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Abstract. In this study, we propose an efficient method so-called Successive Complementary Expansion
Method (SCEM), that is based on generalized asymptotic expansions, for approximating to the solutions of
singularly perturbed two-point boundary value problems. In this easy-applicable method, in contrast to
the well-known method the Method of Matched Asymptotic Expansions (MMAE), any matching process is not
required to obtain uniformly valid approximations. The key point: A uniformly valid approximation is
adopted first, and complementary functions are obtained imposing the corresponding boundary conditions.
An illustrative and two numerical experiments are provided to show the implementation and numerical
properties of the present method. Furthermore, MMAE results are also obtained in order to compare the
numerical robustnesses of the methods.

1. Introduction

Many phenomena in biology, chemistry, physics and engineering sciences are modelled and formulated
by boundary value problems associated with different kinds of differential equations. In this manner, a
model which is formulated by an equation or a system containing positive small parameter(s) is referred to
as perturbed model and a model which does not keep the positive small parameter(s) is named as reduced or
unperturbed model [1]. If the perturbed model contains the small parameter(s) as coefficient(s) to the highest
order derivative term(s), then the problem is referred to as singularly perturbed problem, otherwise called as
regularly perturbed problem.

First studies on perturbation problems were conducted by L. Prandtl and J. H. Poincaré in 1900’s.
The term ”boundary layer” first appeared in Prandtl’s paper ”Motion of fluids with very little viscosity” in
1904. In this work, the small parameter was the inverse Reynold number and the equations were based
on the classical Navier-Stokes equations of fluid mechanics [2]. Since 1900’s, various methods have been
constructed and employed. Kadalbajoo and Reddy [3] made a survey of various asymptotic and numerical
methods that were developed between 1908 -1986 for the determination of approximate solutions of singular
perturbation problems, then Kadalbajoo and Patidar [4] extended the work done by Kadalbajoo and Reddy
and they surveyed the studies done by various researchers in the field of singular perturbation problems
between 1984-2000 considering only one dimensional problems and made discussion on linear, nonlinear,
semilinear and quasi-linear problems. Subsequently, Kadalbajoo and Gupta [5] presented a great survey on
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computational methods for different types of singular perturbation problems solved by different researchers
between 2000-2009. Kumar studied general methods for solving singularly perturbed problems arising in
engineering in his work [6]. Later in [7], Roos made a survey in singularly perturbed partial differential
equations covering the years 2008-2012. Besides these great papers and surveys, there are also great
reference books on applications and theory of singular perturbation problems. Some of them may be given
as by Van Dyke[8], Holmes [9], Johnson [10], Lagerstrom [11], O’Malley [12], Eckhaus [13], Verhulst [14],
Paulsen [15], Nayfeh [16], Murdock [17], Murray [18], and by Hinch [19].

In this paper, we employ the MMAE to approximate to the solutions of singular perturbation problems
first, and later present an efficient asymptotic method which was introduced by Jean Cousteix and Jacques
Mauss in [20, 22] as an alternative method to the MMAE: Successive Complementary Expansion Method
(SCEM). The main principle of SCEM is built on the purpose of obtaining uniformly valid approximation to
the singular perturbation problems without any matching procedure. The method is, in general, applicable
to singular perturbation problems that we can approximate by MMAE. To this end, we can also compare
the SCEM results with previously obtained ones by MMAE. The first step in SCEM starts with looking for
an approximation for outer region. The approximation is generally in good quality for the outer region,
but not for the inner region. The main idea is, using boundary conditions, to add a correction term that
complements the approximation. The procedure can be iterated using new corrections for new terms to
improve the accuracy of approximation. The most important advantage of SCEM is its ability of giving
uniformly valid approximation without any matching procedure. Boundary conditions are enough to
implement the method. Moreover, the boundary conditions are satisfied exactly, but not asymptotically.

2. Description of the method

In this work, we deal with singularly perturbed second order linear two-point boundary value problems
in the following form

εy′′(x) + p(x)y′(x) + q(x)y(x) = r(x), a ≤ x ≤ b; a, b ∈ R

with the boundary conditions y(a) = α ∈ R and y(b) = β ∈ R, where 0 < ε � 1, p(x), q(x) and r(x) are
sufficiently smooth functions. As ε→ 0+, the order of the differential equation is reduced and the equation
that we call reduced equation

p(x)y′(x) + q(x)y(x) = r(x), a ≤ x ≤ b

is formed. One can observe that there are two boundary conditions in the original problem but only one
of them can be imposed to the reduced equation. Moreover, as ε tends to 0, because of the reduction of
the order, rapid changes occur in the solution. The region in which these rapid changes occur is named as
inner layer or boundary layer, and the layer in which the solution exhibits mildly changes is named as outer
layer. The sign of the coefficient function p(x) determines the type of the layer(s). Over the interval [a, b] ,
if p(x) > 0 for all x, then a boundary layer occurs at the left-end of the interval, if p(x) < 0 for all x, then a
boundary layer occurs at the right-end of the interval and if p(x) changes sign in (a, b), then interior layer(s)
occurs at the zero(s) of p(x).

2.1. Asymptotic Approximations
Given two functions φ(x, ε) and φa(x, ε), defined in a domain Ω, are referred to as asymptotically identical

to the order δ (ε) if their difference is asymptotically smaller than δ (ε),

φ(x, ε) − φa(x, ε) = o(δ(ε)), (2.1.1)

where δ (ε) is an order function and ε is a positive small parameter arising from the physical problem under
consideration. The function φa(x, ε) is named as an asymptotic approximation of the function φ(x, ε).
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Asymptotic approximations, in general form, are defined by

φa(x, ε) =

n∑
i=0

δi(ε)ϕi(x, ε), (2.1.2)

where the asymptotic sequence of order functions δi(ε) satisfies the condition δi+1(ε) = o(δi(ε)), as ε → 0.
In these conditions, the approximation (2.1.2) is named as generalized asymptotic expansion. If the expansion
(2.1.2) is written in the form of

φa(x, ε) = E0φ =

n∑
i=0

δ(0)
i (ε)ϕ(0)

i (x), (2.1.3)

then it is named as regular asymptotic expansion. The special operator E0 is called outer expansion operator at a
given order δ(ε), thus φ − E0φ = o(δ(ε)). For more detailed information on asymptotic approximations, we
refer the interested reader to [9, 12, 13, 18, 20].

2.2. The MMAE for SCEM
Interesting cases occur when the function is not regular in Ω, so one of the approximations (2.1.2) and

(2.1.3) is valid only in a restricted region Ω0 ⊂ Ω, that is called the outer region. Here, in the simplest case,
we introduce an inner domain which can be formally denoted as Ω1 = Ω −Ω0 and located near the origin.
In general, the boundary layer variable is expressed as x = x−x0

ξ(ε) where x0 is the point at which the rapid
changes begin to occur and ξ(ε) is the order of thickness of this boundary layer. If a regular expansion can
be constructed in Ω1, we can write

φa(x, ε) = E1φ =

n∑
i=0

δ(1)
i (ε)ϕ(1)

i (x), (2.2.1)

where the inner expansion operator E1 is defined in Ω1 of the same order δ(ε) just like the outer expansion
operator E0; thus, φ − E1φ = o(δ(ε)). As a result,

φa = E0φ + E1φ − E1E0φ (2.2.2)

is clearly uniformly valid approximation[11, 13, 21].
In MMAE, two distinct approximations are found for two distinct (outer and inner) regions and then to

obtain a uniformly valid approximation over the whole domain, these approximations are matched using
limit process. Despite all the valuable works devoted to MMAE, it is not possible to formulate a general
mathematical theory of the method. Therefore, we will study it on an illustrative example.

Let us consider the following second order singularly perturbed problem that has been studied employ-
ing the MMAE in [9]

εypp + 2yp + 2y = 0, y(0) = 0, y(1) = 1, 0 < x < 1. (2.2.3)

This problem exhibits rapid changes near the point x = 0 as ε→ 0+, this region is named as boundary layer
or inner layer. But, over the other region which is called outer region, the solution does not show an unusual
behavior. This region is the region which is far from the point x = 0. We will adopt an approximation for
the outer solution as

y(x) ≈ y0(x) + εy1(x) + ε2y2(x) + ... . (2.2.4)
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If approximation (2.2.4) is substituted into (2.2.3), we reach

ε
(
ypp0(x) + εypp1(x) + ...

)
+ 2

(
yp0(x) + εyp1(x) + ...

)
+ 2

(
y0(x) + εy1(x) + ...

)
= 0, (2.2.5)

and letting ε = 0, the reduced equation is obtained as

yp0 + y0 = 0. (2.2.6)

Solution of (2.2.6) is obviously y0(x) = Ae−x,A ∈ R and if the outer boundary condition is imposed (for
x = 1), the outer solution is obtained as

y0(x) = e1−x. (2.2.7)

In order to obtain inner (boundary) layer approximation, we introduce a new variable

x =
x
ε

. (2.2.8)

Thanks to the new variable, called boundary layer (stretching) variable, we get the chance to stretch the thin
layer as ε→ 0+. We denote the inner solution that depends on x and valid for near the point x = 0 by Y(x).
Using the chain rule

d
dx

=
dx
dx

d
dx

=
1
ε

1
dx

(2.2.9)

is obtained and applying the transformation (2.2.8) to the original problem (2.2.3)

ε−1 d2Y

dx2 + 2ε−1 dY
dx

+ 2Y = 0 (2.2.10)

is found. If the both sides of (2.2.10) are multiplied by ε, we reach to

d2Y

dx2 + 2
dY
dx

+ 2εY = 0. (2.2.11)

Equation (2.2.11) is a regularly perturbed linear ordinary differential equation and we propose an approxi-
mation in the form of

Y(x) ≈ Y0(x) + εY1(x) + ε2Y2(x) + ... . (2.2.12)

Since we are interested only in the first term of the approximation (2.2.12), we can make our calculations
for ε = 0. To this end, the equation

d2Y0

dx2 + 2
dY0

dx
= 0 (2.2.13)

is obtained. Considering the inner boundary condition at x = 0 (x = 0 =⇒ x = 0), the general solution to
the equation (2.2.13) is found as

Y0(x) = B
(
1 − e−2x

)
,B ∈ R. (2.2.14)



S. Cengizci / Filomat 33:7 (2019), 2135–2148 2139

It is obvious that we are not able to determine one of the unknown constants, B. To determine B, we will
use the matching procedure of MMAE. So far we have found two approximations (2.2.7) and (2.2.14) that
are valid for distinct regions, but we know that these two approximations actually belong to the same
approximation. Using this idea, the matching procedure may be given as follows [9, 11]

lim
x→0+

y0(x) = lim
x→0+

e1−x = lim
x→∞

B
(
1 − e−2x

)
= lim

x→∞
Y0(x). (2.2.15)

Thus, we reach

Y0(x) =
(
e − e1−2x

)
. (2.2.16)

Finally, we desire to obtain a composite approximation. To do this, we simply add the inner and outer
approximations and subtract the common limit, that is, using the following procedure

y ≈ y0(x) + Y0(x) − Y0(∞)
(or equivalently y ≈ y0(x) + Y0(x) − y0(0+)) (2.2.17)

we reach the following composite MMAE approximation

ycomposite ≈ e1−x
− e1− 2x

ε . (2.2.18)

2.3. Successive Complementary Expansion Method

The uniformly valid SCEM approximation is in the regular form given as

yscem
n (x, x, ε) =

n∑
i=0

δi(ε)
[
yi(x) + Ψi(x)

]
(2.3.1)

where {δi} is an asymptotic sequence and functions Ψi(x) are the complementary functions that depend on
x. Functions yi(x) are the outer approximation functions that have been found by MMAE before, and they
only depend on x, not also on ε. If the functions yi(x) and Ψi(x) also depend on ε, the uniformly valid SCEM
approximation, that is named as generalized SCEM approximation, is given in the following form [22]-[24]

yscem
n1 (x, x, ε) =

n∑
i=0

δi(ε)
[
yi(x, ε) + Ψi(x, ε)

]
. (2.3.2)

Let us consider the problem (2.2.3) again and propose an approximation for n = 0, that is, we look for a
SCEM approximation in the form of

yscem
0 (x, x, ε) = y0(x, ε) + Ψ0(x, ε) (2.3.3)

and we know that from the equation (2.2.7), y0(x) = e1−x. Thus, approximation (2.3.3) turns into

yscem
0 (x, x, ε) = e1−x + Ψ0(x, ε). (2.3.4)

Once the approximation (2.3.4) is substituted into the original problem (2.2.3)
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ε
d2

dx2 yscem
0 (x, x, ε) + 2

d
dx

yscem
0 (x, x, ε) + 2yscem

0 (x, x, ε) = 0 (2.3.5)

is obtained. It follows that

ε
d2

dx2

(
e1−x + Ψ0(x, ε)

)
+ 2

d
dx

(
e1−x + Ψ0(x, ε)

)
+ 2

(
e1−x + Ψ0(x, ε)

)
= 0

εe1−εx + ε
1
ε2 Ψq0(x, ε) − 2e1−εx +

2
ε

Ψp0(x, ε) + 2e1−εx + 2Ψ0(x, ε) = 0

1
ε

Ψq0(x, ε) +
2
ε

Ψp0(x, ε) + 2Ψ0(x, ε) = −εe1−εx

Ψq0(x, ε) + 2Ψp0(x, ε) + 2εΨ0(x, ε) = −ε2e1−εx. (2.3.6)

The resulting equation that is given in the last line of (2.3.6) is a regularly perturbed linear non-homogeneous
second order ordinary differential equation. In order to obtain first term of SCEM approximation, letting
ε = 0, the first complementary SCEM approximation Ψ0(x, ε) is obtained as the solution of the following
two-point boundary value problem

Ψq0(x, ε) + 2Ψp0(x, ε) = 0, Ψ0(0, 0, ε) = −e, Ψ0

(
1,

1
ε
, ε

)
= 0.

The first SCEM approximation is found as

yscem
0 (x, x, ε) = e1−x +

e
(
e−2x
− 1

)
e
−2
ε − 1

− e.

On the other hand, Problem (2.2.3) is an exactly solvable problem and its exact solution is given as

yexact(x) =

(
e

x
ε (−1+

√
1−2ε)
− e

x
ε (−1−

√
1−2ε)

)
e

1
ε (−1+

√
1−2ε) − e

1
ε (−1−

√
1−2ε)

. (2.3.7)

ε L2 error in MMAE L2 error in SCEM
0.0001 0.000624687980610 0.000624687980610
0.0005 0.003124942983068 0.003124942983068
0.0010 0.006253648308213 0.006253648308213
0.0050 0.031287231692987 0.031287231692987
0.0100 0.061951928162705 0.061951928162705
0.0500 0.283794475853395 0.283794475853395
0.1000 0.498739448296190 0.498739403531008
0.3000 0.609196858399138 0.582659431139973
0.4000 0.540710242114810 0.416122748110290
0.6000 0.893536533505815 0.302123969698791
0.8000 1.754202335976711 0.240771410186466
1.0000 2.790418350467303 0.212524676097187

Table 1: L2-norm errors in MMAE and SCEM approximations for Illustrative Example
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Figure 1: Comparison of results for illustrative example, ε = 0.6
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Figure 2: Comparison of results for illustrative example, ε = 0.1
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Figure 3: Comparison of results for illustrative example, ε = 0.01
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In Fig.1 - Fig.3, exact solution, MMAE and SCEM approximations are given for the illustrative example.

Here, the SCEM approximation represents the expression given by yscem
0 (x, x, ε) = e1−x +

e
(
e
−2x
ε −1

)
e
−2
ε −1

− e, that
is obtained by balancing the equation (2.3.6) with respect to zeroth power (dominant order) of ε. While
SCEM gives more accurate approximation for ε = 0.6, as ε gets smaller and smaller, SCEM and MMAE
approximations overlap and approach to the exact solution. On the other hand, it can be observed especially
in Fig.1 that MMAE approximations satisfy the boundary conditions asymptotically. Moreover, Table 1
shows that the SCEM approximations are in quite good agreement with exact solution even increasing ε
values, and L2-norm errors for these two approximations are exactly same up to the values around ε = 0.05.

3. Numerical Experiments

In this section, two numerical examples are given. All the figures and numerical results are generated
in Matlab 2016b environment.

Example 1: Consider the non-homogeneous singularly perturbed problem from fluid dynamics for
fluid of small viscosity [25]

εypp + yp = 1 + 2x, 0 ≤ x < 1, y(0) = 0, y(1) = 1. (3.1)

This problem has rapid changes near the point x = 0. The exact solution to (3.1) is given as

yexact(x) = x2 + (1 − 2ε)x +
2ε − 1

1 − e
−1
ε

(
1 − e

−x
ε

)
(3.2)

and one-term SCEM and MMAE approximations are obtained as follows.
The first term of the outer approximation, letting ε = 0 , is obtained as the solution of initial value

problem

yp0 = 1 + 2x, y0(1) = 1 (3.3)

and it is clear that the solution is

y0(x) = x2 + x − 1. (3.4)

Since the boundary layer occurs near the left-end of the interval, the stretching variable should be in the
form of x = x

ε . The first term of the inner approximation, letting ε = 0, is obtained as the solution of

Y
q

0 + Y
p

0 = 0, Y0(x = 0) = 0 (3.5)

and it is clear that the solution is

Y0(x) = c1(e−x
− 1), c1 ∈ R. (3.6)

Now that the first terms of outer and inner approximations are obtained, these approximations should be
matched by the definition of MMAE.

lim
x−→0+

y0(x) = lim
x−→0+

(x2 + x − 1) = lim
x→∞

c1(e−x
− 1) = lim

x−→∞
Y0(x) (3.7)

Thus, it is determined that

Y0(x) = ex
− 1. (3.8)
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ε L2 error in MMAE L2 error in SCEM
0.0001 0.001146036648629 0.001146036648629
0.0005 0.005730183242787 0.005730183242787
0.0010 0.011460350798498 0.011460350798498
0.0050 0.057047561195172 0.057047561195172
0.0100 0.112864481039688 0.112864481039688
0.0500 0.513159514418249 0.513159531588828
0.1000 0.901557814477664 0.901920266712351
0.3000 1.339243905573495 1.569217796713238
0.5000 1.057355422358385 1.719659382215715
0.6000 0.991379731889011 1.750119945541900
0.8000 1.119711839328917 1.782048657856496
1.0000 1.404221050193842 1.797421134420320

Table 2: L2-norm errors in MMAE and SCEM approximations for Example 1

Finally, the composite MMAE approximation to the problem (3.1) is found as

ycomposite(x, ε) ≈ x2 + x − 1 + e−
x
ε . (3.9)

Now, the one-term SCEM approximation can be determined substituting the approximation

yscem
0 (x, x, ε) = y0(x, ε) + Ψ0(x, ε) = x2 + x − 1 + Ψ0(x, ε) (3.10)

into the original problem (3.1):

ε
d2

dx2

(
x2 + x − 1 + Ψ0(x, ε)

)
+

d
dx

(
x2 + x − 1 + Ψ0(x, ε)

)
= 1 + 2εx

ε
(
2 +

Ψq0(x, ε)

ε2

)
+

(
2x + 1 +

Ψp0(x, ε)
ε

)
= 1 + 2εx

2ε2 + Ψq0(x, ε) + ε(2x + 1) + Ψp0(x, ε) = ε
(
1 + 2εx

)
. (3.11)

In order to obtain first term of SCEM approximation, letting ε = 0, the first complementary SCEM approxi-
mation Ψ0(x, ε) is obtained as the solution of the following two-point boundary value problem

Ψq0(x, ε) + Ψp0(x, ε) = 0, Ψ0(0, 0, ε) = 1, Ψ0

(
1,

1
ε
, ε

)
= 0. (3.12)

Finally, the first SCEM and MMAE approximation are found as follows

yscem
0 (x, x, ε) = x2 + x − 1 +

e−
1
ε − e−

x
ε

e−
1
ε − 1

. (3.13)

ycomposite(x, ε) ≈ x2 + x − 1 + e−
x
ε . (3.14)

Table 2 shows that MMAE approximations are slightly more accurate than SCEM approximations for
non-homogeneous problem, Example 1. As one can point out from Fig.4 and Fig.5, as ε→ 0+, MMAE and
SCEM approximations are getting more accurate.

Example 2: Consider the singularly perturbed problem given in [26]

−εypp + yp + y = 1, 0 ≤ x < 1, y(0) = 0, y(1) = 0. (3.15)



S. Cengizci / Filomat 33:7 (2019), 2135–2148 2144

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

y(
x)

Exact Solution

MMAE Approximation

SCEM Approximation

Figure 4: Comparison of results for Example 1, ε = 0.3
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Figure 5: Comparison of results for Example 1, ε = 0.01
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This problem has rapid changes near the point x = 1. The exact solution to (3.15) is given as

y(x) = 1 +
eλ1x

(
eλ2 − 1

)
eλ1 − eλ2

−

eλ2x
(
eλ1 − 1

)
eλ1 − eλ2

, (3.16)

where λ1 = 1+
√

1+4ε
2ε , λ2 = 1−

√
1+4ε

2ε and one-term SCEM and MMAE approximations are obtained as follows.
The first term of the outer approximation is obtained letting ε = 0 in the original equation (3.15)

yp + y = 1, y0(0) = 0. (3.17)

It is obvious that the solution is

y0(x) = 1 − e−x. (3.18)

Since the problem (3.15) has boundary layer near the right end-point x = 1, the stretching variable should
have a form x = x−1

ε . The first term of the inner approximation, letting ε = 0, is obtained as the solution of

Y
q

0 − Y
p

0 = 0, Y0(x = 0) = 0 (3.19)

and it is clear that the solution is

Y0(x) = c1(ex
− 1), c1 ∈ R. (3.20)

Now that the first terms of outer and inner approximations are obtained, these approximations should be
matched by the definition of MMAE.

lim
x−→1−

y0(x) = lim
x−→1−

(1 − e−x) = lim
x→−∞

c1(ex
− 1) = lim

x−→−∞
Y0(x) (3.21)

Thus, it is determined that

Y0(x) =
(
e−1
− 1

)(
ex
− 1

)
. (3.22)

Finally, the composite MMAE approximation to the problem (3.15) is found as

ycomposite(x, ε) = e−1
− e−x +

(
e−1
− 1

) (
e

x−1
ε − 1

)
. (3.23)

Now, the one-term SCEM approximation can be determined substituting the approximation

yscem
0 (x, x, ε) = y0(x, ε) + Ψ0(x, ε) = 1 − e−x + Ψ0(x, ε) (3.24)

into the original problem (3.15):

−ε
d2

dx2

(
1 − e−x + Ψ0(x, ε)

)
+

d
dx

(
1 − e−x + Ψ0(x, ε)

)
+

(
1 − e−x + Ψ0(x, ε)

)
= 1

−ε
(
− e−x +

Ψq0(x, ε)

ε2

)
+

(
e−x +

Ψp0(x, ε)
ε

)
+

(
1 − e−x + Ψ0(x, ε)

)
= 1

ε2e−x
−Ψq0(x, ε) + Ψp0(x, ε) + ε2Ψ0(x, ε) = 0. (3.25)

In order to obtain first term of SCEM approximation, letting ε = 0, the first complementary SCEM approxi-
mation Ψ0(x, ε) is obtained as the solution of the following two-point boundary value problem

Ψq0(x, ε) −Ψp0(x, ε) = 0, Ψ0

(
0,
−1
ε
, ε

)
= 0, Ψ0(1, 0, ε) = e−1

− 1. (3.26)

Finally, the first SCEM and MMAE approximation are found as follows

yscem
0 (x, x, ε) = 1 − e−x +

(
e

x−1
ε − e

−1
ε

)  1 − 1
e

e
−1
ε − 1

 , (3.27)
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ε L2 error in MMAE L2 error in SCEM
0.0050 0.138999385861808 0.138999385861808
0.0070 0.192846875716269 0.192846875716269
0.0100 0.271762063576098 0.271762063576098
0.0500 1.121307087312208 1.121307202107427
0.0700 1.413966007685341 1.414000101581222
0.1000 1.703813183303206 1.706213659924062
0.2500 1.129307299656383 1.882651704001525
0.5000 4.188478595061564 2.177262694969191
0.7000 7.946036759774072 2.632927334749375
0.8000 9.570235541695139 2.846650013414474
0.9000 11.023403578129694 3.041045798307327
1.0000 12.321456684111308 3.215647240288718

Table 3: L2-norm errors in MMAE and SCEM approximations for Example 2
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Figure 6: Comparison of results for Example 2, ε = 0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

y(
x)

Exact Solution

MMAE Approximation

SCEM Approximation

Figure 7: Comparison of results for Example 2, ε = 0.1
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Figure 8: Comparison of results for Example 2, ε = 0.01

ycomposite(x, ε) = e−1
− e−x +

(
e−1
− 1

) (
e

x−1
ε − 1

)
. (3.28)

In Fig.6 - Fig.8, comparisons of approximations that are generated by SCEM and MMAE are given
for ε = 0.3, ε = 0.1 and ε = 0.01, respectively. It can be pointed out that for ε = 0.3, MMAE generates
relatively more accurate approximation. As it can be observed in Table 3, for more smaller ε values, SCEM
and MMAE approximations exactly overlap. In general manner, MMAE approximations are a bit more
accurate than SCEM approximations, but for increasing ε values, especially for larger values than ε = 0.5,
MMAE approximations are unacceptable.

4. Conclusion

In this paper, the well-known method MMAE and relatively new one SCEM are compared for solving
singularly perturbed linear problems. An illustrative example is given to demonstrate all the steps of
both methods in detail. Two non-homogeneous equations that has a left-end boundary layer and that has
right-end boundary layer are provided respectively in order to analyze different cases. It is observed that
SCEM gives more accurate approximations than MMAE approximations for homogeneous problems since
non-homogeneous parts lead loss in captured terms during the balancing process. On the other hand, it
is observed that MMAE approximations are a bit more accurate than those that are obtained by SCEM
for solving non-homogeneous problems. Although only one-term approximations are proposed, SCEM
and MMAE gives highly accurate approximations for moderately small ε values. It is observed that if
ε is not kept sufficiently small, both SCEM and MMAE approximations differ from the exact solutions.
The comparisons show that SCEM is an effective and flexible alternative method for solving singularly
perturbed, especially for homogeneous problems. Furthermore, the boundary conditions are satisfied
exactly and any matching process is not required contrary to MMAE.
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