

S(µn, en) = ∅,∀n. (3)

For above W0, it follows from Lemma 2.7 that there exists a balanced neighborhood W1 of 0Rm such that

W1 + W1 ⊂W0. (4)

By condition (i) and Lemma 3.3, we get that Lµ0 (·) is l.s.c. at e0. Thus, for above x0 ∈ S(µ0, e0) = Lµ0 (e0)
and W1, there exists a balanced neighborhood O(0Rn ) of 0Rn such that

({x0} + W1)
⋂

Lµ0 (e0 + e) = ({x0} + W1)
⋂

S(µ0, e0 + e) , ∅,∀e ∈ O(0Rn ).

We choose e′ ∈ O(0Rn )
⋂

intC. Then

({x0} + W1)
⋂

Lµ0 (e0 − e
′

) = ({x0} + W1)
⋂

S(µ0, e0 − e
′

) , ∅.

Take

x1 ∈ ({x0} + W1)
⋂

S(µ0, e0 − e
′

). (5)

Since e′ ∈ intC, there exists δ0 > 0 such that

δ0BRn + {e
′

} ⊂ C. (6)

For above δ0, it follows from Lemma 2.7 that there exists δ1 > 0 such that

δ1BRn + δ1BRn ⊂ δ0BRn . (7)
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Since en → e0, there exists a natural number N0 such that

en ∈ {e0} + δ1BRn ,∀n > N0.

Therefore, from (6) and (7), we get that

δ1BRn + {en − e0} + {e
′

} ⊂ C,∀n > N0. (8)

Since F(·, ·, ·) is uniformly continuous on E(Λ) × E(Λ) × N(µ0), for above δ1BRn , there exist a neigh-
borhood W1(0Rm ) of 0Rm , a neighborhood W̄1(0Rm ) of 0Rm and a neighborhood V(0Rl ) of 0Rl , for any
(x1, y1, µ1), (x2, y2, µ2) ∈ E(Λ) × E(Λ) ×N(µ0) with x1 − x2 ∈ W1(0Rm ), y1 − y2 ∈ W̄1(0Rm ) and µ1 − µ2 ∈ V(0Rl ),
we have

F(x1, y1, µ1) ⊂ δ1BRn + F(x2, y2, µ2). (9)

Since E(·) is H-u.s.c. at µ0, for above W̄1(0Rm ), there exists a neighborhood W(µ0) of µ0 such that

E(µ) ⊂ E(µ0) + W̄1(0Rm ),∀µ ∈W(µ0). (10)

By (5), we can see that x1 ∈ E(µ0). Since E(·) is l.s.c. at µ0, for W1
⋂

W1(0Rn ), there exists a neighborhood
U2(µ0) of µ0, such that

[{x1} + W1

⋂
W1(0Rm )]

⋂
E(µ) , ∅,∀µ ∈ U2(µ0). (11)

It follows from µn → µ0 that there exists µn0 with n0 > N0 such that

µn0 ∈W(µ0)
⋂

U2(µ0)
⋂

N(µ0)
⋂

({µ0} + V(0Rl ))

Then, by (10) and (11), we have

E(µn0 ) ⊂ E(µ0) + W̄1(0Rm ) (12)

and

[{x1} + W1

⋂
W1(0Rm )]

⋂
E(µn0 ) , ∅. (13)

We take

x2 ∈ [{x1} + W1

⋂
W1(0Rm )]

⋂
E(µn0 ). (14)

We show that x2 ∈ S(µn0 , en0 ). By (5), we have

F(x1, y, µ0) + {e0 − e
′

} ⊆ C,∀y ∈ E(µ0). (15)

For any y′ ∈ E(µn0 ), it follows from (12) that there exists y0 ∈ E(µ0) such that y′ − y0 ∈ W̄1(0Rm ). By (14),
x2 − x1 ∈W1(0Rm ). Noting that µn0 ∈ N(µ0)

⋂
({µ0} + V(0Rl )), it follows from (9) that

F(x2, y
′

, µn0 ) ⊂ δ1BRn + F(x1, y0, µ0).

Thus, it follows from n0 > N0 and (8) that F(x2, y
′

, µn0 ) ⊂ C − {en0 } + {e0 − e′ } + F(x1, y0, µ0),∀y′ ∈ E(µn0 ).
Combining this with (15), we have

F(x2, y
′

, µn0 ) + en0 ⊂ C,∀y
′

∈ E(µn0 ).

So

x2 ∈ S(µn0 , en0 ). (16)

According to (4), (5) and (14), we get x2 ∈ {x0} + W0. Thus it follows from (16) that

[{x0} + W0]
⋂

S(µn0 , en0 ) , ∅,

which contradicts (3). This completes the proof. �
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Remark 3.5. Our proof approach on the lower semicontinuity of the solution mapping S(·, ·) is different
from the ones used in [20, 39–42]. In our approach, Lemma 2.6 plays an essential role.

We give an example to illustrate Theorem 3.4.

Example 3.6. Let C = R2
+ = {(y1, y2) : y1 ≥ 0, y2 ≥ 0},D = [0, 2]× [0, 2],Λ = [−2, 2] ⊂ R, E(µ) = [µ, 2], ∀µ ∈ Λ.

F : [−2, 2] × [−2, 2] ×Λ→ 2Y is defined by

F(x, y, µ) = {(−(x − y)2
− µ,−x + y − µ2)} + D.

Take µ0 = 0, N(µ0) = [−1, 1] and e0 = (5, 3) ∈ domLµ0 , where domLµ0 = {(y1, y2) ∈ Y|y1 ≥ 4, y2 ≥ 2}. It is easy
to see that all assumptions of Theorem 3.4 are fulfilled, by Theorem 3.4, S(·, ·) is l.s.c. at (µ0, e0).

4. Conclusions

In this paper, we use a new tool that is different from the ones used in the literature to establish the lower
semicontinuity of the approximate solution mapping to a parametric generalized strong vector equilibrium
problem. Simultaneously, these assumptions of monotonicity and compactness are deleted.
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