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Abstract. Measuring and managing project quality is one of the fundamental problems in project man-
agement. In this paper, once project is completed, we define the measure of task’s quality and the measure
of overall project quality. We construct mathematical model of the process of quality improvement as the
sequence of mutually dependent projects, where every project in the sequence is the revision of its previous
one. We prove that it is possible, at certain point, to obtain a project with the highest quality measure and
with failures less than the initially given level. The purpose of this paper is, to help companies to achieve
the satisfying level of project quality by using the proposed model. According to our knowledge, paper
offers an original connection between project management and measure theory potentially interesting to a
reader for further research.

1. Introduction

There are large number of papers devoted to project’s improvement solutions (see for example Baccarini
[1] and Prabhakar [8]). The way of determining a quality of a completed project has been analyzed by many
authors and widely discussed in the literature, including Bryde [2]. After reviewing the scientific papers
in the area of project management, we can easily detect the trend of defining project success, determining
the factors and criteria of success, mostly summarized in Ika [5]. Contrary to those papers, we investigate
a problem of introducing the use of real numbers in project management for the purpose of measuring a
task quality, a quality of realized project and to build a mathematical model of quality improvement.

Primarily in the paper, we define the way of measuring a quality of realized tasks, in order to be able to
define a measure of overall project quality. In the literature there are various project and task definitions. See
for example Elearn [3], Kähkönen [7] and Whelton and Ballard [9]. In this paper, each project is identified
with the project goal that needs to be accomplished by the project management team. Also, each task is
considered as a partial goal that needs to be executed by suitable team of experts. The completion of all
tasks (partial goals) is, naturally, a condition for a completion of a project goal. Every goal (task) can be
executed in various ways. Each of those ways of task completion, we define as the option of a task. The
quality of each option is measured by some real number, which we call a quality index. Defining each of
the options and evaluating their quality indexes are necessary actions that need to be done by experts at
the beginning of a project design. That way, we have a possibility of comparing task options according
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to quality. Classical approach to project planning design does not include the determination of all task’s
options in a given project environment. Consequently, in the paper, we define a project as a collection of all
possible project realizations, where every project realization presents a set of options belonging to different
tasks.

After determination of all quality indexes, in Section 2., we compare the measure of quality of a realized
task with other tasks in the realized project. For each task, we define the Difference indicator, which
measures the influence of the given task on the overall project quality. In Definition 2.6., we introduce the
real number µ as the measure of failure of the realized project.

Further in the paper we explore how to define a process of project quality improvement. We construct a
mathematical model of the process by starting with some realized project with estimated measure of failure
µ and we build its revision as new project, as we explained in detail in Subsection 2.2. We point that, in
the same section we give certain conditions that ensure higher quality of the revision comparing with the
initial project. We continue the procedure by constructing a sequence of revisions and hence, we obtain a
decreasing sequence of corresponding measures of failure. Theorems 3.9 and 3.11 show that it is possible
to achieve a project with failures bellow the initially given level ε > 0. Following this context, we introduce
two basic assumptions:

1. Reliability principle
2. Revision principle.

First principle ensures that the process of the quality improvement needs to begin from one starting
project which is already completed. Really, every enterprize has its own activity in a specific field of
expertise. For example, the building housing projects are performed in the concrete political, economical,
geographical environment and with the defined human and financial resources. All limitations produced
by the environment strongly influence the success of projects performed by this company. Projects of other
companies, of the same type are being realized in its own environments, with its own specific limitations.
Because of this reason, it is not reliable to use the experiences from other companies. Therefore, in order
to be more successful in the project constructions the best solution for the company is to be focused on its
own realized projects. Second principle is previously explained.

2. A model of project quality improvement

Let P be a project, defined as a collection of all possible project realizations, where every project
realization presents a set of options belonging to different tasks. Also, let Z be a set of all its tasks. If
x, y ∈ Z and the realization of x is the condition for the realization of y, we say that x ≺ y. The measure of
quality of any realized task is a probability measure, as we explained in further text. Hence, it is a function
that corresponds one real number to each realized task. Note that Z is partially ordered, meaning that
every possible project realization is partially ordered too.

As it is much more easier to deal with sequences of realized options instead with partially ordered sets,
we presentZ as a sequence of different elements. Being finite, the setZmay be presented in different ways
in the form of a sequence. For the process of the quality improvement of P, the order of tasks defined with
the relation ≺ in the sequence construction is of no importance.

Theorem 2.1. The setZ may be presented as a sequence of different elements, indexed by some initial portion of the
set N.

In the proof of this theorem we choose one of the possible constructions which preserves best the dependency
of tasks. See Appendix.

In each subset in Z there is a minimal and a maximal element. For each task, there is a predecessor,
except for the minimal one and a successor, except for the maximal one.
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Remark 2.2. Some partially ordering properties of Z are being examined in literature, but the real question is how
to identify characteristic properties of some partially ordered set in order to be considered as a project. Here we point
out one property of a partial ordered set that is not included in classical project approach.

Specifically, let P be a project and let x ∈ Z. Also, let ext(x) = {z | z ≺ x} be the set of all previous tasks of x, and
int(x) = {z | x ≺ z} the set of all tasks followers of x. Usually, for x , y can not be ext(x) = ext(y) and int(x) = int(y)
in same time, so that different tasks x and y can not have the same position inZ, which is not the case in our approach.
Consequently, we can define p−equality of tasks:

Definition 2.3. x and y are p−equal tasks of P, denoted by x =p y, if ext(x) = ext(y)↔ int(x) = int(y).

Obviously =p is the equivalence relation such that each =p class can be considered as a task with a set of options
as its elements.

Hence, according to the above, we generalize in natural way the classical notion of project.

Let us denote the number of all possible options of a task x with nx and assume that 1 ≤ nx ≤ 100. All
options of the given task could be compared in quality and every option of the task x could be identified
by an index of an option quality jx, satisfying 1 ≤ jx ≤ mx, where mx is the highest quality index for the
given task x and 1 ≤ mx ≤ 100. It is assumed that different options have different quality indexes heaving in
mind that the smaller index, the better option. So, for the given task x the option satisfying jx = 1 (if such
option exists) is the best quality option, while the option satisfying jx = mx is the worst quality option. For
the given task x ∈ Z the ix-th option, 1 ≤ ix ≤ nx with the quality index jx ∈ {1, 2, ...,mx} is denoted by xix jx .

See that the quality scale of options differs from task to task. The definition of each quality scale is an
assignment for different profile experts who must cooperate, since the tasks depend on each other. Often it
can occur that the quality units of neighboring tasks cannot be compared, but for the project improvement
success it is not crucial. What is important is that the selection of neighboring task options be accordant
with the relation ≺. That means, if x, y ∈ Z and x ≺ y, then for each option xix jx of x there is at least one
option yiy jy of y with the possibility of realization only if xix jx is previously defined and closed.

The project is finalized when all tasks are accomplished, which means that exactly one of the options of
each task is realized. Thus, when the project is closed we may identify each realized task x ∈ Z with the
chosen option. We conclude that the project is terminated, if the sequence of all project tasks is realized.
The sequence of realized options in the completed project we call the optional sequence. Once we determine
the deficiencies of a final project, it is crucial to revise them in order to improve the quality of the project.
The choice of different combination of options that could be applied wouldn’t guarantee better result and
experimenting with various optional sequences would be too expensive.

Values of quality indexes are approximately determined, except for the case of special options when
accuracy is possible. Comparison within quality indexes of different tasks options is also approximate, since
the accuracy in defining these relations is unlikely possible even for experts. If accuracy were possible and
if we chose the options with equal quality indexes, the quality of a project realization would only depend
on the chosen quality index value. This way, we would obtain success improvement of a project simply
by lowering quality indexes of all tasks. So, big differences among indexes of realized options obviously
influence on the project success and therefore it is necessary to find the procedure to overcome them. We
need to identify indicators of those differences in order to lower them and that way to obtain more equable
indexes of realized options. Thus, we define the difference indicator of one option in relation to other options. In
what follows, we shell call it simply the difference indicator.

Definition 2.4. Let xix jx be a realized option in project P. Difference indicator of an option xix jx is a real number:

px =
jx∑

z∈Z jz
, (1)

where jz, with z ∈ Z are quality indexes of all realized options ziz jz in P.

The difference indicator shows us how much the realization option of some task z affects the overall
success of the realized project.
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Predictability of a project success depends on the differences among indexes of realized options; the
smaller differences, the bigger predictability. Any case, we get the highest quality project when all indexes
of realized options are close to 1. Really, assume that all realized options are of the same quality indexes,
that is to say jx = jy for every pair of tasks x, y ∈ Z and therefore px = 1

nZ
, where nZ is the number of

tasks in Z. Thus, difference indicators do not depend on separate option indexes but only on nZ. Having
in mind that difference indicators differ from each other and depend on the index of each separate option,
it is needed to equalize them, as much as it is possible.

Therefore, the sum of all indexes of realized options should be calculated. SinceZ is partially ordered
set and the number of tasks in a project can be very big, there is a problem of finding

∑
z∈Z jz. According

to Theorem 2.1, it is possible to construct the finite sequence of all realized tasks options, i.e. the optional
sequence. Next theorem trivially holds.

Theorem 2.5. LetZ be a set of all tasks in a realized project P and β = P(Z), where P(Z) is the power set ofZ and
P : Z→ R defined as:

(∀x)(x ∈ Z → P(x) = px).

Then (Z, β,P) is a probability space.

LetA ⊂ Z be set of tasks in a project, for example, the set of tasks defining a certain phase in the project,
the probability P(A) shows how much the realization ofA affects the quality of the realized project.

Theorem 2.5 shows that each optional sequence generates a probability space, such that the probabilities
of the sequence members are the corresponding difference indicators.

Definition 2.6. Let P be the realized project and xix jx a realized option of each task x ∈ Z. We call µ = maxx∈Z px
the measure of quality or failure of the realized project P.

SinceZ is finite and jx ≥ 1 for every task x ∈ Z, it holds that px > 0. Also, since every project P contains
more than one task it will be px < 1. Also, we have that µ = sup{px}x∈Z = max{px}x∈Z < 1.

Remark 2.7. The moreµ value is higher, the more options with a lower quality are realized. Hence, in order to increase
the project quality we need to lower the measure of µ. So, next we define the process of the quality improvement by
defining the process of lowering µ.

The assignment of improving the project quality is not trivial. In order to explore this issue we establish
next principles.

2.1. Reliability principle.

In order to improve the success of some project P, taking into consideration the experience achieved
in the similar projects should not necessarily be in the focus. It is because similar projects need not have
the same tasks; even if they do, its realizations don’t have to be obtained through the options as in the
projectP. So, using the conclusions from the previous projects is not quite reliable. The reliability should be
accomplished by focusing on the projectP, its realized tasks and options. Note that, by using this principle,
we are trying avoid the experiences from other similar projects, since they were realized with different
resources and in different project environments.

2.2. Revision principle.

Let us suppose that P is a completed project and that we determined its measure of failure µ. Next we
substitute all unsatisfying tasks with new separate projects. Unsatisfying task would be every task whose
realization has higher difference indicator than the initially given level. That way, we expect to obtain
revised project with smaller µ, meaning a project with less disadvantages. We repeat the previous steps
and construct revised projects as long as it takes, in order to obtain the project at satisfying level of µ. The
main point is that we construct a sequence of dependent projects, where every project is the revision of
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its previous one. This principle assumes that, at certain point we expect a project with failures bellow the
initially given level.

Now, assume that for every task x ∈ Z there is at least one project Px with the set of tasksZPx such that
for every task y ∈ ZPx and all its options holds:

(∀y)(y ∈ Px → jy < jx). (2)

If we substitute the realized task x ∈ Z in P with a set of such optional sequences in Px we get to the
revision of realized the project P generated by x and denoted by P{x}. If we denote the set of all tasks in P{x}

withZP{x} we will haveZP{x} = (Z− {x})∪ZPx ,whereZPx is the set of all tasks in Px. The relation ≺ in P{x}

is the extension of ≺ from P. Let z ∈ P and y ∈ Px. Then if x ≺ z then y ≺ z. Also, if z ≺ x then it holds that
z ≺ y.

We presume also that the condition∑
y∈ZPx

jy ≥ jx (3)

holds with no loss of generality.

Really, note that if
∑

y∈ZPx
jy < jx,we may extendZPx with certain additional tasks with the same index

1 which will not influence the revision.

Theorem 2.8. Assume that the conditions (2) and (3) holds. Let x be any task in P and let Px = {zi}i∈{1,2,...,k} be an
optional sequence with indexes jz1 , jz2 , ..., jzk . Then pzi < px, for i = 1, 2, ..., k.

This theorem shows that the revised project has higher quality then the previously realized one. Please
see the proof in the Appendix.

Theorem 2.9. Let {xn}n∈N be any sequence of tasks such that x1 = x is in the projectP, x2 ∈ ZPx1
,..., xn+1 ∈ ZPxn

,...,.
Then for every real number ε > 0, ε ∈ R there is n(ε) ∈ N such that for every n > n(ε) holds that pxn < ε.

The proof of Theorem 2.10 is given in the Appendix.

Remark 2.10. According to Theorem 2.8., we can conclude that every difference indicator, after certain number of
revisions, may be lowered bellow the initially given level ε, ε ∈ R. If we replace the given task with a set of new tasks
satisfying (2), and (3) in the same time we will by equalizing the quality indexes decrease their values. Note that, by
lowering the difference indicator of x ∈ P we lower at the same time the difference indicators of non-revised tasks.

Since difference indicators are probabilities, lowering the probabilities of certain tasks may cause the
increase of some other tasks’ probabilities. Therefore, naturally appears a question can we obtain, in certain
point, a realized project with all difference indicators bellow the expected level ε.

In Theorems 3.9 and 3.11 in next Section we obtain positive answer to the above question by starting from
some infinite probability space with the atomless probability measure. The optional sequence of a realized
project generates certain decomposition of that probability space. The probabilities of such decomposition
members are exactly the corresponding difference indicators. The revisions produces finer decompositions
of the same space. So, the process of project quality improvement may be presented as a sequence of
decompositions, such that every decomposition is finer than its previous. According to Theorems 3.9 and
3.11, it is possible to achieve the decomposition with all member probabilities less than ε, meaning that it
is possible to obtain a project with the measure of failure µ less than ε.
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3. Probabilistic analysis of the model

In this section we generalize the notion of the optional sequence by defining the optional sequence of real
numbers, in order to enable further researches on project success growth.

The set of tasks, as well as any optional sequence in the given project is always finite. During the project
revision the number of tasks increases. In the process of quality improvement of a project the number
of tasks can be increased infinitely. For this reason, we define random optional sequences which are, in
general, infinite. In order to apply these results in further mathematical researches, we may assume that
the members of those sequences are real numbers.

Definition 3.1. Let (Ω, β,P) be a probability space, where Ω is the sample space of the elementary outcomes, β is
the σ-field of the events and P is the probability measure defined on β space of events. Let φ be a random variable
φ : Ω→ N ⊂ R and a = {an}n∈N a sequence of reals, such that a : N → R, then the random variable X = a ◦ φ is the
optional random sequence of real numbers and we denote it by {aφn }n∈N. For the given member of the optional random
sequence {aφn }n∈N, aφn0

, we define the probability of its appearance with P(φ−1(n0)).

Directly, based on Theorem 2.5., we conclude that every optional sequence in realized project may be
identified with the optional sequence of real numbers, where the probability space is the set Z and the
members of the sequence are the quality indexes of the realized options.

Remark 3.2. In the denotation of a random optional sequence there appears a random variable which defines it. So,
it can undoubtedly be clear if it is a random optional sequence or a sequence of reals. For that reason, when there is
no confusion we will use the term sequence in both cases.

It is easy to prove that every composition of the sequence of reals a : N → R and the random variable
φ : Ω→ N is a random variable.

The ”randomness” of the given optional random sequence {aφn }n∈N is in the fact that all the members of the
sequence appear with certain probabilities P(φ−1(n0)). For the given index n0 ∈ φ(Ω), φ−1(n0) is measurable,
so there exists its probability P(φ−1(n0)). In that sense, we say that the probability of appearance of a member
of the sequence {aφn }n∈N, aφn0

, in the above definition is in fact the probability P(φ−1(n0)) of index n0 ∈ N of
the sequence {an}n∈N.

The probability attached to any member of the sequence {aφn }n∈N depends on the set φ(Ω) ∩ N, so it
depends on Ω and φ. If index n < φ(Ω) then φ−1({n}) = ∅, so it is P(φ−1({n})) = 0. We conclude that for
all the indexes n ∈ N in the set N\φ(Ω), corresponding members of the sequence {aφn }n∈N appear with the
probability 0.
D = {φ−1(n)}n∈φ(Ω) is the decomposition of the Ω into mutually disjoint sets. The members of the

decomposition are measurable. According to σ− additivity we have:

P(
⋃
n∈N

φ−1(n)) =
∑
n∈N

P(φ−1(n)) = P(Ω) = 1. (4)

Example 3.3. If the random variable φ is a constant, for example φ(ω) = n0 ∈ N, for every ω ∈ Ω, then the member
aφn0

of the sequence {aφn }n∈N appears with the probability P(an0 ) = 1 and all the rest members are observed with the
probability 0.

Example 3.4. Let
∑+∞

n=1 bn = B be a series of reals with positive members. If we put bn
B = pn, then for any set A ⊂ N,

we define P(A) =
∑

nk∈A pnk . Obviously, P(A) exists for every A ⊂ N, since it is the limit of monotony increasing
sequence upper bounded with number 1. This way, we obtain the probability space (N,P(N),P).

Remark 3.5. Identical mapping IdN : N → N is a random variable, so the optional random sequence {aidN
n }n∈N is in

the same time an ordinary sequence of reals a = {an}n∈N, where a : (N,P(N),P)→ R and a = X.



I. Ilić, V. M. Veličković / Filomat 33:6 (2019), 1833–1844 1839

Let P be the probability measure on Ω. The set A ⊂ Ω is an atom of P if P(A) > 0 and if for every X ⊂ A
we have either P(X) = 0 or P(X) = P(A).

A measure P is atomless if it has no atoms. If measure P is atomless, then every set X of positive measure
can be split into two disjoint sets of positive measure (Jech [6]).

Example 3.6. Lebesgue measure on the interval Ω = [0, 1] is atomless probability measure (see Halmos [4]).

Next proposition (see Appendix for the proof) presents an interesting example of the optional random
sequence.

Proposition 3.7. Let us suppose that P is two-valued measure on the set Ω and U corresponding σ−complete
ultrafilter. Then for every optional random sequence {aφn }n∈N there exists only one index n0 ∈ N such that P(aφn0

) = 1.

Assume that (Ω, β,P) is the atomless probability space andP a project with the set of tasksZ. SinceZ is
finite, for every realized option xix jx , there is the member Γx of the decompositionD such that P(Γx) equals
px.

Similarly, note that the sequence of project revisions generates the corresponding sequence of decom-
positions of the given atomless probability space (Ω, β,P). The results of following theorems reduce the
problem of project success into existence of special sequence of decompositions. Next theorems generalize
both the Theorem 2.9. and the Remark 2.10.

Theorem 3.8. Let (Ω, β,P) be the probability space, where Ω is the infinite set, P atomless probability measure on Ω
and {an}n∈N any sequence of reals. Then for every real number ε > 0, ε ∈ R and some fixed member an0 of the given
sequence {an}n∈N, there exists a random variable ψ : Ω→ N such that P(aψn0

) < ε.

Theorem 3.9. Let (Ω, β,P) be the probability space, where Ω is the infinite set and P atomless probability measure
on Ω. For every real number ε > 0, ε ∈ R there exists some decomposition of the set Ω into the disjoint subsetsDM
such that ∪DM = Ω and P(Γ) < ε, for every Γ ∈ DM.

Theorem 3.10. Let us suppose that (Ω, β,P) is a probability space, P atomless measure and ε > 0, ε ∈ R. Then,
every decomposition D = {Γλ}λ<τ of a set Ω with 0 < P(Γλ) < ε, for λ < τ, has cardinality |D| ≤ 2ℵ0 , where 2ℵ0 is
cardinality of real line.

Theorem 3.11. Assume that every decomposition of the set Ω into the disjoint sets of positive measure is at most
countable, in some probability space (Ω, β,P), where P is atomless measure on Ω and {an}n∈N any sequence of real
numbers. Then, for every real number ε > 0 exists some random variable ψ : Ω→ N, such that for any member aψn
of the optional random sequence {aψn }n∈N, P(aψn ) < ε.

The proofs of the above theorems are in the Appendix.

Definition 3.12. Let {aψn }n∈N be any optional random sequence. The member aψn0
is a missing member of order

ε > 0, ε ∈ R if P(aψn0
) < ε. For a member aψn0

we simply say that it is missing member of the sequence {aψn }n∈N, if
P(aψn0

) = 0.

Theorem 3.13. Missing members of the sequence {aψn }n∈N of order ε, ε ∈ R form a subsequence of the given optional
random sequence.

The proof of Theorem 3.13 is straightforward, see the Appendix.

Remark 3.14. In terms of the Definition 3.12 and Theorem 3.13, we related the notion of an optional random sequence
with the notion of a missing data sequence, which may be applied for the incomplete sample problems.

Funding: This research did not receive any specific grant from funding agencies in the public, commer-
cial, or not-for-profit sectors.
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4. APPENDIX

Proof. [Proof of Theorem 2.1] Here we choose the construction of a sequence, best preserving the dependency
of the tasks. Firstly, we construct the function f : Z → {1, 2, ...,nZ} ⊂ N, where nZ is the number of all
tasks in the project P. This can be accomplished in various ways. For example, since partially ordered set
Z is finite, there is some maximal chain li. This chain is linearly ordered with minimal element xm and for
each contained element there is its follower. Therefore, there is a strictly monotone function fi : li → N
such that fi(xm) = 1. For fi(x) = k and y is a follower of x in li in relation � we define fi(y) = k + 1. This
way, we identify li with the initial portion {1, 2, ...,ni} ⊂ N, where ni is the number of tasks in the chain li.
In the set Z − li which is also partially ordered with the relation � there is some maximal chain l j. There
is a strictly monotone function f j : l j → {ni + 1,ni + 2, ...,n j} ⊂ N. We choose f j such that fi(li) ∩ f j(l j) = ∅.
Next we continue with the procedure until we exploit the whole setZ. SinceZ =

∑
i∈I li, there is a function

f : Z → NZ = {1, 2, ...,nZ} ⊂ N such that fi = f |li . f is a bijection, so there is an inverse function which
represents a finite sequence of all elements inZ.

Proof. [Proof of Theorem 2.8] Really, let x be a task in a project P. For every zi ∈ Px, i = 1, 2, ..., k we have:

pzi =
jzi

jz1 + jz2 + ... + jzk +
∑

z,x jz
=

jzi

jz1 + jz2 + ... + jzk +
∑

z∈Z jz − jx
.

According to the assumptions of the theorem, it holds that:

jz1 + jz2 + ... + jzk +
∑
z∈Z

jz − jx >
∑
z∈Z

jz,

that is to say:
jzi

jz1 + jz2 + ... + jzk +
∑

z∈Z jz − jx
<

jzi∑
z∈Z jz

< px,

because of the fact that jzi < jx for i = 1, 2, ..., k.

Proof. [Proof of Theorem 2.9] According to Theorem 2.4, {pxn }n∈N is a decreasing sequence of reals. Let us
prove that this is a zero sequence. Really, since (2) holds we may conclude that:∑

z∈ZPx

jz ≥ jx + 1 (5)

and therefore:

px2 =
jx2∑

z∈ZPx
jz +
∑

z∈Z,z,x jz

=
jx2∑

z∈ZPx
jz +
∑

z∈Z jz − jx

≤
jx2∑

z∈Z jz + 1
.

Similarly,

px3 =
jx3∑

z∈ZPx2
jz +
∑

z∈ZPx ,z,x2
jz +
∑

z∈Z,z,x jz
.

Since
∑

z∈ZPx2
jz ≥ 1 + jx2 and (4) hold, we conclude that:

px3 ≤
jx3

2 +
∑

z∈Z jz
. (6)
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Following previous steps, we obtain that for every n ∈ N

pxn ≤
jxn

(n − 1) +
∑

z∈Z jz
<

100
(n − 1) +

∑
z∈Z jz

, (7)

which obviously completes the proof.

Proof. [Proof of Proposition 3.7] The collection {φ−1(n)}n∈N is a countable decomposition of the set Ω. Also,
the ultrafilter U is σ−complete, so there must be at least one member φ−1(n0) of the decomposition that
belongs to the ultrafilterU. Then it holds:

P(φ−1(n0)) = 1,

that is, P(aφn0
) = 1. For every index n , n0 must be P(φ−1(n)) = 0.Really, all the members of the decomposition

{φ−1(n)}n,n0 are measurable in the probability space (Ω,P(Ω),P), because neither of them doesn’t belong to
the ultrafilterU. Therefore, it holds P(φ−1(n)) = 0, i.e. P(aφn ) = 0 for all the indexes n , n0.

Proof. [Proof of Theorem 3.8] Really, let φ1 : Ω → N be some random variable, {aφ1
n }n∈N a corresponding

optional random sequence, ε > 0 and n0 ∈ N some fixed index.
It can be P(aφ1

n0
) < ε, so the theorem holds. If P(aφ1

n0
) ≥ ε, note that φ−1

1 (n0) = Dn0 ⊂ Ω. That set is the
member of decompositionD = {Dn}n∈N of the set Ω, where φ−1

1 (n) = Dn for every index n ∈ φ1(Ω).
Since Dn0 is a set of positive measure and the measure P is atomless, it can be decomposed into the

disjoint union of two sets of positive measure, Dn0 = A1
n0
∪ B1

n0
, where P(A1

n0
) ≤ P(B1

n0
).

Without loss of generality we can assume that the decompositionD has more than one member, so we
can choose some Dλ ∈ D, for λ , n0.

Starting from decompositionDwe can construct new decompositionD1 of the set Ω, where we can take
the set A1

n0
= D1

n0
instead of Dn0 and Dλ ∪ B1

n0
= D1

λ instead of Dλ. The rest of the members of the familyD
stay the same and we shall rename them into Dn = D1

n, for indexes n , λ,n0. Then it can be either P(A1
n0

) < ε
or P(A1

n0
) ≥ ε.

If P(A1
n0

) < ε the function φ2 : Ω→ N can be constructed such that it holds:

φ2|Dn = φ1|Dn, (8)

for every index n , λ,n0. For every element ω ∈ Dλ ∪ B1
n0

we may put φ2(ω) = λ and for every element
ω ∈ A1

n0
we may put φ2(ω) = n0. Also holds that φ1(Ω) = φ2(Ω). Obviously φ2 is a random variable so the

theorem is proved.
If P(A1

n0
) ≥ ε, then let us note the set φ−1

2 (n0) = D1
n0
⊂ Ω. This set is a member of the decomposition

D
1 = {D1

n}n∈N of the set Ω, where φ−1
2 (n) = D1

n for every n ∈ N.
As a set of positive measure, D1

n0
can be decomposed into the disjoint union of two sets D1

n0
= A2

n0
∪ B2

n0

of positive measure, such that P(A2
n0

) ≤ P(B2
n0

), because the measure P is atomless. So, starting from
decomposition D1 we may construct new decomposition D2 of the set Ω, indexed as decomposition D1

with φ1(Ω). Instead of the set D1
n0

we take the set A2
n0

= D2
n0

and instead of the set D1
λ set D1

λ ∪ B2
n0

= D2
λ.

The rest of the members of the familyD1 remain the same and we rename them with D1
n = D2

n, for indexes
n , λ,n0.

Then it could be either P(A2
n0

) < ε or P(A2
n0

) ≥ ε. If P(A2
n0

) < ε we may construct the function φ3 : Ω→ N
such that:

φ3|Dn = φ2|Dn, (9)

for every n , λ,n0. For every element ω ∈ D1
λ ∪B2

n0
we put φ3(ω) = λ and for every element ω ∈ A2

n0
we put

φ3(ω) = n0. Obviously φ3 is a random variable so we have the proof.
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If P(A2
n0

) ≥ ε we continue with the procedure. That way, we obtain the sequence of the decompositions:

D,D1,D2,D3, ...,Dm, ...,

decreasing sequence of the sets:
Dn0 ⊃ D1

n0
⊃ D2

n0
⊃ .... ⊃ Dm

n0
⊃ ...,

increasing sequence of the sets:
Dλ ⊂ D1

λ ⊂ D2
λ ⊂ .... ⊂ Dm

λ ⊂ ...,

strictly decreasing sequence of numbers:

P(Dn0 ) > P(D1
n0

) > P(D2
n0

) > .... > P(Dm
n0

) > ...

and strictly increasing sequence of numbers:

P(Dλ) < P(D1
λ) < P(D2

λ) < .... < P(Dm
λ ) < ....

Strictly decreasing sequence {P(Dm
n0

)}m∈N is convergent because it is lower bounded with 0. Since P(Dk+1
n0

) ≤
1
2 P(Dk

n0
) for every k ∈ N, it holds:

lim
m→+∞

P(Dm
n0

) = 0. (10)

Therefore, for given ε > 0 there exists an index of that sequence m(ε) such that for every index m > m(ε) is
P(Dm

n0
) < ε. If we put φm(ε)+1 = ψ, then {aψn }n∈N is a random sequence, with P(aψn0

) < ε. This fact completes
the proof.

Proof. [Proof of Theorem 3.9] Since Ω is a set of positive measure and the measure P is atomless it can be
decomposed into the disjoint union of the sets Ω = A1 ∪ B1 of positive measure, such that P(A1) ≤ P(B1),
that is

P(A1) ≤
1
2

P(Ω) =
1
2
. (11)

Since A1 is a set of of positive measure, it can be decomposed into the disjoint union: A1 = A2 ∪ B2 of two
sets of positive measure such that P(A2) ≤ P(B2) and

P(A2) ≤
1
22 P(Ω) =

1
22 .

If we continue this procedure, we obtain the sequence:

A1 ⊃ A2 ⊃ A3 ⊃ .... ⊃ An ⊃ ...

satisfying:

P(An) ≤
1
2n ,

for every index n ∈ N, and therefore:
lim
n→∞

P(An) = 0.

So, for some ε > 0 there exists an index of the sequence m1(ε) such that:

P(Am1(ε)) < ε.

Let us put:
Am1(ε) = Γ1.
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Let us note the set Ω − Γ1 and then apply the above procedure of dividing this set similarly as we did
with the set Ω. After finite number m2(ε) steps we obtain the set Γ2 satisfying

P(Γ2) < ε.

Now we apply the procedure on the set Ω− (Γ1 ∪ Γ2) and after m3(ε) steps we obtain the set Γ3 holding that

P(Γ3) < ε,

and so on.
That way, we obtain the collection of disjoint subsets {Γn}n∈N of the set Ω satisfying P(Γn) < ε, for every

n ∈ N.
The set Γ1 is a member of disjoint collections:

{Γ1,Γ2}, {Γ1,Γ2,Γ3}, ...

It is easy to see that these disjoint collections obtained by the construction of the starting set Γ1 are not
uniquely determined. Without loss of generality, we will consider one member-collection {Γ1} as a trivial
collection of disjoint sets.

Let M be a class of every possible collections of the disjoint sets that may be obtained by the above
procedure starting from the set Γ1.

For two collectionsD1 andD2 we say thatD1 ≤ D2 ifD1 ⊂ D2. Obviously,M is partially ordered with
the relation ≤. Note any chainL such that {Γ1} ∈ L andL ⊂M. Let us prove that the chainL has an upper
bound.

If the length of the chain is successor ordinal α = β + 1, it mins L = {Dλ}λ≤α, then it’s upper bounded
with its last element Dα. Otherwise, let L = {Dλ}λ<α be a chain in the setM, where α is limit ordinal. Now,
let us note the set

⋃
λ<α Dλ. This set is the upper bound of the chainL. Really, if Γ ∈

⋃
λ<α Dλ, there exists an

index λ < α such that Γ ∈ Dλ, so we have that P(Γ) < ε. Also, the set
⋃
λ<α Dλ is the collection of mutually

disjoint subsets of the set Ω. So, if Γ,Θ ∈
⋃
λ<α Dλ there exists some sets Dλ1 and Dλ2 such that Γ ∈ Dλ1

and Θ ∈ Dλ2 . Since L is a chain there will be, for example, Dλ1 ⊂ Dλ2 , so Γ,Θ ∈ Dλ2 . Therefore, Γ and Θ
are disjoint sets with the probability measures less then ε and

⋃
λ<α Dλ is an upper bound of the chain L.

According to Kuratovski-Zorn Lemma (see for example [12]), we conclude that L is contained in the chain
of maximal length having the maximal element inM.

LetDM be that maximal element. Now put:

DM = {Γλ}λ<τ,

where τ is some ordinal. Let us prove that: ⋃
{Γλ}λ<τ = Ω.

Suppose the contrary, that
Ω −
⋃
{Γλ}λ<τ = M , ∅.

If P(M) = 0, then P(M) < ε and M ∩ Γλ = ∅. In this case DM ∪ {M} is the decomposition satisfying
DM < DM ∪ {M}, which is the contradiction with the fact thatDM is a maximal element.

If P(M) , 0 and P(M) < ε, we have that DM ∪ {M} is the decomposition satisfying DM < DM ∪ {M},
which also contradicts with the fact thatDM is a maximal element.

Finally, let us suppose that P(M) ≥ ε. In that case, we may obtain the set Γ∗ ⊂ M such that P(Γ∗) < ε,
starting from the set M similarly as we did in the case of the set Ω. We have that:

DM < DM ∪ {Γ
∗
},

which also contradicts with the fact thatDM is a maximal element. So it holds:⋃
{Γλ}λ<τ = Ω, (12)

which completes the proof.
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Proof. [Proof of Theorem 3.10] Let us putD = {Γλ}λ<τ. Starting from the decompositionD of the set Ω we
construct a decompositionD∗ of the set Ω. Denote with K ⊂ (0, 1] the set of real numbers α satisfying that
there exists at least one member of the decomposition D with the probability α. Let Γ∗α = ∪{Γλ|P(Γλ) = α}.
The set Γ∗α is the union of the most finite many sets from the decomposition D, because the probability
measure P is normed and σ−additive. New decompositionD∗ = {Γ∗α}α∈K⊂(0,1] is indexed with the set K with
cardinality |K| ≤ 2ℵ0 . Since every member of the decompositionD∗ is the union of finitely many members
of the decompositionDwe have:

|D| ≤ ℵ0 · |K| ≤ ℵ0 · 2ℵ0 = 2ℵ0 ,

which completes the proof.

Proof. [Proof of Theorem 3.11] According to the Theorem 3.10, for the probability space (Ω, β,P) there exists
its decomposition into the disjoint sets D = {Γλ}λ<τ, such that for every index λ < τ holds P(Γλ) < ε.
According to the assumptions of the theorem, the decomposition D is at most countable. Therefore, the
decomposition D may be presented as finite or infinite sequence D = {Γm}m∈K⊂N. Every element ω ∈ Ω
belongs to exactly one member of the decompositionD. So, there exists the function ψ : Ω→ N such that
for every ω ∈ Γm ⊂ Ω is ψ(ω) = m ∈ N and ψ−1(m) ∈ D, for every element m ∈ ψ(Ω) ⊂ N. It is easy to prove
that the function ψ is a random variable. It is obvious that, for a given sequence {an}n∈N of real numbers,
{aψn }n∈N is a random sequence satisfying P(aψn ) < ε for every n ∈ N, which completes the proof.

Proof. [Proof of Theorem 3.13] There exists only finite number of the members of optional random sequence
{aψn }n∈N, satisfying P(aψn ) ≥ ε. Really, for a given number ε holds m · ε > 1, if it is m > [ 1

ε ], where [ 1
ε ] is the

integral part of 1
ε . So, the number m of the not missing members of order ε can not be higher [ 1

ε ]. It means
that the rest of members of the optional random sequence form a subsequence.
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