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Abstract. We establish the strong convergence of a selection of an Ishikawa-Reich-Sabach iteration scheme
for approximating the common elements of the set of fixed points F(T) of a multi-valued (or single-
valued) pseudocontractive-type mapping T and the set of solutions EP(F) of an equilibrium problem for
a bifunction F in a real Hilbert space H. This work is a contribution to the study on the computability
and applicability of algorithms for approximating the solutions of equilibrium problems for bifunctions
involving the construction of the sequence {K,},, of closed convex subsets of H from an arbitrary xo € H
and the sequence {x,}, of the metric projections of x; into K,. The results obtained are contributions
to the resolution of the controversy over the computability and applicability of such algorithms in the
contemporary literature.

1. Introduction

Let H be a real Hilbert space with an inner product (., .) and a norm ||.||, respectively and let K be a nonempty
closed convex subset of H. Let A : H — H be an operator on H and F : K X K — R be a bifunction on K,
where R is the set of real numbers. The variational inequality problem of A in K denoted by VIP(A, K) is to
find an x* € K such that

(x—x",AX") >0, VxeKk (1)
while the equilibrium problem for F is to find x* € K such that
F(x*,x) >0, ¥xe K (2)

The set of solutions of (2) is denoted by EP(F). Suppose F(x, y) = (y —x, Ax) for all x, y € K, then w € EP(F) if
and only if w is a solution of (1). Many problems in optimization, economics and physics reduce to finding
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a solution of (1), (see for examples, [2], [3] [5]) and the references therein. The following conditions are
assumed for solving the equilibrium problems for a bifunction F : K X K — R,

(A1) F(x,x) =0 for all x € K.

(A2) F is monotone, thatis , F(x, y) + F(y,x) <0, forall x, y € K.

(A3) Foreach x,y,z € K, ltlfgl Fltz+ (1 -t)x,y) < F(x, y).

(A4) For each x € K, y — F(x,y) is convex and lower semicontinuous.

Several authors have approximated the common elements of the set of fixed points F(T) of a multi-valued
(or single-valued) mapping T and the set of solutions EP(F) of an equilibrium problem for a bifunction F
(or the common elements of the sets of fixed points of a finite family of multi-valued (or single-valued)
mappings and the sets of solutions of equilibrium problems for a finite family of bifunctons) (see for exam-
ples [6], [7], [8], [9], [10], [12] and references therein). In a real Hilbert space, many authors have studied
the algorithms involving the construction of the sequences of sets {K;}'” ; and the metric projections {x,} ,,
from an arbitrary xo € H, where K41 = {z € K, : |lz - unll> < |z = x4}, X441 = Pk, %0, while Py, is the
projection map and {u,}}; ; is the sequence of the resolvent of the bifunctions, (see for examples [4], [6], [7],
[8], [10], [12] and references therein).

Among the iteration schemes studied are the modified Reich-Sabach-type Algorithm 1.1 and modified
Mann-Reich-Sabach-type Algorithm 1.2 below defined for the approximation of (i) the solutions of an equi-
librium problem for a bifunction; (ii) the common elements of the set of fixed points F(T) of a multi-valued
(or single-valued) k— strictly Pseudocontractive-type mapping T and the set of solutions EP(F) of an equi-
librium problem for a bifunction F, respectively.

(i). Let H be a real Hilbert space, K a closed and convex subset of H. Let F : K X K — R be a bifunc-
tion and r € [a, 00) for some a > 0. Then from an arbitrary xy € H the algorithm is generated as follows.

Algorithm 1.1.
X0 € H,
Yn = Xy,
uy € K such that F(u,,, y) + 2y — ty, 4y — yu) 20, Yy €K,
Ky = {Z €K, :llz- unHZ <|z- x1’l||2}
Xus1 = Pk, Xo.

n+1

(ii). Let H be a real Hilbert space, K a closed and convex subset of H, F : K X K — R a bifunction and
T : K — P(K) multivalued k—strictly pseudocontractive-type mapping. Let {a;,} >, € [0,1] and r € [a, o) for
some a > 0. Then from an arbitrary xy € H the algorithm is generated as follows,

Algorithm 1.2.
Xg € H,
Yn = ApXy + (1 - an)vnl
uy € K such that F(u,, y) + 2y =y, — yu) 20, Yy €K,
Kuv1 = {z € Kyt llz = ual? < Iz — xllP}
Xu+1 = Pk, %o,

n+1

where v, € Tx, for multi-valued mapping T.

However, despite the fact that most of these algorithms yield strong convergence theoretically, the dif-
ficulty encountered by computer in the construction of the sequence of the metric projection {x,} ., and
the sequence of sets {K,} ", has made such algorithms almost impossible for real life applications. This
non-computability and non-applicability of such algorithms has lead to the introduction of other algorithms
which do not involve the construction of these two sequences but require stronger conditions and many

parameters.

The aims of this research are to study the Ishikawa-Reich-Sabach version of Algorithm 1.2 and estab-
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lish the strong convergence of its selection. The results of this research are great contributions towards
the resolution of the controversy over the computability and applicability of algorithms for approximating
the solutions of equilibrium problems for bifunctions involving the construction of the sequences {K,}>
and {x,}>” | as in algorithms 1 and 2 above. They also generalize, extend, complement and improve many
corresponding results in the contemporary literature.

2. Preliminaries

Let X be a nonempty set and let T : X — X be a map. A point x € X is called a fixed point of T if x = Tx. If
T : X — 2% is a multi-valued map from X into the family of nonempty subsets of X, then x is a fixed point
of Tif x € Tx. If Tx = {x}, x is called a strict fixed point of T. The set F(T) = {x € D(T) : x € Tx}(respectively
F(T) = {x € D(T) : x = Tx} ) is called the fixed point set of multi-valued(respectively single-valued) map T
while the set Fo(T) = {x € D(T) : Tx = {x}} is called the strict fixed point set of T.

Let X be a normed space. A subset K of X is called proximinal if for each x € X there exists k € K
such that

llx — k| = inf{llx — yl| : y € K} = d(x, K). 3)

It is known that every closed convex subset of a uniformly convex Banach space is proximinal. We shall
denote the family of all nonempty closed and bounded subsets of X by CB(X), the family of all nonempty
subsets of X by 2%, the family of all nonempty closed and convex subsets of X by CC(X) and the family of
all proximinal subsets of X by P(X), for a nonempty set X.

Let H denote the Hausdorff metric induced by the metric 4 on X, that is, for every A, B € CB(X),

H(A, B) = max{sup d(a, B), sup d(b, A)}.

acA beB

Let X be anormed space. Let T : D(T) € X — 2% be a multi-valued mapping on X. A multi-valued mapping
T : D(T) € X — 2Xis called L — Lipschitzian if there exists L > 0 such that for all x, y € D(T)

H(Tx, Ty) < Lllx - yll. (4)
In (4),if L € [0,1) T is said to be a contraction while T is nonexpansive if L = 1.

Definitions 2.1 ([13]). T is said to be k-strictly pseudocontractive-type of Isiogugu [13] if there exists
k € (0,1) such that given any pair x, y € D(T) and u € Tx, there exists v € Ty satistying |[u — v|| < H(Tx, Ty)
and

HA(Tx, Ty) < llx = yI? +kllx - u — (y = 0)II*. (5)

If k = 1in (5), T is called pseudocontractive-type.

Lemma 2.2: Let H be a real Hilbert space and let K be a nonempty closed convex subset of H. Let Px
be the convex projection onto K. Then, convex projection is characterized by the following relations;

(i) x* =Pr(x) & {(x—x",y—x") <0, forall y e K

(i) I — Prxl? < I = yIP = lly — Prxl .

(iii)llx = Pyl < llx = yIP* = lIPxy — yIP.

Lemma 2.3 ([2]). Let K be a nonempty closed convex subset of a real Hilbert space Hand F : KX K — R a
bifunction satisfying (A1)-(A4). Let r > 0 and x € H. Then, there exists z € K such that

Fz,y) + %(y—z,z—x) >0, Yyek
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Lemma 2.4 ([3]). Let K be a nonempty closed convex subset of a real Hilbert space H. Assume that
F: Kx K — R that satisfies (A1)-(A4). Let r > 0 and x € H, define T, : H — 2K by

T,(x)={ze K:F(z,y) + %(y—z,z—x) >0}, Vyek

Then the following conditions hold:

(1) T, is single valued.

(2) T, is firmly nonexpansive, that is for any x, y € H, ||T,x — Tryll2 <(Tx-Ty,x—y).
(3) F(T,) = EP(F).

(4) EP(F) is closed and convex.

Lemma 2.5 ([4]). Let K be a nonempty closed convex subset of a real Hilbert space Hand F: KX K — R a
bifunction satisfying (A1)-(A4). Letr > 0 and x € H. Then for all x € H and p € F(T;)

lp — T,xl* + IT,x — xII* < llp — x|

Definition 2.6 ([16]). Let {K;}>’, be sequence of sets, a sequence {z,} , is called a selection of {K,}, if
z, € K, for each n.

Definition 2.7 ([16]). A norm ||.|| on a Hilbert space H is order inclusion transitive on CC(H) if given any
A, B € CC(H)with A € Band arbitrary x € H, thend(x, B) = inf||b—x|| = |[b—x||and d(b, A) = inffllﬁ—bll = |la—b||
beB ae

imply that d(x, A) = inf |7~ x]| = fla -

Definition 2.8 ([16]). A Hilbert H is said to have order inclusion transitive property on CC(H) if its
norm is order inclusion transitive on CC(H). It is easy to see that the set of real numbers with the usual
norm has order inclusion transitive property.

Lemma 2.9 ([16]). Let H be a real Hilbert space and K = K be a closed and convex subset of H. Let
Xo € H be arbitrary and {u,} ", a sequence in K. Define K;11 := {z € K, : ||z — > < ||z = x,l1%}, if we define
X1 = %(un + x,,), then the following conditions are true.

(C1). {xa}); is a selection of {K}
(CZ) Xn+l = PK,,Hxn'

Cs). If H has order inclusion transitive property on CC(H) then, x,4+1 = Pk, Xo.

[ee]
n=1°

Definition 2.10 ([17]). A multi-valued mapping T : K — P(K) is said to satisfy condition 1 if there
exists a nondecreasing function f : [0, 00) — [0, co) with f(0) = 0 and f(r) > 0 for all r € (0, o) such that

d(x, Tx) > f(d(x,F(T)), Vxe K

3. Main Results

Proposition 3.1. Let H be a real Hilbert space and T : D(T) € H — P(H) be a multi-valued L— Lipschtizian
pseudocontractive-type mapping, then, fixed point set of T is closed.

Proof. let {x,}’ , € F(T) such x, — x". Then,

P, Tx) < d(x',x,) +d(x,, Tx,) + H(Tx,, Tx")
= |Ix" = xull + H(Tx, TX7)
1+ L)|lx, —x*]] > 0asn — oo.

A

IN

Therefore, d(x*, Tx*) = 0. Since T is proximinal, there exist v € Tx* such that ||x* — v|| = d(x*,Tx") = 0.
Consequently, x* € Tx*. O
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Definition 3.2. Let H be a real Hilbert space and K a nonempty closed convex subset of H. Let F be
a bifunction and T an L-Lipschitzian pseudocontractive-type mapping such that F : K x K — R and
T : K — CC(K) respectively. Let {a,,}7 , and {8,} . be sequences in [0,1] and {r,,}} , C [4, c0) for some a > 0,
then from an arbitrary xo € H we generate the sequence {x,} , of Ishikawa-Reich-Sabach algorithm as
follows.

Algorithm 3.3.

X € H,

Ko =K,

zn = (1 = Bn)xXn + Br0n,

Yn = (1 — ay)x, + aywy,

uy, € K such that F(u,, y) + %(y —Up, Uy — Yu) 20, Yy €K,
Kps1 ={z € Kyt llz = ualP? < Iz — x|},

Xn+1 = Px,,. %0,

where wy, € T(z,,) = T((1 = Bn)xn + pnvn) With d((1 = Bu)xn + Bn0n, TI(1 = Br)xn + BrVul) = (1 = Bu)xn + fuvn — will,
v, € Tx, with ||x, — v,|| = d(x,, Tx,) and ||lw,, — v, || < H(Tz,, Tx,).

We now consider the following algorithm which we shall refer to as a selection of Algorithm 3.3.

Let H be a real Hilbert space and K a nonempty closed convex subset of H. Let F be a bifunction and
T an L-Lipschitzian pseudocontractive-type mapping such that F : Kx K — R and T : K — CC(K) respec-
tively. Let {a,};, and {B,} " ,be sequences in [0,1] and {r,}}", C [a, %) for some a > 0, then from an arbitrary
xo € H we generate the sequence {x,})’ ; as follows.

Algorithm 3.4.
X € H,
Zy = (1 - ﬁn)xn + ﬁnvn/
Yn = (1 = ay)x, + aywy,
uy € K such that F(u,, y) + }n(y — Uy, g —Yn) 20, Yy €K
Xn+1 = %(un + Xn),

where wy, € T(z,,) = T((1 = Bn)xn + pnvn) With d((1 = Bu)xn + Bn0n, TI(L = Br)xn + Br0ul) = (1 = Bu)xn + fuvn — wyll,
v, € Tx, with ||x,, — v,|| = d(x,,, Tx,) and ||{w,, — v,|| < H(Tz,, Tx,).

Theorem 3.5. Let H, K, T, F, {a,}",, {Bnl,; and {r,}>", be as in Algorithm 3.4. Suppose F satisfying
(A1)-(A4), T satisfies condition 1 and F = F4(T) () EP(F) # 0, then {x,} converges strongly to p € F also, if H
has order inclusion transitive property, {x,} converges strongly to p € Pgxy if foralln > 1,
{an} and {B,,} are real sequences satisfying

@H0<a, <B,<1; (i) limglfan =a>0; (ii)suppf,<p<

1
>l VI1+@2+1°

Proof. Using Lemma 2.4, for all p € F we have

1
15 @n = 1) = pIP?

1Xp41 — P||2 3

1 1 1
= Sl —plP + >l = pI? ~ gl = ]

2
1 1 1

< Sk - pl* - i uy|* + 5llp - T, yall*
1 1 1

< Sl = pIP = Zlb = walP + Sl - yal?



IA

IA

Also,

2
1z — wall
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1 1 1

5l = pll* - i uyl* + SN = @)x, + anew, - plI?

1 ) 1 2 1 2
E”xn - P|| - Z”xn — Uyl + 5”(1 —ay) (X, — P) + ay(wy, — P)”

1 1 1
Sl =PI = Zlbe = wall® + 5[ (1 = @)l — pIP
+allw, = pIP = (1 = @)y — w,lP|

1 1 1

Sl =PI = Zlbe = wall® + 5[ (1 = @)l P

o H (T2, Tp) — (1 = t)lln — wyl ]

1 1 1

Sl = pI? = Zlbes = wall® + 5[ (1 = @)l — pIP

Iz = pIP + Iz = wall?] = ctu(1 = )l = w4l

1 1 1

Sl = pIP = 1 = uall® + {1 = @)l = pIF + vz~ pIf

+and2(znr Tzy) = an(1 = ), — wn||2]-

(1 - ﬁn)xn + BnUn — wn”2
11— ﬁn)(xn —Wy) + ,Bn(vn - wn)||2
= (1- ﬁn)”xn - wnllz + ﬁn”Un - wnHZ - ﬁn(l - ﬁn)”xn - UnHz-

(6) and (7) imply that

llp — yn

2
[

2
llzn = pli

1= a)llx, - P||2 + ay||wy, — P||2 —ay(1 = ay)llx, — wn||2

< (A =ap)llx, - P”z + anHz(TZn/ TP) = a,(1 = ay)llx, — wnHz

< (A =-ap)llx, = P”z + ayllz, — P”Z + 0(,,[(1 - ﬁn)”xn - wnHZ + ,Bn”vn - wn”2
~Bu(1 = By — 0ll2] = (1 = )iy — il

= [I(1 = Bu)xn + Puvn — pIP?

= “(1 - ,Bn)(xn - P) + ,Bn(vn - P)”2

= (1= By = pIP* + Bullon — pI* = Bu(1 = By — vall®

< (1- ﬁn)”xn - P||2 + ﬁnHz(Txn/ TP) - ﬁn(l - ﬁn)”xn - Un”2

< (1= Bl = pIP + Bafllen = pIP + Il = 0al] = Bu(1 = Bl — oal?

2 2 2
[, —P|| +ﬁn llxy = vall”.

(8) and (9) imply that

llp = yn

2
[

< (1=l = plP + Il = pIP? + B2l — oulP]

(1= B)lln = wall? + Bullow = wall® = Bu(1 = Bu)llxn = vall?]
_Ofn(l - an)”xn - wn”2

= (1 - anlxy = plP + anllxy = pl* + anBu?llx, — vall*
+a,(1 - ﬁn)”xn - wn||2 + an,Bn“vn - wnuz

_anﬁn(l - ,Bn)”xn - Un”Z —a,(1 = ay)llx, — wnHZ

(6)

1510

(7)

®)

©)
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< lxn = P”Z + anﬁnzllxn - vn||2 + an,BnHz(Txnr Tz,)
_an(ﬁn —ay)llx, - wn”2 - anﬁn(l - ﬁn)”xn - Un”2
< lx - P”z + anﬁnzllxn - Un”Z + anﬁn3L2”xn - vnHz
—uBu(1 = Bu)llxn = Oull* = (B — ctu)llxy — wy |
= |lx, - P”Z - 0(,,‘3,1[1 - zﬁn - LzﬁnZ]HXn - Unllz - an(ﬁn —ay)llx, — wn||2
< lxn = PI|2 - anﬁn[l - Z,Bn - LzﬁnZ]“xn - Unllz (10)
Consequently,
2 1 2 1 2, 1 2 2, 2 2
benst =pIP < Sl = pIP = 1 = 0l + 5 [l = pIP = @ualt = 28, = LBl — 04l
< = pIP = 7l = il = Sl =26~ LBl — ol

It then follows that lim ||x, — p|| exists hence {x,} is bounded. Also, from (10), we obtain

(o)

Y @1 =28 = LB, — vl

n=0

IA

Y @Bl =28, = LB, 21k, — ol
n=0

IA

Y Mk = I = 1o = pIP]
n=0

IA

2
llxo = plI° + D < oco.

It then follows that
lim ||x,, — v,]| = 0. (11)

Since d(x,,, Tx,) = ||x, — v4||, we have that d(x,, Tx,) — 0 as n — oco. Furtheremore,

lim |jx,, — u,|| = 0. (12)
Consequently,
. .41
lim [t =0l = lim 113 e = )l = 0 (13)

which implies that {x,} is a Cauchy sequence in K. Also, since K is closed and convex, {x,} converges
strongly to some p* € K. Since T satisfies condition (1), lim d(x,, F(T)) = 0. Thus, there exists a subsequence
n—o0

{xn,} of {x,} such that [|x,, —pll < % for some {pi};?, € F(T). We now show that {p};”, is a Cauchy sequence

in F(T). Observe that from (13), lim ||xy,,, — x|l = O for all subsequences {x,,} of {x,}. It then follows that,

IN

Pkt — X Il + 2y — X 1+ [, — il

1 1
2k+1 + ? + ||x1’lk+1 - xl’lk”

||Pk+1 - Pk”

<

1
= P [,y = 2, I

Therefore {py} is a Cauchy sequence and converges to some g € F(T) because F(T) is closed. Now,
1, = g1l <l = pell + llpx = gll.
Hence x,,, = gask — oo.
d(q, Tq) g = pill + Il = X, [l + d(x,, Tx,) + H(Txs,, T)
g = pill + [l = X, [ + d (¥, ) + Lllxn, = qll-

IANIA
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Hence, g € Tqg and {x,,} converges strongly to g. Since x, converges strongly to p*, uniqueness of limit of a

convergent sequence guarantees that p* = q . Hence p* € F(T).
It remains to show that p* is in EP(F). Using (12) and (13),
lim 21— uall = 0.
Hence from r}l_r){}o llx, = p’ll = 0 and (12) we have that
’Pj{l”un -pll=0.
Also, from (10),
Iyn = P17 < 1l = pIP = @nfull = 285 = LBl — 0al?
Observe that

2 2 *
lleall™ = Mlunll™ = 2¢p7, X — un)

* 2 2
lIp* = xull” = llp" — 1all

IA

It follows from (12)and (15) that

lim [lp* = xll = llp* = | = 0.

Now from (16)
llp” = yull < lp" = xnll.

Also, using u, = T;,y,, Lemma 2.3 and (18) we have

“”n - ynuz = “Tr,,yn - ynuz
< " =yl = 1Ip" = Tr, yull?
< g = xal? = llp* = Tr, yulP

llp" = xall® = llp* = ] .
Therefore, from (17) and (19)

’}g{}o 2, — ynH =0.
Consequently, from (15) and (20)

lim 1y, — p'll = 0.
From the assumption thatr, >a > 0,

ol = ]/n”
llm _— =
n—oo ]"n

0.

Since u, = T,,y, implies

F(un/ ]/) + %(y — Up, Up — yn> = 0/
n

we deduce from (A2) that

|24y, — ]/11”2 1

> —(Y = Up, Uy = Yn) 2 —F(un, y) 2 F(y,un). Yy € K

I'n I'n

Il = unll(llall + Neeall) + 2Mlp" 12w = 12ll.

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

By taking limit as n — oo of the above inequality and from (A4), (15) and (21), F(y,p*) <0, for all y € K. Let

t€(0,1) and for all y € K, since p* € K, y; = ty + (1 — f)p* € K. Hence F(y;, p*) < 0. Therefore, from (A1),

0=F(yt,y) <tF(yr, y) + (1 = )F(ys, p’) < tF(ys, y),
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that is, F(y:, y) > 0. Letting t | 0, from (A3) we obtain F(p*,y) > 0 for all y € K so that p* € EP(F). Finally, if
H has order inclusion transitive property, x, = Px,xo consequently, from Lemma 2.2(i)

X =Y, %0 —x,) =20, YyeK,. (23)
Since EP(F) C K,, for all n > 1, we have that
(xXp —q,%0 —x,) >0, ¥ geEP(F). (24)
Taking the limits as # — oo in (24) we obtain
(p*—q,x0—p") =0, YqeEP(F).

Thus, from Lemma 2.2(i) p* = Pgpr)Xo. This completes the proof. O

4. Numerical Example of the Computation

Example 4.1. Let H = R (the reals with the usual norm and inner product) and K = [- V10, 1], we define:

(i) T : [- V10,1] = CC([- V10, 1]) by

2=l xe(- V10, 0).

Obviously, T satisfies condition 1 since d(x, F(T)) = d(x, {0}) = |x — 0] = |x|, while

{ d(x, [- V10x,-2x]), x€]0,1]

d(xr _\/Lﬁ)r x € [_ \/E/ 0)

|x - (—ZX)|, X € [0/ 1]
{ = (-<5)l, x e [-VI0,0).

x| = f(d(x, F(T)),
where f : [0.00) — [0, o) is defined by f(r)=r.

{ [ V10x,-2x], x€]0,1]
Tx = -

d(x, Tx)

[\

Now, given any pair x, y € [0, 1],
H(Tx, Ty) = | V10(x — y)P* = 10lx — y? = |x — y? + (10 = Djx — y?

Also, given any u € Tx, u = —ax,2 < @ < V10 and we can choose v = —ay € Ty so that |u — v> < HX(Tx, Ty).
Observe that
—u—(y -0 =1+aPk-y’

It then follows that

0-1
H*(Tx, Ty) = Ix—yI2+(1+a)2|x—u—(y—v)|2
10-1
< Ix—yI2+(HZ)le—u—(y—v)l2
< x-yP+lx-u—(y-o)

Similarly, for any x € [0,1], y € [- V10, 0),

H%Tx,Ty):P/Ex—%IZ < |V10x - V10yP
< k-yPHlx-u-(y-o)
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Furthermore, for any x, y € [ V10, 0),
1
H*(Tx, Ty) = —kx—yP < lx -y + |x —u — (y - 0)].
Y V1o y Y ¥

Observe that for any pair x, ¥y = 0 € [0, 1] and u € Tx, v = 0. In particular for u = —2x

10-1
Hz(Tx, Ty) = |x- 0|2 + A+27 lx — (—2x)|2
= -yP+lx-u-(y-oP
> Ix—yl2 +klx—u- (y—v)lz,Vke [0,1).

Hence, T isnot K—strictly pseudocontractive-type mapping. Therefore, T is an L-Lipschitzian pseudocontractive-
type mapping with L = V10. It then follows that:

(i) 0, = { —2x,, x,€]0,1]

—J5 €= V10, 0).

i) (e = J0n=(r)(VIFI0+1)
(i) {ava}o7, 10n(VI+10+1)

. 0o _ 12n—(n+1)(V1+10+1)
() {BuhiZy = 12n(VI+10+1)

V)za=(1- ﬁn)xn + Bn0n.

—ZZn, Zn € [0/ 1]

(Vi)wn:{ _\7_%/ Zne[—\/ﬁ,O).

(vii) yn = (1 = ay)x, + aywy.
We will define F : [- V10,1]) X [- V10,1] - R, {r,}", and {u,}*", asin [12]. That is,
(viii) F(x, y) = —x2 + 12,
Observe that
Fzy)+ - (y-2z-020 = y-z+-(y-2-220,

1
= y2—22+;[yz—xy—zz+xz]20,
= -1 +yz—xy-z2+xz20,
= 1 +E-xy-r2 -2 +xz20.

Now F(y) = ry* + (z — x)y — rz> — 2> + xz a is a quadratic function of y with coefficients a = r, b = z — x and
¢ = —1z2 — 2% + xz. Therefore, we can compute the discriminant A of F as follows:

A (z = x)* + 4r(rz* + 2% — x2)

= 2242 - 2wz +4r72% + drz? —drxz
= (1+4r* +4nN2> = 2Q2r + Dxz + x°
= (1+2r)22% = 2(1 + 2r)xz + x*

= [(1+2nz—x]%

Obviously, F(y) > 0 for all y € R if it has at most one solution in R. Thus A < 0 and hencez =T, (x) = 135
Consequently
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@) 1)) = T, (v) = {52512

= {2

() ki w =1

() X1 = 5000 + 1),

(xii) Kys1 =

[- V10, 3 (x + u)],
[%(xn + un)/ 1]/ Xp € [_ \/E, 0)

Xn € [_ \/E/ 1]

x, €[0,1]

It is easy to see that Fs(T) = {0} # 0, EP(F) = {0} and IF = Fs(T) () EP(F) = {0}.
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The algorithm is computed with Microsoft word Excel 97-2003 Workbook. Table 4.2 shows different
sequences generated for different values of xg. In particular, we considered without loss of generality

Xo = %1_%111_1 - \/E

Table 4.2.

Table 4.2 Strong convergent sequences generated by the selection of Ishikawa-Reich-Sabach-type Algorithm

34
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n Xa Xa Xy Xo Xn

0 0.5 -0.5 1 -1 -3.16227766

1 0.295868006 -0.297959076 0.591736013 -0.595918153 -1.884458663

2 0.177789839 -0.182356133 0.35557968 -0.364712267 -1.153321457

3 0.107711586 -0.112949158 0.215423173 -0.225898316 -0.714353202

4 0.065574916 -0.070436194 0.131149833 -0.140872389 -0.445477613

5 0.040051067 -0.044117358 0.080102134 -0.088234717 -0.279022677

6 0.024517899 -0.027717221 0.049035798 -0.055434443 -0.175299103

7 0.015034608 -0.017452927 0.030069216 -0.034905855 -0.11038201

8 0.009231518 -0.011008756 0.018463037 -0.022017514 -0.069625496

9 0.005674268 -0.006953499 0.011348536 -0.013907 -0.043977798
10 0.003490744 -0.004396951 0.006981488 -0.008793903 -0.027808767
11 0.002148991 -0.002782914 0.004297982 -0.005565829 -0.017600699
12 0.001323767 -0.001762724 0.002647534 -0.00352545 -0.011148454
13 0.000815851 -0.001117264 0.001631703 -0.002234531 -0.007066209
14 0.00050304 -0.000708558 0.001006081 -0.001417118 -0.004481322
15 0.000310286 -0.000449584 0.000620573 -0.00089917 -0.002843426
16 0.000191456 -0.000285388 0.000382914 -0.000570778 -0.001804961
17 0.00011817 -0.000181229 0.000236342 -0.000362461 -0.001146204
18 0.000072956 -0.000115125 0.000145914 -0.000230253 -0.000728126
19 0.000045052 -0.000073155 0.000090107 -0.000146313 -0.000462686
20 0.000027827 -0.000046499 0.000055656 -0.000093 -0.000294095
21 0.000017191 -0.000029563 0.000034384 -0.000059128 -0.000186982
22 0.000010622 -0.0000188 0.000021246 -0.000037601 -0.000118908
23 0.000006564 -0.000011958 0.00001313 -0.000023916 -0.000075633
24 0.000004057 -0.000007607 0.000008115 -0.000015215 -0.000048117
25 0.000002507 -0.00000484 0.000005016 -0.000009681 -0.000030617
26 0.000001549 -0.00000308 0.000003101 -0.000006161 -0.000019485
27 0.000000957 -0.00000196 0.000001917 -0.000003921 -0.000012402
28 0.000000591 -0.000001247 0.000001185 -0.000002496 -0.000007895
29 0.000000365 -0.000000793 0.000000732 -0.000001589 -0.000005026
30 0.000000225 -0.000000504 0.000000452 -0.000001011 -0.0000032
31 0.000000139 -0.00000032 0.000000279 -0.000000643 -0.000002037
32 0.000000085 -0.000000203 0.000000172 -0.000000409 -0.000001297
33 0.000000052 -0.000000129 0.000000106 -0.00000026 -0.000000826
34 0.000000032 -0.000000082 0.000000065 -0.000000165 -0.000000526
35 0.000000019 -0.000000052 0.00000004 -0.000000105 -0.000000334
36 0.000000011 -0.000000033 0.000000024 -0.000000066 -0.000000212
37 0.000000006 -0.00000002 0.000000014 -0.000000042 -0.000000134
38 0.000000003 -0.000000012 0.000000008 -0.000000026 -0.000000085
39 0.000000001 -0.000000007 0.000000004 -0.000000016 -0.000000054
40 0 -0.000000004 0.000000002 -0.00000001 -0.000000034
41 0 -0.000000002 0.000000001 -0.000000006 -0.000000021
42 0 -0.000000001 0 -0.000000003 -0.000000013
43 0 0 0 -0.000000001 -0.000000008
44 0 0 0 0 -0.000000004
45 0 0 0 0 -0.000000002
46 0 0 0 0 -0.000000001
47 0 0 0 0 0
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