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Abstract. Counting the number of Hamiltonian cycles that are contained in a geometric graph is #P-
complete even if the graph is known to be planar. A relaxation for problems in plane geometric graphs is
to allow the geometric graphs to be 1-plane, that is, each of its edges is crossed at most once. We consider
the following question: For any set P of n points in the plane, how many 1-plane Hamiltonian cycles can be
packed into a complete geometric graph Kn? We investigate the problem by taking three different situations
of P, namely, when P is in convex position and when P is in wheel configurations position. Finally, for
points in general position we prove the lower bound of k − 1 where n = 2k + h and 0 ≤ h < 2k. In all of the
situations, we investigate the constructions of the graphs obtained.

1. Introduction

Let P be a set of n points in general position in the plane with no three points being collinear. A geometric
graph is a graph G = (P,E) that consists of a set of vertices P, which are points in the plane, and a set of
edges, E, which are straight-line segments whose endpoints belong to P. A complete geometric graph Kn is
a geometric graph on a set P of n points that has an edge joining every pair of points in P. Two edges are
disjoint if they have no point in common. Two subgraphs are edge-disjoint if they do not share any edge.

A geometric graph is said to be plane (or non-crossing) if its edges do not cross each other. A geometric
graph is said to be 1-plane if every edge is allowed to have at most one crossing. Note that the terms plane
graph and 1-plane graph refer to a geometric object, while to be planar or 1-planar are properties of the
underlying abstract graph.

By an edge packing of a graph G we mean a set of edge-disjoint subgraphs of G. By an edge partition of G
we mean an edge packing of G with no edge left over, that is the union of all subgraphs in the packing is
equal to G. Dor and Tarsi [11] proved that the problem of partitioning a given graph G is NP-complete.

It is often useful to restrict the subgraphs of G to a certain class or property. Among all subgraphs of
Kn, plane spanning trees, plane Hamiltonian cycles or paths, and plane perfect matchings, are of interest
[1–3, 8] i.e., one may look for the maximum number of these subgraphs that can be packed into Kn.

2010 Mathematics Subject Classification. Primary 05C70; Secondary 05C10.
Keywords. Geometric graphs; packing; 1-plane; Hamiltonian cycles.
Received: 08 October 2017; Accepted: 14 June 2019
Communicated by Francesco Belardo
Email addresses: hazimmichman@yahoo.com (Hazim Michman Trao), niran.alhakeem@gmail.com (Niran Abbas Ali),

chiagl@utar.edu.my (Gek L. Chia), akilic@upm.edu.my (Adem Kilicman)



H. M. Trao et al. / Filomat 33:6 (2019), 1561–1574 1562

A long-standing open question is to determine if the edges of Kn, where n is even, can be partitioned
into n

2 plane spanning trees? Bernhart and Kanien [5] give an affirmative answer for the problem when
the points are in convex position. Bose et al. [8] proved that every complete geometric graph Kn can be
partitioned into at most n −

√ n
12 plane trees. Aichholzer et al. [3] showed that Ω(

√
n) plane spanning trees

can be packed into Kn. Recently, this result has been improved to bn/3c plane spanning trees by Biniaz and
Garcı́a [6]. On another hand Biniaz et al. [7] showed that at least dlog2 ne − 1 plane perfect matchings can
be packed into Kn.

A cycle is a closed path in which the first and last vertices are the same. A Hamiltonian cycle is a cycle
in a graph that passes through every vertex exactly once, except for the vertex that is both the beginning
and end, which is visited twice. Finding a Hamiltonian cycle in a graph is NP-complete even if the graph
is known to be planar [14]. Moreover, counting the number of Hamiltonian cycles that are contained in a
graph is #P-complete even if the graph is known to be planar [17].

Many past researchers have attempted the problem of counting the number of plane Hamiltonian cycles
on a given graph, which may not necessarily be edge-disjoint [4, 12, 19–21] and many others.

A relaxation refers to problems in plane geometric graphs which allows them to be 1-plane. In other
words, each of its edges is crossed at most once. It is not always possible to finding more than one edge-
disjoint plane Hamiltonian cycle for a given set of points. Hence, a relaxation is considered in order to solve
it as a 1-plane, rather than a plane problem. Thus, the following problem is considered:

A relaxation for problems in plane geometric graphs is to allow the geometric graphs to be 1-plane.
Finding more than one edge-disjoint plane Hamiltonian cycle for a given set of points is not always possible
to achieve. Hence, we consider a relaxation on the Hamiltonian cycles from being plane to being 1-plane
and we study the following problem:

Problem 1.1. For any set of n points in the plane, how many 1-plane Hamiltonian cycles can be packed into a
complete geometric graph Kn?

Note that, 1-plane relaxation on Hamiltonian cycle or path have received a considerable amount of
attention in geometric graph [16]. In particular, many papers considered the problem of 1-plane Hamiltonian
alternating cycle (see [9], [15] and [10]).

For simplicity, we will write 1-PHC to refer to a 1-plane Hamiltonian cycle.

1.1. Headlines and Results

We study the problem of packing 1-PHCs into a complete geometric graph Kn for a given set of n points
in the plane. Since a complete graph Kn on n vertices has n(n − 1)/2 edges and a Hamiltonian cycle has n
edges, therefore, the number of edge-disjoint Hamiltonian cycles in Kn cannot exceed (n − 1)/2.

In Section 2, we show that b n
3 c is a tight bound for the number of 1-PHCs that can be packed into Kn for

any given set in convex position.
In Section 3, we show that for a set of points in regular wheel configuration, b n−1

3 c edge-disjoint 1-PHCs
can be packed into Kn, whereby this bound is tight.

In the latter portion of this paper, Section 4, point sets in general position are considered. We know that
for n ≥ 3, and by a minimum weight Hamiltonian cycle in Kn, a trivial lower bound of 1 is obtained since
it is a plane cycle. Furthermore, in Section 4, an algorithm (henceforth, Algorithm A) is presented to draw
a 1-PHC for any set of points in general position in the plane. The main findings of this paper prove that
there are at least k − 1 1-PHCs that can be packed into Kn, where n = 2k + h and 0 ≤ h < 2k.

2. 1-PHCs for Point Sets in Convex Position

In this section, we study the problem of packing 1-PHCs on a well-known restricted position of a point
set which is the convex position. It will shown that for any point set P in convex position, there are at most
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b
n
3 c edge-disjoint 1-PHCs that can be packed into Kn and this bound is tight (Theorem 2.4). Throughout this

section, for simplicity, we consider all vertices in counter-clockwise order.
Suppose P = {v0, v1, v2, . . . , vn−1} is a set of n points in convex position. Let G be a geometric graph on P.

Edges of the form vivi+1, i = 0, 1, 2, . . . ,n − 1, are called the boundary edges of G. A non-boundary edge in G
is called a diagonal edge.

Proposition 2.1. Let P be a set of n points in convex position in the plane where n ≥ 3. Suppose C is a 1-PHC on P
that has a diagonal edge viv j which divides P into two parts, both including vi and v j. Then the following statements
hold:

(1) If any part has an odd number of vertices, then C has at least one boundary edge on this part.
(2) If any part has an even number of vertices, then C has at least two boundary edges on this part.

Proof: Let C be a 1-PHC on P. Assume that C contains the diagonal edge viv j that divides P into two
parts P1 and P2. Assume that P1 = {v j, v j+1, ..., vi} and |P1| is odd. By induction on |P1|, if |P1| = 3, then
P1 = {v j, v j+1, vi} and either the boundary edge v jv j+1 or viv j+1 in C; otherwise, there are two crossings, a
contradiction.

Assume that |P1| ≥ 5 is odd and the proposition is true when m < |P1|, and m is an odd number. We
claim that either vi+1v j+1 or vi−1v j−1 is an edge in C. To prove our claim, suppose that neither vi+1v j+1 nor
vi−1v j−1 are in C.

Since C is a 1-PHC, then C contains an edge vlvk < {vi+1v j+1, vi−1v j−1} crosses viv j where k ∈ P1 − {vi, v j}

and l ∈ P2 − {vi, v j}. When k < { j + 1, i − 1}, then there is p ∈ { j + 2, j + 3, ..., k − 1} or p ∈ {k + 1, k + 2, ..., i − 2}
such that the edge vpvq, that incident to vp and belongs to C, crosses either viv j or vlvk, a contradiction.

When k ∈ { j + 1, i− 1}, without loss of generality assume that k = j + 1 and then l , i + 1 (by assumption).
Thus, there is p ∈ { j + 2, j + 3, ..., i − 1} or p ∈ {i + 1, i + 2, ..., l − 1} such that the edge vpvq, that belongs to C,
crosses either viv j or vlvk, a contradiction.

Therefore, either vi+1v j+1 ∈ E(C) or vi−1v j−1 ∈ E(C). Without loss of generality, assume that vi+1v j+1 ∈ E(C).
Let C′ be a subgraph of C induced by P1. Since vi+1v j+1 not in C′, then the degree of v j, v j+1 will be

d(v j) = d(v j+1) = 1 in C′.
Let C1 = C′ ∪ {v jv j+1}. It is clear that C1 is a 1-PHC on P1 since v jv j+1 is a boundary edge. Note that viv j

and v jv j+1 are boundary edges in C1 but are not boundary edges in C.
When the boundary edge vivi−1 ∈ E(C1), the claim in the proposition is hold. Hence, assume that the

boundary edge vivi−1 < E(C1). Then there is a diagonal edge vivk ∈ E(C1) that divides P1 into two parts
P1,1 = {vi, vi−1, ..., vk} and P1,2 = {vi, v j, v j+1, ..., vk}.

If k = j + 1, there is a contradiction since C1 is not a union of disjoint cycles (since viv jv j+1 will be cycle).
Hence, either k ∈ { j + 2, j + 4, ..., i − 2} or k ∈ { j + 3, j + 5, ..., i − 3}. In the case that k ∈ { j + 2, j + 4, ..., i − 2}
then P1,1 = {vk, vk+1, ..., vi−1, vi}. Then clearly, |P1,1| is odd (since |P1| is odd and when subtract even number
still odd number). By the induction hypothesis, C1 has at least one boundary edge on P1,1. Thus, C has at
least one boundary edge on P1. In thae case that k ∈ { j + 3, j + 5, ..., i− 3}, then P1,2 = {vi, v j, v j+1, ..., vk}. Then
clearly, |P1,2| is odd.

Now, we assert that P1,2 has at least one boundary edge different from viv j and v jv j+1.
(*) Assume on the contrary that C1 has the only two boundary edges viv j and v jv j+1 on P1,2. Note that

{v j+1, ..., vk−1} has at least two vertices. However, C1 matches all the vertices in {v j+1, ..., vk−1}with at least two
crossings with the edge vivk since C1 has no boundary edge on {v j+1, ..., vk−1}; this is a contradiction (since C1
is a 1-PHC). Thus, C1 has at least one boundary edge different from viv j and v jv j+1 on P1,2. This proves (1).

Assume that |P1| is even. By induction on |P1|, if |P1| = 4, then P1 = {v j, v j+1,
v j+2, vi} such that either v jv j+1, v j+1v j+2 ∈ E(C) or viv j+2, v j+1v j+2 ∈ E(C); otherwise, there is a contradic-
tion since C is a 1-PHC. Assume that |P1| ≥ 6 is even and the proposition is true when m < |P1|, m is
even.
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Figure 1: Illustration cases of Proposition 1

By repeating the same argument in (1), we conclude that either vi+1v j+1 ∈ E(C) or vi−1v j−1 ∈ E(C). Without
loss of generality, assume that vi+1v j+1 ∈ E(C).

Let C′ be a subgraph of C induced by P1. It is clear that d(v j) = d(v j+1) = 1 in C′. Let C1 = C′ ∪ {v jv j+1}.
Then C1 is a 1-PHC on P1 since v jv j+1 is a boundary edge. Recall that viv j and v jv j+1 are boundary edges in
C1 but are not boundary edges in C.

In the case that C1 has the boundary edge vivi−1, either vi−1vi−2 ∈ E(C) and then the claim in the proposition
is true, or vi−1vi−2 < E(C) and then the diagonal edge vi−1vk ∈ E(C) for some k ∈ { j + 2, j + 3, ..., i − 3}. Hence,
the diagonal vi−1vk divides P1 into two parts P1,1 = {vk, vk+1, ..., vi−2, vi−1} and P1,2 = {vi−1, vi, v j, v j+1, ..., vk}.
|P1,1|, whether odd or even, C has at least one boundary edge on P1,1 by part (1) or by induction,

respectively.
In the case that C1 does not have the boundary edge vivi−1, then vivk ∈ E(C) for some k ∈ { j+2, j+3, ..., i−2}.

Hence, the diagonal edge vivk divides P1 into two parts P1,1 = {vk, vk+1, ..., vi−1, vi} and P1,2 = {vi, v j, v j+1, ..., vk}.
Now, either both |P1,1| and |P1,2| are odd, then C has at least one boundary edge on P1,1 by part (1) and

it has at least one boundary edge different from viv j and v jv j+1 on P1,2 by argument (*). Or, both |P1,1| and
|P1,2| are even. By the induction hypothesis, C1 has at least two boundary edges on P1,1. Thus, C has at least
two boundary edges on P1. This completes the proof.

As a direct consequence of Proposition 2.1, we have the following corollary.

Corollary 2.2. Let P be a set of n points in convex position in the plane where n ≥ 3. Suppose C is a 1-PHC on P.
Then the following statements hold:

(1) If n is even, C has at least two boundary edges.
(2) If n is odd, C has at least three boundary edges.

Proof: Let C be a 1-PHC on a set P of n points. If all edges of C are boundary edges, then the claim in the
lemma holds. Thus, assume that C contains a diagonal edge viv j.

If n is even, viv j divides P into two parts, each part having an odd (even) number of vertices. Then by
Proposition 2.1, C has at least one boundary edge (two boundary edges) on each part.

If n is odd, viv j divides P into two parts, and one part has an odd number of vertices. By Proposition
2.1, C has at least one boundary edge on this part, while C has at least two boundary edges on the second
part, which has an even number of vertices.

Suppose G is a geometric graph on a set in convex position P that has a diagonal edge viv j. A boundary
edge vkvk+1 is called on the right side of viv j if i ≤ k < j and on the left side of viv j if j ≤ k < i. A diagonal
edge is said to have a boundary edge on each side if there are two boundary edges, on left and right sides of
the diagonal edge. A boundary edge vkvk+1 is called a single boundary edge in G if the two boundary edges
vk−1vk and vk+1vk+2 are not in G.
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Proposition 2.3. Let P be a set of n points in convex position in the plane where n ≥ 4. Suppose C is a 1-PHC on P.
Then the following statements hold:

(1) If C has only two boundary edges {vkvk+1} for k ∈ {r, s}, then C has the edges vkvk+2 and vk+1vk−1.
(2) If C has only three boundary edges, then C has at least one single boundary edge vrvr+1 with the edges vrvr+2

and vr+1vr−1.

Proof: Let C be a 1-PHC on P containing only two boundary edges vkvk+1 for k ∈ {r, s}. Assume on the
contrary that at least one of the two edges {vkvk+2, vk+1vk−1} is not in C for some k ∈ {r, s}.

Without loss of generality, assume that vrvr+2 < E(C). Then vrvi and vr+1v j ∈ E(C) for some r+3 ≤ i ≤ r−2
and r + 3 ≤ j ≤ r − 1.

If vrvr+1 and vsvs+1 are in consecutive order, then all the remaining edges of C are diagonal edges where
vrvr+1 and vsvs+1 are on the same side of each one. Hence, the other side of any diagonal edge does not
contain any boundary edge, which contradicts Proposition 2.1. Thus vkvk+1 is a single boundary edge for
each k ∈ {r, s} and then i , r − 1 and j , r + 2.

If vrvi and vr+1v j are crossing, then there is a vertex vt where r + 2 ≤ t < i such that at least one of the two
edges incident to vt in C crosses vrvi, which is a contradiction since C is a 1-PHC.

If vrvi and vr+1v j are not crossing, then by Proposition 2.1, C has at least one boundary edge on the left
side of vrvi and at least another boundary edge on the right side of vr+1v j (both different from vrvr+1), which
is a contradiction since C has only two boundary edges. This proves (1).

Let C contain three boundary edges vkvk+1 for k ∈ {r, s, t}. Suppose that no single boundary edge is in
C. That is, the boundary edges in C are in consecutive order. But all the remaining edges of C are diagonal
edges where vkvk+1 for each k ∈ {r, s, t} are on the same side of each one. Hence, the other side of any
diagonal edge does not contain any boundary edge, which contradicts Proposition 2.1. Thus C has at least
one single boundary edge.

Assume on the contrary that, if vkvk+1 is a single boundary edge in C for some k ∈ {r, s, t}, then either one
of three cases follow: vkvk+2 is not in C, vk+1vk−1 is not in C, or both are not in C.

Without loss of generality, assume that vrvr+1 is a single boundary edge in C and vrvr+2 < E(C). Then vrvi
and vr+1v j are in C, where r + 3 ≤ i < r − 1 and r + 2 < j ≤ r − 2.

If vrvi and vr+1v j are crossing, then there is a vertex vt where r + 2 ≤ t < j such that at least one of the
two edges incident to vt in C crosses vrvi, which is a contradiction since C is a 1-PHC.

If vrvi and vr+1v j are not crossing, then by Proposition 2.1, C has at least one boundary edge on the
set {vi+1, vi+2, . . . , vr} and at least one boundary edge on the set {vr+1, vr+2, . . . , v j}; otherwise, there is a
contradiction, since C has only three boundary edges.

This implies that there is a single boundary edge vsvs+1 where i ≤ s < r − 1 such that either vsvs+2 or
vs+1vs−1 is not in C (by assumption). Without loss of generality, assume that vsvs+2 < E(C). Let vsvp and
vs+1vq is in C.

In the case that p < { j, j + 1, ..., s − 1}, vsvp crosses both vrvi and vr+1v j, which is a contradiction since C is
a 1-PHC. Then by Proposition 2.1, C has at least one boundary edge on a vertex set {v j, v j+1, . . . , vs−1}, which
is a contradiction since C has only three boundary edges. This completes the proof.

Theorem 2.4. Let P be a set of n points in convex position on the plane where n ≥ 3. Then there exist k edge-disjoint
1-PHCs C1,C2, . . . ,Ck on P that can be packed into Kn where k ≤ b n

3 c.

Proof: (1) Let n = 2m, which is even. Suppose P = {v0, v1, ..., vn−1} is a set of n points in convex position on
the plane. By Lemma 2.2, every 1-PHC on P contains at least two boundary edges. On the other hand, P
has n boundary edges; that is, the number of 1-PHCs does not exceed n/2.

We claim that if Ci and C j are two edge-disjoint 1-PHCs each having only two boundary edges, then any
boundary edge of Ci can not be in consecutive order with a boundary edge of C j. To prove the claim, assume
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on the contrary that vrvr+1 ∈ E(Ci) and vr+1vr+2 ∈ E(C j). By Proposition 2.3, the edge vrvr+2 ∈ E(Ci) ∩ E(C j),
which is a contradiction since Ci and C j are edge-disjoint 1-PHCs (E(Ci) ∩ E(C j) = φ, where i , j).

Note that a single boundary edge in Ci can be adjacent to any two consecutive boundary edges in C j
where i , j; that is, Ci ∪ C j can have three boundary edges in consecutive order. Therefore, the number of
1-PHCs that can be packed into Kn is at most b n

3 c, making the bound tight.
Now, it will be shown how to pack b n

3 c 1-PHCs into Kn. To ensure that the boundary edges of all cycles
{C1,C2, . . . ,Ck} are in consecutive order, let {C1,C2, . . . ,Ck} be divided into two sets A and B where each
1-PHC in A has only two boundary edges, and each 1-PHC in B has only four boundary edges (which
are two couples of boundary edges and each couple has two boundary edges in consecutive order). The
boundary edges are arranged with the property that a single boundary edge in C ∈ A is in consecutive
order with a couple of boundary edges in C′ ∈ B . This property is depicted in Figure 2(a).

For each i = 0, 1, . . . , bm
3 c − 1 and j = 0, 1, . . . , bm

3 c − 1 where m ≥ 2. Let Ci = v3iv3i+1v3i−1v3i+3v3i−3
. . . v3i−mv2i+(m+1), v3i−m−1v2i+(m+3) . . . v3i−(2m−2)v3i, and let C j = v3 j+2v3 j+1v3 j+4v3 j−1 . . . v3 j+m+1v3 j−m+2,
v3 j+m+3v3 j−m, . . . v3 j+(2m)v3 j−(2m−3)v3 j+2.

Here the operations on the subscripts are reduced modulo n − 1.
Note that C3 ∈ A is obtained from C1 ∈ A by rotating the edges of C1 where vi take the place of vi+3.

Hence, C1,C3 ∈ A are edge-disjoint 1-PHCs. Similarly, C4 ∈ B is obtained from C2 ∈ B by rotating the edges
of C2 ∈ B where vi take the place of vi+3. Hence, C2,C4 ∈ A are edge-disjoint 1-PHCs. Furthermore, each
cycle in A or B matches all vertices in P, that is each cycle is a Hamiltonian cycle.

(2) Now, let n = 2m + 1, which is odd. By Lemma 2.2, every 1-PHC in P contains at least three boundary
edges. On the other hand, P has n boundary edges. Therefore, the number of 1-PHCs that can be packed
into Kn is at most b n

3 c, making the bound tight.
Now, will be shown how to pack b n

3 c 1-PHCs into Kn. To ensure that the boundary edges of all cycles
{C1,C2, . . . ,Ck} are in consecutive order, let each 1-PHC have two boundary edges in consecutive ordered
and one single boundary edge. The boundary edges are arranged with the property that a single boundary
edge in C is in consecutive order with two consecutive boundary edges in C′ and vice versa. This property
is depicted in Figure 2(b).

For each i = 0, 1, . . . , b n
3 c − 1. Let Ci = v(m+2)iv(m+2)i+1v(m+2)i−1v(m+2)i+3v(m+2)i−3 . . . v(m+2)i−(2m−1)

v(m+2)i.
Here the operations on the subscripts are reduced modulo n − 1.
Note that C3 is obtained from C1 by rotating the edges of C1 where vi take the place of vi+3. Hence, C1,C3

are edge-disjoint 1-PHCs. Similarly, C4 is obtained from C2 by rotating the edges of C2 where vi take the
place of vi+3. Hence, C2,C4 are edge-disjoint 1-PHCs. Furthermore, each cycle matches all vertices in P, that
is each cycle is a Hamiltonian cycle.
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Figure 2: 1-PHCs on point sets in convex position: (a) n = 12 and (b) n = 13.
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A vertex is pendent if it is of one degree. In the next section, the following additional result will be
required.

Lemma 2.5. Let P be a set of n points in convex position in the plane where n ≥ 3. Suppose T is a 1-plane Hamiltonian
path (1-PHP) on P with two pendent vertices vi and v j. Then the following statements hold:

(1) T has at least one boundary edge when |i − j| = 1, and each diagonal edge in T has at least one boundary edge
on one side.

(2) T has at least two boundary edges when |i− j| > 1, and each diagonal edge in T has at least one boundary edge
on each side.

Proof: Let T be a 1-PHP on P with two pendent vertices vi and v j. Assume that |i− j| = 1, and let C = T∪{viv j}.
Then C is a 1-PHC since viv j is a boundary edge. By Lemma 2.2, C has at least two boundary edges when
n is even and three boundary edges when n is odd. Note that viv j is a boundary edge in C since |i − j| = 1.
Observe that by Proposition 2.1, each diagonal edge in C has at least one boundary edge on each side. This
proves (1).

Assume that |i− j| > 1. By induction on n, if n = 4, the statement is trivially true. Assume that n ≥ 5 and
the lemma is true when m < n.

In the case that all the edges in T are boundary edges, the statement holds. Hence, assume that there is
a diagonal edge vrvs ∈ E(T).

Let P1 and P2 be two sets of points of P on each side of vrvs that both include vr and vs. Let T1 and T2
be the edges of T on P1 and P2, respectively. It is clear that Ti, i = 1, 2 is a 1-PHP on Pi and Pi is in convex
position.

By the induction hypothesis, Ti has at least two boundary edges. Note that vrvs is a boundary edge in
Ti, but it is not boundary edge in T. This proves (2).

3. Points in Wheel Configuration

In this section, we turn to another special configuration. We say a set P of n points, is in regular wheel
configuration if n− 1 of its points are regularly spaced on a circle C(P) with one point x in the center of C(P).
The x is termed the center of P. For simplicity, we consider all vertices of C(P) in counter-clockwise order.

Note that when n is even, that is |C(P)| (the order of C(P)) is odd, and since C(P) is regularly spaced on
a circle, a line passing through any two points in C(P) does not contain x. On the other hand, when n is
odd, that is |C(P)| is even, and by regularity of C(P), x lies on a line that passes through any two points vi
and v j in C(P) such that |i − j| = n−1

2 which contradicts the general position assumption. Hence, the case is
considered when n is even.

An edge of the form xv is called a radial edge, and every 1-PHC on P contains exactly two radial edges.

Lemma 3.1. Let P be a set of n points in regular wheel configuration in the plane where n ≥ 4, is even. Suppose C is
a 1-PHC on P. Then C has at least two boundary edges and each diagonal edge in C has at least one boundary edge
on each side.

Proof: The lemma is trivially true when n=4. Hence assume n ≥ 6. Suppose x is the center of P and
v0v1 · · · vn−2v0 is the circle C(P). Assume that C is a 1-PHC where xvi and xv j are two radial edges of C. It
is clear that C − {vix, v jx} is a 1-PHP on C(P). By Lemma 2.5, C − {vix, v jx} has at least two boundary edges
except the case when |i − j| = 0, which possibly has only one boundary edge. Furthermore, each diagonal
edge in C − {vix, v jx} has at least one boundary edge on each side.

Assume that j = i + 1. Suppose that C− {vix, v jx} has only one boundary edge e. Let C′ = C− {vix, v jx} ∪
{viv j}. Then C′ is a 1-PHC on C(P) and has only two boundary edges viv j and e. By Proposition 2.3, C′ has
the crossing edges vivi+2 and vi+1vi−1; that is, vivi+2 and vi+1vi−1 are edges in C. Then the radial edges xvi
cross v jvi−1 in C and xv j crosses viv j+1 in C (since n ≥ 6), which is a contradiction since C is a 1-PHC. Thus C
has at least two boundary edges.
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Proposition 3.2. Let P be a set of n points in regular wheel configuration in the plane where n ≥ 8, is even. Suppose
C is a 1-PHC on P. If C has only two boundary edges vkvk+1 for k ∈ {r, s}. Then C has the edges vkvk+2 and vk+1vk−1.

Proof: It is not difficult to verify that the proposition is not true when n = 6. Hence, assume n ≥ 8. Suppose
x is the center of P and v0v1 · · · vn−2v0 is in the circle C(P). Let C be a 1-PHC on P that contains only two
boundary edges vkvk+1 for k ∈ {r, s}.

It is clear that vkvk+1 for k ∈ {r, s} are single boundary edges otherwise, by Lemma 3.1 any diagonal edge
in C where vrvr+1 and vsvs+1 on one side has a third boundary edge on the other sides, a contradiction.
Before proceeding, the following observation shall be noted.

(O1) If vpvq any edge in C, then r + 1 ≤ p ≤ s and s + 1 ≤ q ≤ r, otherwise, by Lemma 3.1 C has at least
three boundary edge, a contradiction.

Assume on the contrary that at least one of the two edges {vkvk+2, vk+1vk−1} is not in C for some k ∈ {r, s}.
Without loss of generality, assume that vrvr+2 < E(C). Suppose that vrvi and vr+1v j ∈ E(C), where i , j, we
consider the following two cases.

Case (1): Suppose that x < {vi, v j}. By (O1) r + 3 ≤ i ≤ s and s + 1 ≤ j ≤ r − 1. Hence, vrvi and vr+1v j are
crossing. Thus, there is a vertex vt where r + 2 ≤ t < i such that at least one of the two edges matches vt in
C crosses vrvi, a contradiction since C is a 1-PHC.

Case (2): Suppose that either vi = x or v j = x. Without loss of generality, assume that vi = x. Let vr−1vl
and vr+1v j be two edges in C. By (O1) s + 1 ≤ j ≤ r − 1 and r + 2 ≤ l ≤ s where vsvs+1 is the second boundary
edge. By regularity of C(P), vrx and vr+1v j are crossing, then j = r − 1; otherwise, there is a vertex vt where
j + 1 ≤ t < r such that at least one of the two edges matches vt into C crosses vr+1v j, in both cases there is a
contradiction. Thus vr+1vr−1 in C.

Now, if l > r + 3. Then the edges in C that incident on vr+2 and vr+3 crosses vr−1vl, a contradiction since C
is a 1-PHC. By regularity of C(P) and n ≥ 8 if l = r + 3, then vr−1vl crosses vrx which is a contradiction since
vr+1vr−1 ∈ E(C) and crosses vrx. This completes the proof.

We now present the main result of this section.

Theorem 3.3. Let P be a set of n points in regular wheel configuration in the plane where n ≥ 10, is even. Then there
exist k edges-disjoint 1-PHCs C1,C2, . . . ,Ck on P that can be packed into Kn where k ≤ b n−1

3 c.

Proof: Suppose x is the center of P and v0v1 · · · vn−2v0 is the circle C(P). By Lemma 3.1, every 1-PHC in
P contains at least two boundary edges. On the other hand, C(P) has n − 1 boundary edges; that is, the
number of 1-PHCs does not exceed n − 1/2.

By Proposition 3.2, if Ci and C j are two edge-disjoint 1-PHCs each having only two boundary edges,
then any boundary edge of Ci can not be in consecutive order with a boundary edge of C j.

Note that a single boundary edge in Ci can be adjacent to two consecutive boundary edges in C j where
i , j; that is, Ci ∪C j can have three boundary edges in consecutive order. Therefore, the number of 1-PHCs
that can be packed into Kn is at most b n−1

3 c and this bound is tight.

Now, it will be shown how to pack b n−1
3 c 1-PHCs into Kn. To ensure that the boundary edges of

all cycles {C1,C2, . . . ,Ck} are in consecutive order. Then each 1-PHC should have three boundary edges
(where two of them are in consecutive order) with the property that a single boundary edge in Ci is
adjacent to the two consecutive boundary edges in C j and vice versa. This property is depicted in Figure
3. For each i = 0, 1, . . . , b n−1

3 c − 1 and r = bm+1
2 c. Let Ci = v(m+1)iv(m+1)i+1v(m+1)i−1v(m+1)i+3v(m+1)i−3 . . . v(m+1)i+r x

v(m+1)i+5v(m+1)i−5 . . . v(m+1)i−(2m−3)v(m+1)i. Here the operations on the subscripts are reduced modulo 2n− 1.

4. 1-PHCs on Point Sets in General Position

In this section, a set P of n points are considered in general position in the plane i.e., no three points are
collinear. For n = 2k + h where 0 ≤ h < 2k, it will be shown that there are at least k − 1 edge-disjoint 1-PHCs
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Figure 3: 1-PHCs on a set of points in regular wheel configuration, n = 14.

on P (Theorem 4.4). For this purpose, some ingredients are presented that will be used to prove the main
result in this section.

4.1. Bisect Lines for a Set of Points
Let P be a set of m points in general position in the plane. A line l is said to bisect a set P if both open half

spaces defined by l contain precisely m
2 points. It is no loss of generality to assume m is odd since otherwise,

any point v may be removed and any line that bisects P − {w} also bisects P.
Let P1 and P2 be two point sets in the plane. If H1 and H2 are two convex polygons containing P1 and

P2 respectively, then it is said that H1 and H2 are disjoint if there is a line that separates them. Moreover, if
P is a disjoint union of two point sets P1 and P2, the ham-sandwich cut theorem guarantees the existence of
a line that simultaneously bisects P1 and P2 (see for example [13],[18]).

Lemma 4.1. Let P be a set of n points in the general position where n ≥ 2. Suppose there is a line separating a given set
{v1, v2, . . . , vk} from P where 1 ≤ k ≤ b n

2 c. Then there is a line that bisects P into P1 and P2 with {v1, v2, . . . , vk} ⊂ P1.

Proof: If k = b n
2 c, then the lemma is trivially true. Hence, assume that k < b n

2 c.
Let u1 ∈ P−{v1, v2, . . . , vk} be such that all points in P−{v1, v2, . . . , vk} are on one side of the line `1 passing

through u1 and w1 for some w1 ∈ {v1, v2, . . . , vk} and let P1 = {u1, v1, v2, . . . , vk}. Furthermore, let L1 be a line
parallel to `1 such that all points in P − {u1, v1, v2, . . . , vk} are on one side of L1.

If |P1| = b
n
2 c, then the proof is complete. Otherwise, repeat the argument with u2 ∈ P − {u1, v1, v2, . . . , vk}

and w2 ∈ {u1, v1, v2, . . . , vk} so that all points in P − {u1, v1, v2, . . . , vk} are on one side of the line `2 passing
through u2w2, and let P1 = {u1,u2, v1, v2, . . . , vk}with the line L2 similarly defined. By repeating the argument
where necessary, the conclusion of the lemma is reached.

Lemma 4.2. Let L be a line that bisects a set P of m points in the general position into P1 and P2 where m ≥ 6, and
let l⊥1 be a line perpendicular to L and all points in P are on one side of l⊥. Suppose {u, v} ⊂ P1 is a given set such
that less than half points of P1 are between l⊥1 and a line l⊥2 , which is perpendicular to L, passing through any point in
{v,w}. Then there is a line that bisects P1 and P2 into Pi, j, for each i = 1, 2 with j = 1, 2 and {v,w} ⊆ P1,k for some
k ∈ {1, 2}.

Proof: The lemma is trivially true if m = 5 with P1 = {v,w}. Hence, assume that m ≥ 6. By hum-sandwich
cut theorem, there is a line lh that bisects P1 and P2 in the plane into sets {P1,1,P1,2,P2,1,P2,2}. It is no
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loss of generality to assume P1,2 is between lh and l⊥. Assume on the contrary that {v,w} * P1, j for each
j = 1, 2. Then all the points of P1,2 are between l⊥ and the line, perpendicular to L, a contradiction. Thus
{v,w} ⊆ P1,2.

4.2. Drawing a 1-PHC on a Set of Points
We shall give a description of an algorithm for drawing a 1-PHC on a set of points in general position

in the plane. In what follows, let l(v1, v2) be a line passing through the two points v1 and v2.

Algorithm (A)

1. Find a line l that bisects P into P1 and P2 where either |P1| = |P2| or |P1| = |P2| + 1.
2. Find a line l⊥ such that l⊥ is perpendicular to l and all points in P are on one side of l⊥.
3. Find CH(Pi), the convex hull of Pi, for each i = 1, 2 and select vi ∈ CH(Pi) such that all the points in

P1 ∪ P2 − {v1, v2} are between l⊥ and the line l(v1, v2). Let v1v2 be an edge in C and let v∗i = vi, for each
i = 1, 2.

4. If Pi = {v∗i } for i = 1, 2, let v∗1v∗2 be an edge in C and Stop. If P2 = {v∗2} and P1 = {v∗1,w} let v∗1w and v∗2w
be edges in C and Stop. Otherwise, let Pi = Pi − {v∗i } for each i = 1, 2.

5. Find CH(Pi), for i = 1, 2 and select vi ∈ CH(Pi), i = 1, 2, be such that all the points in P1 ∪ P2 − {v∗1, v
∗

2}

are between l⊥ and the line l(v1, v2).
6. If no point of {v∗1, v

∗

2}, is between l⊥ and the line l(v1, v2). Let v∗1v2 and v∗2v1 be edges in C. Repeat Step
(4) with vi taking the place of v∗i for each i = 1, 2.

7. For some i ∈ {1, 2}, if v∗3−i is not between l⊥ and the line l(vi, v∗i ) and all points in P1 ∪ P2 − {v∗3−i} are
between l⊥ and the line l(vi, v∗i ), let viv∗3−i and viv3−i be two edges in C.

8. If {viv∗3−i, viv3−i} ⊂ E(C), let Pi = Pi − {vi} and repeat Step (4) with v3−i taking the place of v∗3−i.

The edge v∗1w in Step (4) is termed a “stone” and shall be denoted by st(v,w).

Proof: From Step (1), suppose (i) |P1| = |P2|. By Step (3), v1v2 ∈ E(C), v∗1 = v1 and v∗2 = v2. By Step (4),
Pi = Pi − {v∗i } for each i = 1, 2. By Step (5), vi ∈ CH(Pi), i = 1, 2.

By Step (6), we have

Case (1): No point of {v∗1, v
∗

2}, is between l⊥ and the line l(v1, v2). Then v∗1v2, v∗2v1
∈ E(C). It is clear that v∗1v2, v∗2v1 are cross edges (from above hypothesis). Moreover, by repeating the
same Steps (4) into (6) the resulting graph is a 1-PHC.

Case (2): There is a point of {v∗1, v
∗

2}, is between l⊥ and the line l(v1, v2). Without loss of generality assume
that v∗1, is between l⊥ and the line l(v1, v2). Clearly, v∗2v1 and v1v2 are non crossing edges. Moreover, v∗2v1
and v1v2 do not cross any edge in C. Therefore, by repeating the same Steps (4) into (7) the resulting graph
is a 1-PHC.

(ii) |P1| = |P2| + 1. Steps from (1) into (8) guarantee the existence of 1-PHC on P − {w}.
From Step (4) the last two points v∗i ∈ CH(Pi), i = 1, 2 satisfying w ∈ P1 are between l⊥ and the line joining

v∗1 and v∗2. Hence the edge v∗1w and v∗2w do not crosse any edge in path on P − {w}.

A 1-PHC obtained by Algorithm (A) which contains a stone, is depicted in Figure 4.

4.3. A Joining Between Two 1-PHCs
In this section, it will be shown how to extract a 1-PHC by joining two edge-disjoint 1-PHCs. Let P(1) and

P(2) be two disjoint point sets in general position in the plane. Suppose C(1) and C(2) are two edge-disjoint
1-PHCs on P(1) and P(2), respectively.

The edges u1u2 ∈ E(C(1)) and v1v2 ∈ E(C(2)) are called joining edges of C(1) and C(2) if the graph resulting
from removing them and adding the edges u1v1 and u2v2 (or u1v2 and u2v1) still an edge-disjoint 1-PHC on
P1 ∪ P2. The edges u1v1 and u2v2 (or u1v2 and u2v1) are termed a connection edges of C(1) and C(2).
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Figure 4: An example of Algorithm A.

Suppose that there are two crossing edges u1u2 and u3u4 in C(1) such that the graph resulting from
removing them and adding two non-crossing edges u1u3 and u2u4 still a 1-PHC. Then the edges u1u3 and
u2u4 are termed created edges in C(1). Two joining edges of C(1) and C(2) are called created joining edges if
at least one of them is a created edge.

Lemma 4.3. Let P be a set of n points in general position in the plane where n ≥ 8, and let C be a 1-PHC on P, and
let P be bisect into two disjoint sets P1 and P2. Suppose C(1) and C(2) are two 1-PHCs on P1 and P2, respectively,
where C(1) and C(2) have no joining edges. Then C(1) and C(2) can be joined by two joining created edges.

Proof: Let C be a 1-PHC on P. In so doing, the set P has been split into P1 and P2. Assume that C(1) and
C(2) are two 1-PHCs on P1 and P2, respectively since n ≥ 8, and let C(1) and C(2) have no joining edges.

Case (1): When C(i) has at least one crossing for each i = 1, 2 (since n ≥ 8 and |C(1)| ≥ 4 and |C(2)| ≥ 4).
Let {u1u2,u3u4} and {v1v2, v3v4} be the two crossing edges in C(1) and C(2), respectively. By removing the
crossing edges in C(1) and C(2) and adding the non-crossing edges {u1u4,u2u3} and {v1v4, v2v3} in C(1)
and C(2), respectively we obtain two created edges in each of C(1) and C(2). Chose e1 ∈ {u1u4,u2u3} and
e2 ∈ {v1v4, v2v3} such that no points between them. Without loss of generality assume that no points between
the two created edges u1u4 and v1v4.

Note that at least one edge in a set A = {u1v1,u1v4,u4v1,u4v4} is not in C since A is 4-cycle graph and
|V(C)| ≥ 8 is not union of two cycles. This means

(1) If C has only three edges of A. Then there is an edge u′v′ ∈ A ∩ E(C) such that dC(u′) = dC(v′) = 2.
Thus there are two joining edges one in original C(1) incident on u′ and another in original C(2) incident on
v′, a contradiction (since C(1) and C(2) have no joining edges).

(2) If C has only two edges {uv,u′v′} ⊂ A. Then (i) {uv,u′v′} share no vertex, and hence u1u4 and v1v4 are
joining created edges since A − {uv,u′v′} are connection edges. (ii) {uv,u′v′} share on a vertex. It is no loss
of generality to assume that u = u′ = u1. That is, {u1v1,u1v4} ⊂ A, then the created edge u1v1 and the edge
incident on u1 such as u1u∗ for some u∗ < A are created joining edges since A− {u1v1,u1v4} is not in C and at
most one of the two edges of u∗v1,u∗v4 is not in C since A − {u1v1,u1v4} ∪ {u∗v1,u∗v4} is 4-cyles.

(3) If C has only one edge u′v′ ∈ A. Then u1u4 and v1v4 are joining created edges since there are two
connections edge in A − {u′v′}.

Case (2): When C(i) has at most one crossing for some i ∈ {1, 2}. By removing the crossing edges and
adding two created edges we obtain two plane cycles C(1) and C(2). As in case(1), assume that no points
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between the two edges u1u2 ∈ E(C(1)) and another v1v2 ∈ E(C(2)). By repeating the similar argument in
case (1) it can be seen that C(1) and C(2) have two joining created edges.

4.4. Packing 1-PHCs into a Point Set

We conclude this paper with the following main result.

Theorem 4.4. Let P be a set of n points in general position in the plane where n = 2k + h, with 0 ≤ h < 2k. Then
there exist at least k − 1 edge-disjoint 1-PHCs C1,C2, . . . ,Ck−1 on P that can be packed into Kn.

Proof: First we apply Algorithm (A) to obtain the first 1-PHC C1. In so doing, the set P has been bisected
into P1 and P2 by l1. Let P1 be on the left of l1 and P2 on the right of l1.

If P1 has no stone, then by hum-sandwich cut theorem there is a line l2 that simultaneously bisects P1
and P2 into Pi, j, i = 1, 2 with j = 1, 2 which are label in the anticlockwise order and either |P1,1| = |P1,2| or
|P1,1| = |P1,2| + 1.

If P1 has a stone st(v,w), then there follows two possible cases:

Case (1): By Lemma 4.2, there is a line l2 that simultaneously bisects P1 and P2 into Pi, j, i = 1, 2 with
j = 1, 2. and {v,w} ( P1,2 and either |P1,1| = |P1,2| or |P1,1| = |P1,2| + 1.

Case (2): By Lemma 4.1, there is a line l2 that bisects P1 into P1,1 and P1,2 and with {v,w} ( P1,2 and either
|P1,1| = |P1,2| or |P1,1| = |P1,2| + 1. Furthermore, there is a line l′2 that bisects P2 into P2,1 and P2,2 and either
|P2,1| = |P2,2| or |P2,1| = |P2,2| + 1.

In all cases, label the parts Pi, j in the anticlockwise order. In case (1) and case (2), C(1) and C(2) are two
edge-disjoint cycles can be joined using either the joining edges or created joining edges (by Lemma 4.3).

To obtain C3, rename Pi, j to be four parts P1, P2, P3, and P4 arranged in anticlockwise ordered. Then
repeat the above operations with Pi taking place P for each i = 1, 2, 3, 4 to obtain 1-PHCs C(i). Join C(i) with
C(i + 1) for i = 1, 2, 3 either by joining edges or by created joining edges.

In general, to obtain Cr where 1 ≤ r ≤ k−1, repeat the above operations on parts P1,P2, . . . ,P2r−1 , arranged
in anticlockwise ordered, with Pi taking place P for each i = 1, 2, . . . , 2r−1 to obtain 1-PHCs C(i). Join C(i)
with C(i + 1) for i = 1, 2, . . . , 2r−1

− 1 either by joining edges or by created joining edges.

An example of such geometric graph contains a number of 1-PHCs is shown in Figure 5.

5. Open Problems

In this paper, the problem of packing 1-plane Hamiltonian cycles into complete geometric graphs, on
a given set of n points in the plane was investigated. The problem of partitioning the complete geometric
graphs into 1-plane Hamiltonian cycles is also of interest. Note that the complete graph Kn has n(n−1)

2 edges
and every Hamiltonian cycle has n edges. In the case that n is an odd number, then Kn can be partitioned
into n−1

2 edge-disjoint Hamiltonian cycles. Thus, following open problem is presented:

Problem: Does every complete geometric graph Kn, where n is odd number, have a partition of its edge
set into 1-plane Hamiltonian cycles?

Acknowledgments

Thanks to the anonymous referees for corrections and comments, and for many helpful suggestions.



H. M. Trao et al. / Filomat 33:6 (2019), 1561–1574 1573

v0
v1

v2 v3

v4v5 v6

v7 v8

v9v10

v11

v12 v13

v14

v15

v16

l1

l2

l3

l4

Figure 5: An example of Theorem 4.4
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[12] A. Dumitrescu, A. Schulz, A. Sheffer, Cs.D. Tóth, Bounds on the maximum multiplicity of some common geometric graphs,

Proceedings of 28th Symp. Theorectical Aspects Computer Science (2011) 637 - 648.
[13] H. Edelsbrunner, Algorithms In Combinatorial Geometry, Springer-Verlag, Berlin, (1987).
[14] M.R. Garey, D.S. Johnson, R.E. Tarjan, The planar Hamiltonian circuit problem is NP-complete, SIAM Journal on Computing 5

(1976) 704 - 714.
[15] A. Kaneko, M. Kano, Y. Yoshimoto, Alternating Hamiltonian cycles with minimum number of crossings in the plane, International

Journal of Computational Geometry & Applications 10 (2000) 73 - 78.
[16] S. G. Kobourov, G. Liotta, F. Montecchiani, An annotated bibliography on 1-planarity, Computer Science Review 25 (2017) 49 –

67.
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