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Abstract. In this paper, we investigate the normwise, mixed and componentwise condition numbers of
the least squares problem min

X∈Rn×d
‖AX − B‖F, where A ∈ Rm×n is a rank-deficient matrix and B ∈ Rm×d. The

closed formulas or upper bounds for these condition numbers are presented, which extend the earlier work
for the least squares problem with single right-hand side (i.e. B ≡ b is an m-vector) of several authors.
Numerical experiments are given to confirm our results.

1. Introduction

Condition numbers and backward errors play an important role in numerical linear algebra [16]. Condi-
tion numbers measure the worst-case magnification in the computed outcome of a small perturbation in the
data whereas backward errors can answer the question of how close is the problem actually solved to the one
we want to solve. The product of a condition number and backward error provides a first-order of upper
bound on the error in a computational solution. In particular, the condition numbers and backward errors of
a linear system Ax = b and a linear least squares (LS) problem with single right-hand side min

x∈Rn
‖Ax−b‖2 have

been extensively studied in the numerical linear algebra literature, e.g., see [1, 2, 4–6, 11, 12, 14–18, 21, 22].
The authors in [13, 26, 27] studied the backward errors and condition numbers for the following systems

with multiple right-hand sides

AX = B, A ∈ Rn×n, B ∈ Rn×d.

For the LS problem with multiple right-hand sides

min
X∈Rn×d

‖AX − B‖F, A ∈ Rm×n, B ∈ Rm×d, (1.1)

Sun [20] derived its optimal backward perturbation bounds. In this paper, we will study the conditioning
theory of the LS problem (1.1).
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To develop the conditioning theory of (1.1), a natural way is to transform it into the LS problem with
single right-hand side, i.e.,

min
X∈Rn×d

‖(Id ⊗ A)vec(X) − vec(B)‖2,

by the well-known Kronecker product and “vec” operation at first, then applying the conditioning theory
of the LS problem with single right-hand side. But this technique always neglect special structure of
the coefficient matrix Id ⊗ A, such that the corresponding condition number may be very undesirable.
Therefore, it is necessary to study the condition numbers of the LS problem with multiple right-hand sides.
Recently, Diao et al. [7] have studied the conditioning theory of min

v
‖(C⊗D)v− c‖2 when C and D have full

column rank. From Corollary 4.1 in [7], we can easily get the closed formulas of the normwise, mixed and
componentwise condition numbers for (1.1) when A has full column rank. In this paper, we will present
the closed formulas for three kinds of normwise condition numbers and the upper bounds for the mixed
and componentwise condition numbers of the LS problem (1.1) when A is a rank deficient matrix.

Throughout the paper, for given positive integers m and n, denote byRn the space of n-dimensional real
column vectors, byRm×n the space of all m×n real matrices, and by ‖ · ‖2 and ‖ · ‖F the 2-norm and Frobenius
norm of their arguments, respectively. Given a matrix X = [xi j] ∈ Rm×n, ‖X‖max, X†, XT denote the max
norm, given by ‖X‖max = max

i, j
|xi j|, the Moore-Penrose inverse and the transpose of X, respectively, and |X|

is the matrix whose elements are |xi j|. For the matrices X = [xi j], Y = [yi j] ∈ Rm×n, X ≤ Y means xi j ≤ yi j for
all i, j and we define X

Y = [zi j] ∈ Rm×n by

zi j =


xi j/yi j, if yi j , 0,
0, if xi j = yi j = 0,
∞, otherwise.

2. Preliminaries

The operator vec and the Kronecker product will be of particular importance in what follows. The vec
operator stacks the columns of the matrix argument into one long vector. For any matrices X and Y, the
Kronecker product X ⊗ Y is defined by X ⊗ Y = [xi jY]. It is enough for our purpose to recall the following
properties concerning these operators. A more detailed list of such properties with their proofs can be
found, e.g., in [10].

For any matrix X = (xi j) ∈ Rm×n, Y ∈ Rp×q and Z ∈ Rn×p, we have

(X ⊗ Y)T = XT
⊗ YT, |X ⊗ Y| = |X| ⊗ |Y|, ‖X ⊗ Y‖2 = ‖X‖2‖Y‖2, (2.1)

and

vec(XZY) = (YT
⊗ X)vec(Z), vec(XT) = Π(m,n)vec(X), (2.2)

where Π(m,n) ∈ Rmn×mn is the permutation matrix defined by

Π(m,n) =

m∑
i=1

n∑
j=1

Ei j ⊗ ET
ij.

Here each Ei j ∈ Rm×n has entry 1 in position (i, j) and all other entries are zero. Furthermore, we have

Π(p,m)(Y ⊗ X) = (X ⊗ Y)Π(n,q). (2.3)

In addition, the following two lemmas will be used in this paper.
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Lemma 2.1. [9] If E ∈ Rn×n and ‖E‖2 < 1, then In − E is nonsingular and

(In − E)−1 =

∞∑
k=0

Ek.

Lemma 2.2. [3] If A, ∆A ∈ Rm×n satisfy ‖A†∆A‖2 < 1, R(∆A) ⊆ R(A) and R((∆A)T) ⊆ R(AT), then

(A + ∆A)† = (In + A†∆A)−1A†.

3. Normwise condition numbers

When A is rank deficient, the LS solution to (1.1) always exists but it is nonunique. Therefore the unique
minimum Frobenius norm LS solution XLS = A†B is considered. Moreover, when A is a rank deficient
matrix, small changes to A can produce large changes to XLS = A†B, see [19]. In other words, a condition
number of XLS with respect to rank deficient A does not exist or is “infinite”. Hence, in this section, we
present the normwise, mixed and componentwise condition numbers of the LS problem (1.1) by restricting
changes to the perturbation matrix ∆A of A, i.e. ∆A ∈ S, where

S =
{
∆A : R(∆A) ⊆ R(A), R((∆A)T) ⊆ R(AT)

}
,

in which R(A) denotes the range of A.
Let Ã = A + ∆A and B̃ = B + ∆B, where ∆A and ∆B are the perturbations of the input data A and B,

respectively. Consider the perturbed LS problem of (1.1)

min
X∈Rn×d

‖ÃX − B̃‖F. (3.1)

If ∆A ∈ S and the norm ‖∆A‖2 is sufficiently small, it follows from Lemma 2.2 that rank(Ã) = rank(A), i.e.,
Ã is also rank deficient. Hence the unique minimum Frobenius norm LS solution to (3.1) is X̃LS = Ã†B̃. We
let the change in the solution be ∆X = X̃LS − XLS .

In this section, we present three kinds of normwise condition numbers of (1.1) with respect to different
norms. The closed formula for the normwise condition number with respect to the Frobenius norm of the
pair (A,B) is given first.

Theorem 3.1. Let A ∈ Rm×n be rank deficient and B ∈ Rm×d, then the condition number

κ1(A,B) = lim
ε→0

sup
{
‖∆X‖F
ε‖XLS‖F

: ‖[∆A ∆B]‖F ≤ ε ‖[A B]‖F ,∆A ∈ S
}

satisfies

κ1(A,B) =
‖A†‖2 ‖[A B]‖F
‖XLS‖F

√
1 + ‖XLS‖

2
2. (3.2)

Proof. When ‖∆A‖2 is sufficiently small, we may assume that ‖A†∆A‖2 < 1. Then, from Lemmas 2.1 and 2.2
with R(∆A) ⊆ R(A), R((∆A)T) ⊆ R(AT), neglecting the second-order terms gives

(A + ∆A)† = A† − A†∆AA†.

Thus, for small ∆A and ∆B, the linear term in ∆X = (A + ∆A)†(B + ∆B) − A†B is

−A†∆AA†B + A†∆B = −A†∆AXLS + A†∆B, (3.3)
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which implies that

‖ − A†∆AXLS + A†∆B‖F ≤ ‖A†‖2(‖XLS‖2‖∆A‖F + ‖∆B‖F)

= ‖A†‖2[‖XLS‖2 1]
[
‖∆A‖F‖
‖∆B‖F

]
≤ ‖A†‖2

√
1 + ‖XLS‖

2
2

√
‖∆A‖2F + ‖∆B‖2F

≤ ε‖A†‖2
√

1 + ‖XLS‖
2
2 ‖[A B]‖F .

Since −A†∆AXLS + A†∆B is the linear term in ∆X, “≤” in (3.2) holds. In the following we will show that this
upper bound is reachable.

Let rank(A) = r, u and v be respectively the left and right singular vectors corresponding to the smallest
positive singular value σr of A, then

‖A†‖2 =
1
σr
, A†u = ‖A†‖2v.

Moreover, let w and z be respectively the left and right singular vectors corresponding to the largest singular
value of XLS , then

XLS z = ‖XLS‖2w, (XLS )TXLS z = ‖XLS‖
2
2z.

Constructing

∆A = −
ε ‖[A B]‖F√

1 + ‖XLS‖
2
2

uzTXT
LS
, ∆B = ε

‖[A B]‖F√
1 + ‖XLS‖

2
2

uzT,

it follows from the fact ‖uvT
‖F = ‖uvT

‖2 = ‖u‖2‖v‖2 (u, v are vectors) that

‖[∆A ∆B]‖F =
√
‖∆A‖2F + ‖∆B‖2F

= ε
‖[A B]‖F√
1 + ‖XLS‖

2
2

√
‖uzTXT

LS
‖2F + ‖uzT‖2F

= ε ‖[A B]‖F

and
R(∆A) ⊆ R(u) ⊆ R(A), R((∆A)T) ⊆ R(XLS ) ⊆ R(A†) = R(AT).

With these particular perturbations, we can get

‖ − A†∆AXLS + A†∆B‖F = ε ‖[A B]‖F
√

1 + ‖XLS‖
2
2‖A

†uzT
‖F

= ε ‖[A B]‖F
√

1 + ‖XLS‖
2
2‖A

†
‖2,

giving equality in (3.2). Thus, we obtain (3.2).
The normwise condition number when the Frobenius norm is respectively used to measure A and B is

given in the following theorem.

Theorem 3.2. Let A ∈ Rm×n be rank deficient and B ∈ Rm×d, then the condition number

κ2(A,B) = lim
ε→0

sup
{
‖∆X‖F
ε‖XLS‖F

: ‖∆A‖F ≤ ε‖A‖F, ‖∆B‖F ≤ ε‖B‖F,∆A ∈ S
}

satisfies

κ2(A,B) =
‖A†‖2
‖XLS‖F

(‖A‖F‖XLS‖2 + ‖B‖F). (3.4)
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Proof. By taking the Frobenius norm of (3.3), we obtain

‖ − A†∆AXLS + A†∆B‖F ≤ ε‖A†‖2(‖XLS‖2‖A‖F + ‖B‖F),

giving “≤” in (3.4). Letting

∆A = −
ε‖A‖F
‖XLS‖2

uzTXT
LS
, ∆B = ε‖B‖FuzT

with u is the left singular vector corresponding to the smallest positive singular value σr of A and z is the
right singular vectors corresponding to the largest singular value of XLS , it is easy to check that

‖∆A‖F = ε‖A‖F, ‖∆B‖F = ε‖B‖F

and
R(∆A) ⊆ R(A), R((∆A)T) ⊆ R(AT).

Hence, we have
‖ − A†∆AXLS + A†∆B‖F = ε‖A†‖2(‖XLS‖2‖A‖F + ‖B‖F),

showing that equality is possible in (3.4).
Remark 1. Note that ‖∆A‖F ≤ ε‖A‖F and ‖∆B‖F ≤ ε‖B‖F imply

‖[∆A ∆B]‖F ≤ ‖[A B]‖F ,

hence it follows from the definitions of κ1(A,B) and κ2(A,B) that

κ2(A,B) ≤ κ1(A,B).

It follows from (3.2) and (3.4) that

κ2(A,B) ≤
‖A†‖2
‖XLS‖F

∥∥∥[‖XLS‖2 1]
∥∥∥

F

∥∥∥∥∥∥
[
‖A‖F
‖B‖F

]∥∥∥∥∥∥
F

≤
‖A†‖2
‖XLS‖F

√
1 + ‖XLS‖

2
2

√
‖A‖2F + ‖B‖2F

=
‖A†‖2 ‖[A B]‖F
‖XLS‖F

√
1 + ‖XLS‖

2
2

= κ1(A,B),

which also illustrates this fact.
Next theorem describes the characterization of the normwise condition number for the LS problems

when 2-norm of matrix is used in Theorem 3.2. The proof of Theorem 3.3 is similar to that of Theorem 3.2
and so is omitted here.

Theorem 3.3. Let A ∈ Rm×n be rank deficient and B ∈ Rm×d, then we have

κ3(A,B) = lim
ε→0

sup
{
‖∆X‖2
ε‖XLS‖2

: ‖∆A‖2 ≤ ε‖A‖2, ‖∆B‖2 ≤ ε‖B‖2,∆A ∈ S
}

= ‖A†‖2‖A‖2 +
‖A†‖2‖B‖2
‖XLS‖2

. (3.5)

When d = 1, i.e., B ≡ b, it follows from Theorems 3.1-3.3 that
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Corollary 3.4. [23, 25] Let A ∈ Rm×n be rank deficient and b ∈ Rm. Then we have

κ1(A, b) =
‖A†‖2 ‖[A b]‖F
‖xLS‖2

√
1 + ‖xLS‖

2
2,

κ2(A, b) = ‖A†‖2‖A‖F +
‖A†‖2‖b‖2
‖xLS‖2

and

κ3(A, b) = ‖A†‖2‖A‖2 +
‖A†‖2‖b‖2
‖xLS‖2

.

where xLS = A†b.

4. Mixed and componentwise condition numbers

The normwise condition number measures both the input and output data errors by norms. Norms can
tell us the overall size of a perturbation but not how that size is distributed among the elements it perturbs,
and this information can be important when the data is badly scaled or contains many zeros [18]. To take
into account the relative of each data component, and, in particular, a possible data sparseness, compo-
nentwise condition numbers have been increasingly considered. These are mostly of two kinds: mixed
and componentwise. The terminologies of mixed and componentwise condition numbers may be first
used by Gohberg and Koltracht [8]. We adopt their terminology and define the mixed and componentwise
condition numbers for the LS problem (1.1) are defined as follows:

m(A,B) = lim
ε→0

sup
|∆A|≤ε|A|
|∆B|≤ε|B|

∆A∈S

‖∆X‖max

ε‖XLS‖max

and

c(A,B) = lim
ε→0

sup
|∆A|≤ε|A|
|∆B|≤ε|B|

∆A∈S

1
ε

∥∥∥∥∥∆X
XLS

∥∥∥∥∥
max

.

We assume that XLS , 0 for m(A,B) and XLS has no zero entries for c(A,B).
The following theorem gives the upper bounds for the mixed and componentwise condition numbers

of the LS problem.

Theorem 4.1. Let A ∈ Rm×n be rank deficient and B ∈ Rm×d. Then we have

m(A,B) ≤

∥∥∥|A†||A||XLS | + |A†||B|
∥∥∥

max

‖XLS‖max
:= m̄(A,B) (4.1)

and

c(A,B) ≤

∥∥∥∥∥∥ |A†||A||XLS | + |A†||B|
XLS

∥∥∥∥∥∥
max

:= m̄(A,B). (4.2)

Proof. According to |∆A| ≤ ε|A|, we know that the zero elements of A are not permitted to be perturbed.
Therefore,

vec(∆A) = DAD†Avec(∆A),
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where DA = diag(vec(A)). Similarly, we have vec(∆B) = DBD†Bvec(∆B) with DB = diag(vec(B)). Thus the
linear term −A†∆AXLS + A†∆B of ∆X can be rewritten as

vec(−A†∆AXLS + A†∆B)
= −(XT

LS
⊗ A†)vec(∆A) + (Id ⊗ A†)vec(∆B)

=
[
−XT

LS
⊗ A† Id ⊗ A†

] [DA 0
0 DB

] [
D†Avec(∆A)
D†Bvec(∆B)

]
. (4.3)

Taking the infinity norm and using the assumption |∆A| ≤ ε|A| and |∆B| ≤ ε|B|, we have

‖ − A†∆AXLS + A†∆B‖max = ‖vec(−A†∆AXLS + A†∆B)‖∞

≤ ε
∥∥∥∥[(−XT

LS
⊗ A†)DA (Id ⊗ A†)DB

]∥∥∥∥
∞

.

Since −A†∆AXLS + A†∆B is the linear term of ∆X, m(A,B) is bounded above by

m(A,B) ≤

∥∥∥∥[(−XT
LS
⊗ A†)DA (Id ⊗ A†)DB

]∥∥∥∥
∞

‖XLS‖max

=

∥∥∥∥[|(−XT
LS
⊗ A†)DA| |(Id ⊗ A†)DB|

]
e
∥∥∥∥
∞

‖XLS‖max

=

∥∥∥|XT
LS
⊗ A†|vec(|A|) + |Id ⊗ A†|vec(|B|)

∥∥∥
∞

‖XLS‖max

=

∥∥∥vec(|A†||A||XLS | + |A†||B|)
∥∥∥
∞

‖XLS‖max

=

∥∥∥|A†||A||XLS | + |A†||B|
∥∥∥

max

‖XLS‖max
,

where e is an m(n + d) dimensional vector with all entries equal to one.
Recall that in the definition of c(A,B), we assume that XLS has no zero entries. Hence, it follows from

(4.3) and the assumption |∆A| ≤ ε|A|, |∆B| ≤ ε|B| that∥∥∥∥∥∥−A†∆AXLS + A†∆B
XLS

∥∥∥∥∥∥
max

=

∥∥∥∥∥∥vec(−A†∆AXLS + A†∆B)
vec(XLS )

∥∥∥∥∥∥
∞

= ‖D−1
XLS

vec(−A†∆AXLS + A†∆B)‖∞

≤

∥∥∥∥D−1
XLS

[
(−XT

LS
⊗ A†)DA (Id ⊗ A†)DB

]∥∥∥∥
∞

∥∥∥∥∥∥
[
D†Avec(∆A)
D†Bvec(∆B)

]∥∥∥∥∥∥
∞

≤ ε
∥∥∥∥D−1

XLS

[
(−XT

LS
⊗ A†)DA (Id ⊗ A†)DB

]∥∥∥∥
∞

,

where DXLS
= diag(vec(XLS )). Hence, we have

c(A,B) ≤

∥∥∥∥D−1
XLS

[
(−XT

LS
⊗ A†)DA (Id ⊗ A†)DB

]∥∥∥∥
∞

=
∥∥∥∥∣∣∣∣D−1

XLS

∣∣∣∣ (|XT
LS
⊗ A†|vec(|A|) + |Id ⊗ A†|vec(|B|)

)∥∥∥∥
∞

=

∥∥∥∥∥∥vec(|A†||A||XLS | + |A†||B|)
vec(|XLS |)

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥ |A†||A||XLS | + |A†||B|
XLS

∥∥∥∥∥∥
max

.
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The proof of the theorem is now completed.
Remark 2. Theorem 4.1 gives upper bounds for the mixed and componentwise condition numbers. In

fact, for some special matrices, (4.1) is attainable. For any A and B satisfying A = |A|, A† = |A†| and B = |B|,
let ∆A = −εA and ∆B = εB. We can get

|∆A| = ε|A|, |∆B| = ε|B|, R(∆A) ⊆ R(A), and R((∆A)T) ⊆ R(AT).

For these particular matrices ∆A and ∆B, we have

m(A,B) ≥ lim
ε→0

sup
‖(A + ∆A)†(B + ∆B) − A†B‖max

ε‖XLS‖max

= lim
ε→0

2
1 − ε

= 2.

On the other hand, since A = |A|, A† = |A†| and B = |B|,

‖|A†||A||XLS | + |A†||B|‖max

‖XLS‖max
=
‖A†AA†B + A†B‖max

‖A†B‖max
= 2.

Similarly, we can prove that (4.2) is also attainable for some special matrices.
When d = 1, i.e., B ≡ b, it follows from Theorem 4.1 that

Corollary 4.2. [24] Let A ∈ Rm×n be rank deficient and b ∈ Rm. Then we have

m(A, b) ≤

∥∥∥|A†||A||xLS | + |A†||b|
∥∥∥
∞

‖xLS‖∞

and

c(A, b) ≤

∥∥∥∥∥∥ |A†||A||xLS | + |A†||b|
xLS

∥∥∥∥∥∥
∞

.

5. Numerical experiments

We consider the LS problem (1.1) with

A =


9 × 10i 0 0

0 2 2
3 0 0
0 1 1

 , B =


1 1
2 2
3 3
4 4

 , i = 0, 2, 4, 6.

We first compare κ1(A,B), κ2(A,B), κ3(A,B) with the upper bounds of the mixed and componentwise
condition numbers given in Theorem 4.1. Thus, upon computations in MATLAB R2015b with precision
2.2204 × 10−16, we get the results listed in Table 1. From Table 1, we find that as the (1, 1)-element of A
increases, the normwise condition numbers become larger and larger, while, comparatively, the mixed and
componentwise condition numbers have no change. This is mainly because the mixed and componentwise
condition numbers notice the structure of the coefficient matrix A with respect to scaling, but the normwise
condition numbers ignore it.

Now we show the tightness of the upper bound estimates on the mixed and componentwise condition
numbers provided in Theorem 4.1. For i = 0, suppose the perturbations are ∆A = 10− j

×A and ∆B = 10− j+1
×

rand(4, 2), where rand(·) is the MATLAB function. Obviously, ∆A ∈ S =
{
∆A : R(∆A) ⊆ R(A), R((∆A)T) ⊆ R(AT)

}
.

Define ε1 = min{ε : |∆A| ≤ ε|A|, |∆B| ≤ ε|B|}, we list the computed results in Table 2. As shown in Table 2,
the error bounds given by the upper bounds of the condition numbers in Theorem 4.1 are at most one order
of magnitude larger than the actual errors. This illustrates that, as the estimates of their corresponding
condition numbers, the upper bounds in Theorem 4.1 are tight.
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Table 1: Comparison of condition numbers

κ1(A,B) κ2(A,B) κ3(A,B) m̄(A,B) c̄(A,B)

i = 0 4.6969 4.6698 4.5076 2.0000 2.0000

i = 2 335.6361 286.1393 286.1375 2.0000 2.0000

i = 4 3.3562 × 104 2.8462 × 104 2.8462 × 104 2.0000 2.0000

i = 6 3.3562 × 106 2.8461 × 106 2.8461 × 106 2.0000 2.0000

Table 2: Comparisons of our estimated errors with the exact errors

j 6 8 10 12

‖∆X‖max/‖XLS‖max 1.0145 × 10−6 1.0323 × 10−8 1.7363 × 10−10 1.5721 × 10−12

ε1m̄(A, b) 1.3897 × 10−5 8.7749 × 10−8 1.4187 × 10−9 1.7818 × 10−11∥∥∥∆X/XLS

∥∥∥
max

4.0578 × 10−6 2.4696 × 10−8 3.0069 × 10−10 4.3665 × 10−12

ε1c̄(A, b) 1.3897 × 10−5 8.7749 × 10−8 1.4187 × 10−9 1.7818 × 10−11
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