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Abstract. In this paper, an efficient algorithm based on the Pascoletti-Serafini scalarization (PS) approach
is proposed to obtain almost uniform approximations of the entire Pareto front of bi-objective optimization
problems. Five test problems with convex, non-convex, connected, and disconnected Pareto fronts are ap-
plied to evaluate the quality of approximations obtained by the proposed algorithm. Results are compared
with results of some algorithms including the normal constraint (NC), weighted constraint (WC), Ben-
son type, differential evolution (DE) with binomial crossover, non-dominated sorting genetic algorithm-II
(NSGA-II), and S metric selection evolutionary multiobjective algorithm (SMS-EMOA). The results confirm
the effectiveness of the presented bi-objective algorithm in terms of the quality of approximations of the
Pareto front and CPU time. In addition, two algorithms are presented for approximately solving fractional
programming (FP) problems. The first algorithm is based on an objective space cut and bound method for
solving convex FP problems and the second algorithm is based on the proposed bi-objective algorithm for
solving nonlinear FP problems. In addition, several examples are provided to demonstrate the performance
of these suggested fractional algorithms.

1. Introduction

A nonlinear fractional programming (FP) problem minimizes or maximizes a ratio of two functions
subject to given constraints. This problem is a powerful tool to formulate various applications of nonlinear
programming such as production planning, location analysis, financial and corporate planning, portfolio
selection, health care and hospital planning, etc, see [1, 2]. Therefore, this problem has attracted considerable
researches because of its varied applications. The nonlinear FP problem is formulated as follows:

min
f (x)
1(x)

s.t. x ∈ X = {x ∈ Rn
| h(x) = (h1(x), h2(x), . . . , hm(x)) 5 0},

(1)

where functions f (x) and 1(x) are positive for each x ∈ X. According to the kind of the functions f (x) and
1(x), the problem (1) is classified as follows:
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1. If f (x) and 1(x) are affine, the problem (1) is called a linear FP (LFP) problem.
2. If f (x) and 1(x) are quadratic functions, the problem (1) is called a quadratic FP (QFP) problem.
3. If f (x) is a concave function and 1(x) is a convex function, the problem (1) is called a concave FP

problem.
4. If f (x) is a convex function and 1(x) is a concave function, the problem (1) is called a convex FP

problem.

In general, the convex FP problem is not a convex problem, but its objective function is strictly quasi-
convex. In this problem, if f (x) and 1(x) are positive and differentiable over a convex feasible set, the ratio is
a pseudoconvex function and as a result, each local minimum of this type of functions is a global minimum
[3–5]. Charnes and Cooper [6] showed if the objective function’s denominator of the LFP problem has a
unique sign in the feasible set, this problem is converted into a linear problem by using a nonlinear variable
transformation. Borza et al. [7] used the Charnes and Cooper’s technique and solved the LFP problem
with interval coefficients in the objective function. Martos and Whinston [8] solved the LFP problem by an
adjacent vertex method based on the simplex method. They indicated that linear programming methods
could be extended to solve the LFP problems by considering the pseudo-linearity property of linear ratios.
In addition, Dorn [9], Swarup [10], Wagner and Yuan [11], Sharma et al. [12], and Pandey and Punnen [13]
applied some methods based on the simplex method for solving the LFP problem. Wolf [14], Isbell and
Marlow [15], Bitran and Novae [16], and Hasan and Acharjee [17] used another idea to solve the LFP prob-
lem. They solved a sequence of auxiliary problems such that solutions of these auxiliary problems converge
to a solution of the LFP problem. Tantawy [18, 19] solved the LFP problem by proposing methods based
on the conjugate gradient projection for solving nonlinear programming problems with linear constraints.
Odior [20] solved the LFP problem by an algebraic approach, which depends on the duality concept and
partial fractions.

Swarup [21] examined the QFP problem with linear constraints and extended the Charnes and Cooper’s
results. He showed that an optimal solution (if it exists) could be obtained from solutions of two associated
quadratic programming problems with linear constraints and one quadratic constraint. Beck and Teboulle
[22] considered the QFP problem over a possibly degenerate ellipsoid. They introduced an exact convex
semidefinite formulation by considering an assumption on the problem’s data and presented a simple
iterative procedure with converge super linearly to a global solution of this problem. Khurana and Arora
[23] studied the QFP problem in which some of its constraints are homogeneous. They presented a new
formulation with less number of constraints and a greater number of variables. Zhang and Hayashi
[24] considered minimizing a ratio of two indefinite quadratic functions subject to two specific convex
quadratic constraints. They used relation between the FP problem and parametric optimization problems
and transformed this problem into a univariate equation. To evaluate the function in the equation, a
problem of minimizing a nonconvex quadratic function subject to two quadratic constraints is solved by
an iterative algorithm. Suleiman and Nawkhass [25] considered the QFP problem with linear constraints
and presented an algorithm based on Wolfe’s method [26] and a new modified simplex approach. In
addition, they [27] considered this problem with a linear denominator and solved it by a new modified
simplex method. Sharma and Singh [28] proposed an approach based on simplex techniques to solve the
QFP problem with linear constraints such that the objective function’s numerator can be decomposed into
two linear functions and its denominator is linear. Moreover, Jayalakshmi [29] used the objective fractional
separable method based on the simplex method to solve this kind of problem. Nguyen et al. [30] examined
minimizing a ratio of quadratic functions subject to a two-sided quadratic constraint. They replaced the
objective function by a parametric family of quadratic functions and proposed a semidefinite program
approach to solve it.

Mangasarian [31] used Frank and Wolfe’s algorithm [32] to solve the convex FP problem with linear
constraints. Dinkelbach [33] considered the concave FP problem over a convex feasible set and solved
it by considering a sequence of non-linear convex programming problems. Schaible [34] converted the
concave FP problem into a parameter-free convex program by applying a generalization of the Charnes
and Cooper’s variable transformation. Benson [35] studied maximizing of a ratio of a convex function
to a convex function, where at least one of the convex functions is a quadratic form on a compact convex
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feasible set. He presented a branch and bound algorithm to solve this problem such that it requires solving a
sequence of convex optimization problems. Yamamoto and Konno [36] proposed an algorithm for the QFP
problem with convex quadratic functions and linear constraints. They solved this problem by combining the
classical Dinkelbach method, integer programming approach for solving non-convex quadratic problems,
and a standard nonlinear programming solver.

In this paper, a new idea is described to solve the problem (1) and it is shown that there is a relation
between this problem and its corresponding bi-objective optimization problem, i.e., a global optimal solu-
tion of the problem (1) is a Pareto optimal solution of a bi-objective optimization problem. By using this
relation, two algorithms are suggested for approximately solving the problem (1). The first fractional algo-
rithm is proposed to solve convex FP problems and is based on an objective space cut and bound method
developed by Shao and Ehrgott [37]. Then, before describing the second fractional algorithm, an algorithm
based on the Pascoletti-Serafini scalarization (PS) approach is proposed to generate approximations of the
Pareto front of bi-objective optimization problems. In this algorithm, points obtained are distributed almost
uniformly on the entire Pareto front. It should be noted that according to the available literature of the FP
problems, most of fractional algorithms were applied on linear, quadratic, convex, or concave FP problems
or special cases of them. Therefore, the second fractional algorithm based on the proposed bi-objective
algorithm is presented for approximately solving convex and non-convex FP problems. In addition, some
examples are used to validate each of the proposed algorithms.

The paper is organized in six sections as follows: In Section 2, some preliminaries about multi-objective
optimization problems (MOPs) are stated and the PS approach and some of its properties are reviewed.
Then, the relation between the problem (1) and its related bi-objective problem is shown. In Section 3, the
first fractional algorithm inspirited from the objective space cut and bound method is presented for solving
convex FP problems and three examples are carried out to test its performance. An algorithm based on the
PS approach is presented for bi-objective problems in Section 4 and its efficiency is demonstrated through
five test problems. The second fractional algorithm to solve nonlinear FP problems is proposed in Section
5 and six examples are considered to examine the efficiency of the algorithm. Finally, Section 6 provides
some conclusions.

2. Preliminaries and basic definitions

An MOP optimizes two or more (conflicting) objective functions under certain constraints at a same
time. Formally, the general MOP can be formulated as follows:

min f (x) = ( f1(x), f2(x), . . . , fp(x))T

s.t. x ∈ X,
(2)

where a nonempty set X ⊂ Rn denotes the feasible set in the decision spaceRn and a feasible objective space
set Y = f (X) ⊂ Rp denotes the image of the feasible set in the objective space Rp. In addition, p objective
functions fi, i = 1, . . . , p (p ≥ 2), are real-valued objective functions over X and therefore, f : X → Rp is a
vector-valued function. The following partial order relations are used to order the objective space such that
for each y and ŷ ∈ Rp:

1. y < ŷ means that yi < ŷi for all i = 1, . . . , p,
2. y 5 ŷ means that yi ≤ ŷi for all i = 1, . . . , p,
3. y ≤ ŷ means that y 5 ŷ but y , ŷ. In this case, it is said that y dominates ŷ.

Definition 2.1. A feasible solution x̂ ∈ X is a Pareto optimal solution of the problem (2) if there is no other feasible
solution x ∈ X such that f (x) ≤ f (x̂). If x̂ ∈ X is a Pareto optimal solution, f (x̂) is called a non-dominated point.

The set of all Pareto optimal solutions of the problem (2) is denoted by XE. In addition, the set of
all non-dominated points of the problem (2) is called the Pareto front and is indicated by YN. Note that
the goal of solving MOP is obtaining the Pareto front, which is an infinite set in general. Therefore, an
approximation of the Pareto front with a finite size can be obtained in practice.
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Definition 2.2. A feasible solution x̂ ∈ X is a weakly Pareto optimal solution of the problem (2) if there is no other
feasible solution x ∈ X such that f (x) < f (x̂). If x̂ ∈ X is a weakly Pareto optimal solution, f (x̂) is called a weakly
non-dominated point.

The set of all weakly Pareto optimal solutions of the problem (2) is denoted by XWE. In addition, the set
of all weakly non-dominated points of the problem (2) is called the weakly Pareto front and is indicated by
YWN.

Definition 2.3. Let xi = ar1minx∈X fi(x), for i = 1, . . . , p. Then, the ideal point yI
∈ Rp of the problem (2) is defined

as ( f1(x1), f2(x2), . . . , fp(xp))T.

This point is often infeasible because of the presence of conflicting objective functions and is a lower
bound of the Pareto front.

Definition 2.4. The nadir point yN
∈ Rp of the problem (2) is defined as ( f N

1 , f N
2 , . . . , f N

p )T in which f N
i = maxXE fi(x)

for i = 1, . . . , p. Furthermore, the ith anchor point f i, i = 1, . . . , p, is expressed as ( f1(xi), . . . , fi(xi), . . . , fp(xi))T.

The nadir point gives an upper bound on the Pareto front and only case that the nadir point can exactly
be determined is p = 2, see [38]. In this paper, it is assumed that the ideal and nadir points exist and know.

Definition 2.5. The problem (2) is called a convex MOP if all the objective functions fi, i = 1, . . . , p, and feasible set
X are convex.

Definition 2.6. Let ε > 0, and x∗ ∈ X be an optimal solution of the following single-objective optimization problem
(SOP).

min ϕ(x)
s.t. x ∈ X.

A feasible solution x̂ ∈ X is called an ε−optimal solution if ϕ(x̂) − ε ≤ ϕ(x∗).

2.1. The PS approach
The common approach to solve MOP is scalarization which combines the different objective functions

and converts MOP into one parametric SOP. Pascoletti and Serafini [39] introduced a scalarization approach,
which considers the following SOP denoted by SP(a,r) with parameters a ∈ Rp as a reference point and
r ∈ Rp as a direction vector.

min t
s.t. f (x) 5 a + tr, (SP(a, r))

x ∈ X,
t ∈ R.

Note that an optimal solution of SP(a, r) for specific parameters is a weakly Pareto optimal solution of the
problem (2) and all Pareto optimal solutions of the problem (2) can be produced by varying parameters a and
r, see [40]. Since solving each SOP can be very costly, some SOPs are solved for a number of predetermined
parameters and some non-dominated points are obtained as an approximation of the actual Pareto front.

Now, let (x, t) be an optimal solution of SP(a, r). Then, f (x) is a weakly non-dominated point of MOP
and there are two cases for this point as follows:

1. f (x) is located along the vector r and f (x) = a + tr, see Figure 1(a). This case always occurs in convex
MOPs.

2. f (x) is not located along the vector r and f (x) ≤ a + tr, see Figure 1(b).
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Figure 1: (a) The non-dominated point f (x) is along r and (b) non-dominated point f (x) is not along r

2.2. Relation between the problem (1) and its bi-objective optimization problem

The following theorem is a main role to present algorithms for solving the problem (1).

Theorem 2.7. A global optimal solution of the problem (1) is a Pareto optimal solution of the following bi-objective
problem.

min F(x) = ( f (x),−1(x))T

s.t. x ∈ X.
(3)

Proof. Let x∗ ∈ X be a global optimal solution of the problem (1), but it is not a Pareto optimal solution of the problem
(3). Then, without loss of generality, there is x ∈ X such that f (x) < f (x∗) and −1(x) ≤ −1(x∗). Consequently,
f (x)
1(x) <

f (x∗)
1(x∗) and this inequality is in contradiction to optimality of x∗.

By Theorem 2.7, two algorithms are proposed for solving the problem (1) in the objective space. Hence,
the problem (1) is projected into the objective space and is reformulated as follows:

min Z(y)
s.t. y ∈ Y,

(4)

where Y = {F(x) | x ∈ X} is the image of the feasible set in the objective space R2 and Z(y) =
y1

−y2
for each

y = (y1, y2) ∈ Y. Now, consider the following problem:

min Z(y)
s.t. y ∈ Y′,

(5)

where Y′ = {y ∈ R2
| F(x) 5 y 5 b, f or some x ∈ X} such that yN 5 b. The problems (4) and (5) have the same

objective function and according to Theorem 2.7, an optimal solution of the problem (1) is a non-dominated
point of its corresponding bi-objective problem. On the other hand, non-dominated points of the sets Y and
Y′ are the same, i.e., YN = Y′N, see [38]. Thus, optimal solutions of the problems (4) and (5) are the same,
and the problem (5) can be used instead of the problem (4).

Theorem 2.8. If the ideal point of the problem (3) is feasible, its corresponding solution in the decision space is an
optimal solution of the problem (1).

Proof. Let (F1(x1),F2(x2)) be the ideal point of the problem (3) in which x1 = ar1minx∈X f (x) and x2 = ar1minx∈X −

1(x) = ar1maxx∈X1(x). If this point is feasible, there is a feasible solution x̂ ∈ X, which minimizes f (x) and maximizes
1(x) on the set X. It is obvious that x̂ is an optimal solution of the problem (1).
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3. Algorithm 1 for solving convex FP problems

Shao and Ehrgott [37] suggested the objective space cut and bound approximation algorithm to solve
convex multiplicative programming problems. We use this algorithm and propose an algorithm called
Algorithm 1 for solving convex FP problems and obtain an ε−optimal solution of the problem (1). Consider
a convex FP problem such that f (x), −1(x) and the constraint functions hi(x), i = 1, . . . ,m, are convex and
continuously differentiable on the compact feasible set X (or Y is R2-bounded from below and R2-closed).
At first, an exact approach presented in [38] is used to calculate the ideal point, nadir point and anchor
points of the related bi-objective optimization problem (3). Set Z∗ = min{Z(y1),Z(y2)} in which y1 and y2

are the anchor points. In addition, x′ and y′ are solutions corresponding to Z∗ in the decision space and
objective space, respectively. Then, it is checked that f (x) and −1(x) are conflicting or not. If these functions
are not conflict, then the ideal point is feasible and is an optimal solution of the problem (5). Otherwise, do
the following iterative algorithm.

Algorithm 1 starts with a polyhedron S0 = {y ∈ R2
| yI 5 y 5 b} such that yN 5 b and Y′ ⊆ S0. Set

k := 0, consider an approximation error ε > 0, and obtain LB0 := Z(yI) and UB0 := Z(b) as an initial lower
bound value and an initial upper bound value, respectively. At iteration k, a vertex sk of the polyhedron Sk

is chosen with a minimum value of the function Z among all the vertices such that Z(sk) < UBk. Then, the
boundary point yk := F(xk) ∈ Y′ is calculated by solving SP(sk, rk) with rk := b− sk. As previously mentioned,
yk is a non-dominated point and since the Pareto front is convex, yk is the intersection of the objective
space and the direction vector rk. If Z(yk) < UBk, then UBk is updated with Z(yk). Next, if the absolute
difference between the upper bound and lower bound values is less than ε, then Algorithm 1 terminates
by considering that whether Z∗ < UBk or not. If Z∗ < UBk, then set UBk := Z∗. Otherwise, a supporting
hyperplane of Y′ at the point yk is constructed as {z ∈ R2

| zTλk = F(xk)Tλk
} such that (λk,uk) is an optimal

solution of the following linear SOP:

max bT
xk u − (yk

− fxk )Tλ

s.t. AT
xk u − CT

xkλ = 0, (ID(xk, yk))

eTλ = 1,

u, λ ∈ R2
=,

where∇F(xk) and∇h(xk) are the gradients of F(xk) and h(xk), respectively. In addition, fxk := F(xk)−∇F(xk)Txk,
bT

xk := h(xk)−∇h(xk)Txk, AT
xk := −∇h(xk)T, CT

xk := ∇F(xk)T and e := (1, 1). This hyperplane separates sk from the
set Sk and generates a new polyhedron Sk+1 such that Sk+1

⊆ Sk. In more detail, Sk+1 is the intersection of
Sk and {z ∈ R2

| zTλk
≥ F(xk)Tλk

}. It is clear that a hyperplane can be considered when the Pareto front of
the related bi-objective problem is convex. Then, all vertices of Sk+1, symbolized by vert(Sk+1), are obtained
by a method presented by Chen et al. [41] and Z(s) is calculated for each vertex s ∈ vert(Sk+1) such that
Z(s) < UBk. A minimum value of Z(s) among all these vertices is obtained and is set LB. If LB is greater
than the lower bound value LBk, then the lower bound value is updated to LB. Furthermore, if the absolute
difference between the upper bound value and the lower bound value is less than ε, then Algorithm 1
terminates by considering that whether Z∗ < UBk or not, and if Z∗ < UBk, then set UBk := Z∗. Otherwise,
set k := k + 1 and the algorithm is repeated.

Therefore, Algorithm 1 constructs a sequence of polyhedrons that each of them is an approximation of
Y′ from the outside. Steps of Algorithm 1 are summarized as follows:

Algorithm 1: an algorithm for solving convex FP problems

Initialisation:

• Choose ε > 0 and calculate the ideal point, nadir point, anchor points, and Z∗. Select b such that
yN 5 b. Construct a polyhedron S0, set vert(S0) := {yI

}, LB0 := Z(yI), UB0 := Z(b), and k := 0.

Main iteration repeat:
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1. Choose a vertex sk
∈ vert(Sk) with Z(sk) < UBk and obtain a minimum value of the objective function

Z among all vertices of Sk.
2. Obtain an optimal solution (xk, tk) by solving SP(sk, rk) with rk := b − sk and set yk := F(xk).
3. If Z(yk) < UBk, then set UBk := Z(yk), yc := yk, and xc := xk.
4. If UBk − LBk ≤ ε and Z∗ < UBk, then set UBk := Z∗, yc := y′, xc := x′, and stop. If UBk − LBk ≤ ε and

UBk ≤ Z∗, then stop. Otherwise go to Step 5.
5. Solve the problem ID(xk, yk), obtain an optimal solution (uk, λk) and generate a polyhedron Sk+1 :=
{z ∈ R2

| zTλk
≥ F(xk)Tλk

}
⋂

Sk.
6. Determine vertices of Sk+1 and set LB := min{Z(s) | s ∈ vert(Sk+1)}. If LB > LBk, then set LBk := LB.
7. If UBk − LBk ≤ ε and Z∗ < UBk, then set UBk := Z∗, yc := y′, and stop. If UBk − LBk ≤ ε and UBk ≤ Z∗,

then stop. Otherwise set k := k + 1, UBk := UBk−1, LBk := LBk−1, and go to Step 1.

In the following theorems, it is proved that by considering a pre-specified approximation error ε > 0,
Algorithm 1 finds xc as an ε−optimal solution of the problem (1) and yc as an ε−optimal solution of the
problems (4) or (5) in a finite number of iterations.

Theorem 3.1. Let f (x), −1(x) and hi(x), i = 1, . . . ,m are convex and continuously differentiable on the compact
feasible set X. If Algorithm 1 is infinite, then it generates a sequence of feasible solutions of the problem (1) such that
every accumulation point is a global optimal solution of the problem (1) and

lim
k→∞

UBk = lim
k→∞

LBk = in f {Z(y) | y ∈ Y′}.

Proof. It is similar to Theorem 4.2 in [37].

Theorem 3.2. If ε > 0, then Algorithm 1 is terminated after a finite number of iterations at an ε−optimal solution
of the problem (1).

Proof. It is similar to Theorem 4.3 in [37].

3.1. Numerical results of Algorithm 1
In this subsection, Algorithm 1 is applied to three numerical examples. It should be noted that all

algorithms in this paper were coded in Matlab 2016 and all experiments were implemented on a Laptop
with Pentium 4 at 2.3GHZ and 4GB RAM running Windows 7 Home Basic Operating system. Besides, the
fmincon and fgoalattain solvers in Matlab are applied to solve every SOP and PS problem, respectively, in
all algorithms.

Example 3.3. Consider the following convex FP problem:

min
1 + x2

−(x − 2)2 + 18
s.t. 0 ≤ x ≤ 2.

The following problem is a bi-objective problem corresponding to Example 3.3:

min ( f (x) = 1 + x2,−1(x) = (x − 2)2
− 18)

s.t. 0 ≤ x ≤ 2.

In this problem, yI = (1,−18), b = yN = (5,−14), and Z∗ = 0.071429. In addition, the initial lower bound value
and initial upper bound value are 0.0556 and 0.3571, respectively, and ε = 0.0025. Figure 2 shows the ideal point,
nadir point, Y′, and polyhedron S0. Furthermore, Figure 3 illustrates points yk, and polyhedrons Sk obtained by
Algorithm 1 at four iterations. Table 1 reports the vertex sk, boundary point yk, supporting hyperplane, upper bound
value and lower bound value at four iterations for Example 3.3. After four iterations, UB4 = 0.0701, LB4 = 0.0686,
and UB4 − LB4 = 0.0015 are obtained that this difference is less than ε and UBk < Z∗. Thus, Algorithm 1 terminates
and obtains yc = (1.02,−14.56) as an ε−optimal solution of the problem (5), xc = 0.1458 as an ε− optimal solution
of the problem (1) at 1.22 seconds.
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Figure 2: Illustration of yI , yN , the set Y′, and the polyhedron S0 for Example 3.3

Figure 3: The points yk and polyhedrons Sk at four iterations of Algorithm 1 for Example 3.3

Table 1: The results obtained by Algorithm 1 at four iterations for Example 3.3
Iteration sk yk Supporting hyperplane UBk LBk
k = 0 (1,−18) (2,−17) 0.5y1 + 0.5y2 = −7.50 0.1176 0.0625
k = 1 (1,−16) (1.29,−15.86) 0.73y1 + 0.27y2 = −3.31 0.0812 0.0663
k = 2 (1,−15.07) (1.08,−15.05) 0.86y1 + 0.14y2 = −1.20 0.0717 0.0687
k = 3 (1,−14.5651) (1.02,−14.56) 0.93y1 + 0.07y2 = −0.12 0.0701 0.0686
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Example 3.4. The second convex FP problem is stated as follows:

min
f (x)
1(x)

=
(2x1 + x2)2 + 1

x1 + 2x2 + 1
s.t. 2x1 + x2 ≥ 6,

x1 + 3x2 ≥ 8,
0 ≤ x1, x2 ≤ 5,

where f (x) is a convex function, 1(x) is an affine function and X is a convex set. (37, -16) and (226, -11.5) are the ideal
and nadir points of a bi-objective problem corresponding to Example 3.4. In Algorithm 1, x′ = (0.5, 5), Z∗ = 3.217391,
LB0 = 2.3125, and UB0 = 19.6522 are calculated, and ε = 0.001 and b = (226,−5) are considered. Algorithm 1
obtains UB4 = 3.217395 in last iteration and since Z∗ < UB4, Algorithm 1 sets UB4 = Z∗, yc = (37,−11.50), and
xc = (0.5, 5). The CPU time of Algorithm 1 is 3.23 seconds. Figure 4 shows the feasible objective set of the bi-objective
problem corresponding to Example 3.4 and points yk obtained by Algorithm 1 in the objective space at four iterations.

Figure 4: The points yk obtained by Algorithm 1 for Example 3.4 at four iterations

According to the description of Algorithm 1, it is able to obtain an ε−optimal solution of the problem
(1) whose the corresponding bi-objective problem (3) has the convex Pareto front. Example 3.5 emphasizes
this fact.

Example 3.5. Consider the following FP problem:

min
f (x)
1(x)

=
3x2

1 + 2x2
2 − 4x1 − 8x2 + 9

x2
1 + x2

2 − 6x2 + 8

s.t. x1 + x2 ≥ 2,
x1, x2 ≥ 0,

where f (x) and 1(x) are convex functions, and the feasible set is convex. The ideal and nadir points of a bi-
objective problem corresponding to Example 3.5 are (0.2,−12) and (13,−1.12), respectively. Algorithm 1 considers
b = yN, ε = 0.001, Z∗ = 0.178571, LB0 = 0.016667, and UB0 = 11.607142. It obtains yc = (0.2178,−1.349),
xc = (0.46, 1.54), and 0.162305 as an objective value of Example 3.5 at six iterations and 2.64 seconds. Figure 5
demonstrates the feasible objective set of the bi-objective problem and points yk obtained by Algorithm 1 in the objective
space. Table 2 reports vertices sk, boundary points yk, supporting hyperplanes, upper bound values and lower bound
values at six iterations for Example 3.5.
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Figure 5: The points yk obtained by Algorithm 1 for Example 3.5 at four iterations

Table 2: The results obtained by Algorithm 1 at six iterations for Example 3.5
Iteration sk yk Supporting hyperplane UBk LBk
k = 0 (0.20,−12) (5.74,−7.29) 0.45y1 + 0.55y2 = −1.48 0.7878 0.0706
k = 1 (0.20,−2.83) (0.89,−2.74) 0.58y1 + 0.42y2 = −0.64 0.3262 0.1117
k = 2 (0.20,−1.79) (0.34,−1.78) 0.72y1 + 0.28y2 = −0.26 0.1917 0.1405
k = 3 (0.20,−1.42) (0.23,−1.42) 0.83y1 + 0.17y2 = −0.05 0.1633 0.1581
k = 4 (0.20,−1.26) (0.21,−1.26) 0.91y1 + 0.09y2 = 0.07 0.1633 0.1608
k = 5 (0.20,−1.34) (0.22,−1.34) 0.87y1 + 0.13y2 = 0.01 0.1623 0.1625

4. An MOP algorithm based on the PS approach

In this section, an algorithm based on the PS approach named Algorithm 2 is proposed to generate almost
uniform approximations of the entire Pareto front of bi-objective optimization problems. In addition, it
obtains non-dominated points in non-convex parts of the Pareto front and disregards dominated points. In
algorithms based on the PS approach, an approximation of the Pareto front is obtained by selecting a set of
parameters a and r, and solving their corresponding PS problems. Most of these algorithms consider a set
of these parameters such that either a is fixed and r is changed, see [42] and Figure 6(a), or r is fixed and a
is changed, see [40, 43, 44] and Figure 6(b). In iterative Algorithm 2, an almost uniform approximation of
the Pareto front is constructed by changing both the reference point and direction vector.

Figure 6: (a) An approach with a fixed reference point and different direction vectors and (b) an approach with a fixed direction vector
and different reference points

Assume that a = (a1, a2) is a reference point and b = (b1, b2) is a point corresponding to the reference
point located on a rectangle where a and b are its opposite vertices. Let (x, t) be an optimal solution of
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SP(a, r), in which r = b−a
‖b−a‖2

. Then, f (x) is a (weakly) non-dominated point, see Figure 7(a). Then, by having
points y = a + tr and f (x), a set Y0 = {ŷ ∈ R2

| a + R2
= 5 ŷ 5 b − R2

=} is partitioned into four regions 1, 2,
3 and 4, see Figure 7(b). There is no non-dominated point in the regions 1 and 3, because f (x) dominates
each feasible solution in the region 1 and there are no feasible solutions in the region 3. Hence, the regions
2 and 4 are only examined. For this purpose, the point y = (y1, y2) is imaged on lines f1 = a1 and f2 = a2,
and the points a1 = (y1, a2) and a2 = (a1, y2) are obtained as the new reference points. In addition, the point
f (x) = ( f1(x), f2(x)) is imaged on lines f1 = b1 and f2 = b2, and the points b1 = (b1, f2(x)) and b2 = ( f1(x), b2)
are obtained as the points corresponding to a1 and a2, respectively. It is noted that b1 is a vertex in front of
a1 in the rectangle 4 and b2 is a vertex in front of a2 in the rectangle 2.

Figure 7: (a) Solving SP(a, r) with r = b−a
‖b−a‖2

and obtaining f (x) and y and (b) partitioning Y0 into four regions for a bi-objective problem

Let (x1, t1) and (x2, t2) be optimal solutions of problems SP(a1, r1) and SP(a2, r2) such that r1 = b1
−a1

‖b1−a1‖2
and

r2 = b2
−a2

‖b2−a2‖2
. In this example, f (x1) and f (x2) are non-dominated points, and two points y2 = a2 + t2r2 and

f (x2) are coincident, see Figure 8(a).

Figure 8: (a)-(b) Some iterations of Algorithm 2, and (c) the approximation of the Pareto front of a non-convex bi-objective problem
obtained by Algorithm 2

The next steps are done in the same way by having each pair of the points y1 and f (x1), and the points y2

and f (x2). Therefore, a3, a4, a5, and a6 are obtained as new reference points and b3, b4, b5, and b6 are obtained
as points corresponding to these reference points, respectively. Then, non-dominated points y3, y5, and y6

are obtained by solving problems SP(a3, r3), SP(a5, r5), and SP(a6, r6), respectively, in which ri = bi
−ai

‖bi−ai‖2
for

i = 3, 5, 6, see Figure 8(b). Note that if SP(a4, r4) is solved with r4 = b4
−a4

‖b4−a4‖2
, the point f (x1) or y is obtained
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again. In order to avoid considering this case, let (x, t) be an optimal solution of SP(z, r) with r = Z−z
‖Z−z‖2

. If
z < f (x) < Z, new reference points and their corresponding points are considered. Figure 8(c) illustrates an
approximation of the Pareto front of a non-convex bi-objective problem obtained by Algorithm 2. It should
be noted that two anchor points are considered in the approximation.

One of the two following conditions is used for considering the reference point z and their corresponding
point Z. Consider a rectangle where z and Z are its opposite vertices. The first condition (C1) is that the area
of the rectangle is greater than a predetermined value ε and the second condition (C2) is that maximum of
the length and width of this rectangle is greater than ε.

Now, Algorithm 2 is explained for solving a bi-objective optimization problem in detail. At first, the
ideal point, nadir point and two anchor points of the bi-objective problem are calculated. At the end of the
algorithm, a set PF is an approximation of the Pareto front obtained by Algorithm 2. At first, this set only
contains the anchor points and then, obtained points are added to it at each iteration. In addition, two sets
A and B are considered such that A consists of reference points and initially includes the ideal point, and
B consists of points corresponding to the reference points and initially includes the nadir point. Besides ε
is a predetermined value and one of the conditions C1 and C2 is considered. Then, the following steps are
done until A is equal to empty:

Step 1: z := (z1, z2) ∈ A and its corresponding point Z := (Z1,Z2) ∈ B are chosen. A normalized direction
vector r := Z−z

‖Z−z‖2
is considered and set A := A\{z} and B := B\{Z}. An optimal solution (x, t) is gained by

solving SP(z, r).
Step 2: By considering a weakly non-dominated point f (x) = ( f1(x), f2(x)) and y := z + tr, two points

a1 := (y1, z2) and a2 := (z1, y2) are considered as candidate reference points that their corresponding points
are b1 := (Z1, f2(x)) and b2 := ( f1(x),Z2), respectively.

Step 3: If z < f (x) < Z, then do the following steps:

• The point f (x) is added to PF.

• If a rectangle generated by a1 and b1 such that a1 , z and b1 , Z has the considered condition, a1 is
added to A and b1 is added to B.

• If a rectangle generated by a2 and b2 such that a2 , z and b2 , Z has the considered condition, a2 is
added to A and b2 is added to B.

Finally, dominated points are removed from PF.

4.1. Evaluating the quality of approximations of the Pareto front

Generating non-dominated points that distribute uniformly on the entire Pareto front is an important
feature in MOP algorithms. There are several metrics in the literature to evaluate and compare the quality
of approximations of the Pareto front obtained by different algorithms. In following, some of these metrics
including set coverage, purity, coverage, and spacing are reviewed.

4.1.1. Set coverage and Purity
The set coverage metric C(S1,S2) [45] presents the percentage of points in the set S2 dominated by at

least one point from the set S2 and is defined as follows:

C(S1,S2) =
|{y2 ∈ S2 | ∃y1 ∈ S1 such that y1 ≤ y2}|

|S2|
.

If C(S1,S2) = 0, then none of the points of S2 is dominated by at least one point of S1 and C(S1,S2) = 1
means all points of S2 are dominated by at least one point of S1. In addition, the approximation S1 is better
than S2, if C(S1,S2) is larger and C(S2,S1) is smaller.

Now consider N algorithms to obtain approximations of the Pareto front of an MOP. Let Si denotes
an approximation obtained by ith algorithm and ni = |Si| for all i = 1, . . . ,N. A set S is the union of all
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the approximations such that all dominated points are removed from it. The purity metric [46] for Si
(i = 1, . . . ,N) is defined as follows:

P =
|Si ∩ S|

ni
.

Note that the purity metric is a real number between [0, 1] and an algorithm with a larger value for this
metric has a better performance in terms of the percentage of non-dominated points.

4.1.2. Coverage
Meng et. al. [47] proposed Extension as a metric of the coverage that examines whether all regions of

the Pareto front are represented. It is an average distance of an approximation S from k points {v1, v2, . . . , vk
}

as a set of reference points. At first, the distance between each reference point and S is calculated as follows:

d(vi,S) = min{d(vi, y) | y ∈ S}, ∀i ∈ {1, . . . , k}.

Then, the Extension is obtained as follows:

EX(S) =

√∑k
i=1(d(vi,S))2

k
.

An approximation with a large value of Extension shows that the obtained points mainly locate in
the center of the actual Pareto front without considering the outskirts. Therefore, a small value of EX is
preferred to a larger value. Note that anchor points are considered as the reference points in this paper.

4.1.3. Spacing
Messac and Mattson [48] presented Evenness as a spacing metric to verify how points are distributed

on the Pareto front. Evenness of the approximation S is calculated as follows:

EV(S) =
σ(D)
µ(D)

, D = {d1
l , d

1
u, d

2
l , d

2
u, . . . , d

m
l , d

m
u }, |S| = m,

where σ(D) and µ(D) are the standard deviation and arithmetic mean of D, respectively. In addition, di
l

(i ∈ {1, . . . ,m}) is a minimum distance of each point yi
∈ S to any other point in S and di

u (i ∈ {1, . . . ,m}) is the
maximum radius of a (hyper) sphere that can be formed between yi

∈ S and any other point in S such that
no other points are within the (hyper) spheres. If all points of the approximation are equidistant, dl and du
will all be equal, then σ(D) = 0 and EV(S) = 0.

Note that having equidistant points on the Pareto front does not guarantee a good coverage, therefore,
a spacing metric should be used with a coverage metric. In this paper, an approximation with the smallest
Extension and Evenness are desirable.

4.2. Numerical implementations
In this section, the performance of Algorithm 2 is checked by five test problems with convex, non-convex,

connected, and disconnected Pareto fronts. Results of this algorithm are compared to results of evolutionary
algorithms including the non-dominated sorting genetic algorithm-II (NSGA-II) [49], differential evolution
(DE) with binomial crossover [50], and S metric selection evolutionary multiobjective algorithm (SMS-
EMOA) [51]. Besides, some algorithms based on the scalarization approach such as the normal constraint
(NC) [52] with δ = 1

100 , weighted constraint (WC) [53] with N = 100, and Benson type algorithm [54] are
considered for better evaluation of Algorithm 2. In these evolutionary algorithms, the population size
and number of the function evaluations are considered 100 and 20000, respectively. In all tables of this
subsection, columns 2-11 show the number of solutions obtained (NS), number of SOPs solved (NSOP),
Evenness (EV), Extension (EX), purity (P), C(Al12,S), C(S,Al12), number of the function evaluations per
each obtained solution (FE/NS), and CPU time in second to solve each problem (CPU), respectively. Note
that S is an approximation obtained by one of the mentioned algorithms, which will be compared to
Algorithm 2 and Al12 is an approximation obtained by Algorithm 2.
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4.2.1. Test problem 1
The 10-variable DTLZ2 problem is the first example and has a non-convex and connected Pareto front.

This problem is formulated as follows:

min f1(x) = cos(
π
2

x1)(1 +

10∑
i=2

(xi − 0.5)2)

min f2(x) = sin(
π
2

x1)(1 +

10∑
i=2

(xi − 0.5)2)

s.t. xi ∈ [0, 1], i = 1, . . . , 10.

By considering the second condition with ε = 0.05 and ε = 0.025, Algorithm 2 is capable of obtaining
points, which cover all the regions of the Pareto front almost uniformly, see Figure 9. Algorithm 2 obtains 41
points on the Pareto front at 1.29 seconds, 2401 function evaluations, EV = 0.1641, and EX = 0 for ε = 0.05.

Figure 9: The approximations of the Pareto front of Test problem 1 obtained by Algorithm 2 for (a) ε = 0.05 and (b) ε = 0.025

Figure 10 illustrates approximations of the Pareto front obtained by the Benson type algorithm with
ε = 0.01, p̂ = (100, 100), and d = (1, 1) and the other mentioned algorithms for Test problem 1. This figure and
Figure 9 indicate that all regions of the Pareto front are only covered by the points obtained by Algorithm
2 and WC, while the other algorithms cannot cover the entire Pareto front. In addition, the results of
Algorithm 2 with ε = 0.025 and the other algorithms are given in Table 3. These results emphasize that
Algorithm 2 can obtain an approximation with high quality for all indexes in Test problem 1. None of the
points obtained by Algorithm 2 is dominated by the points obtained by the other algorithms, i.e., P = 1
and C(S,Al12) = 0 for each approximation S obtained by the other algorithms. Moreover, values of EV
and EX of Algorithm 2 are less than the other algorithms and this algorithm can obtain these points in the
acceptable time with the least number of the function evaluations per each obtained solution. It should
be noted that the CPU time of the DE algorithm is less than Algorithm 2, but the quality of Algorithm 2
is better than the DE algorithm in the other indexes. Therefore, Algorithm 2 is able to generate an almost
uniform approximation of the entire Pareto front with the best quality among the other six algorithms.

Table 3: The numerical results of the seven algorithms for Test problem 1
Method NS NSOP EV EX P C(Al12,S) C(S,Al12) FE/NS CPU
Algorithm 2 85 85 0.1948 0 1 0 0 62.01 2.50
NC 96 102 0.4186 7.92e-9 0.9792 0.0316 0 275.34 7.42
WC 128 204 0.8315 5.49e-5 1 0.0229 0 99.98 5.80
Benson type 143 288 0.6004 3.97e-4 0.9930 0 0 228.16 16.68
DE 98 - 1.2468 0.3321 0.9898 0.0102 0 204.08 2.46
SMS-MOEA 100 - 0.6441 0 0.9900 0.0200 0 200.00 19.91
NSGA-II 100 - 0.4707 0.0002 0.6200 0.1000 0 200.00 203.08
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Figure 10: The approximations of the Pareto front of Test problem 1 obtained by the six algorithms

4.2.2. Test problem 2
The following bi-objective problem with a convex and connected Pareto front is another selected problem

to test the quality of Algorithm 2. This problem was examined in [55, 56].

min f1(x) =
√

1 + x2
1

min f2(x) = x2
1 − 4x1 + x2 + 5

s.t. x1, x2 ≥ 0.

The ideal and nadir points are (1.0842, 1) and (2.2361, 3.5), respectively. Algorithm 2 considers the first
condition and obtains 33 points on the Pareto front at 0.33 seconds, 566 function evaluations, EV = 0.2394,
and EX = 0 for ε = 0.005. Figure 11 shows the points obtained by Algorithm 2 for ε = 0.005 and ε = 0.001.

Figure 11: The approximations of the Pareto front of Test problem 2 obtained by Algorithm 2 for (a) ε = 0.005 and (b) ε = 0.001
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Figure 12 shows approximations of the Pareto front obtained by the other mentioned algorithms for Test
problem 2. In addition, the Benson type algorithm considers ε = 0.02, p̂ = (100, 100), and d = (1, 1). As seen
in this figure, the Benson type, NSGA-II, and DE algorithms are not able to generate the approximations
that cover all regions of the actual Pareto front.

Figure 12: The approximations of the Pareto front of Test problem 2 obtained by the six algorithms

Table 4 shows the results of Algorithm 2 with ε = 0.001 and the other mentioned algorithms for Test
problem 2. Since, the purity of Algorithm 2, Benson type, SMS-EAMO, and NSGA-II are equal to 1 and
none of the points obtained by these algorithms is dominated by the points obtained by Algorithm 2, these
algorithms have a good performance in terms of the percentage of non-dominated points. Besides, the
proposed algorithm has the least CPU time and number of the function evaluations per each obtained
solution. From a comparison of EX and EV, it can be concluded that the quality of the distribution of the
points obtained by Algorithm 2 is better than that of the other algorithms, because it has the smallest EX
and EV among the other mentioned algorithms.

Table 4: The numerical results of the seven algorithms for Test problem 2
Method NS NSOP EV EX P C(Al12,S) C(S,Al12) FE/NS CPU
Algorithm 2 65 65 0.2457 0 1 0 0 22.03 0.80
NC 100 102 0.2016 1.50e-7 0.9900 0 0 90.06 5.45
WC 112 204 0.5442 2.12e-8 0.9911 0.0089 0 27.14 2.47
Benson type 115 232 0.5644 0.0724 1 0 0 54.56 4.09
DE 98 - 1.1542 0.3264 0.9900 0.0122 0 204.08 2.06
SMS-MOEA 100 - 0.2987 4.09e-4 1 0 0 200.00 18.35
NSGA-II 100 - 0.7012 0.8066 1 0 0 200.00 279.60
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4.2.3. Test problem 3
This problem introduced by Tanaka et al. [57] has a non-convex and disconnected Pareto front and is

given as follows:

min f (x) = (x1, x2)

s.t. x2
1 + x2

2 ≥ 1 + 0.1cos(16arctan(
x1

x2
)),

(x1 − 0.5)2 + (x2 − 0.5)2
≤ 0.5,

0 ≤ x1, x2 ≤ π.

The ideal and nadir points of Test problem 3 are (0.0417, 0.0417) and (1.0384, 1.0384), respectively. The
second condition is considered in this test problem. Algorithm 2 with ε = 0.05 obtains 34 points on the
Pareto front at 1.10 seconds, 1210 function evaluations, EV = 0.2943, and EX = 0. Figure 13 illustrates the
feasible objective set of Test problem 3 and the points obtained by Algorithm 2 with ε = 0.05 and ε = 0.02.
This figure also shows that the proposed algorithm is able to generate almost uniform approximations of
the disconnected and non-convex Pareto front by selecting parameters of the PS approach suitably.

Figure 13: The approximations of the Pareto front of Test problem 3 obtained by Algorithm 2 for (a) ε = 0.05 and (b) ε = 0.02

Figure 14 indicates approximations of the Pareto front obtained by the Benson type algorithm with
ε = 0.01, p̂ = (100, 100), and d = (1, 1) and the other algorithms for Test problem 3. According to this figure,
the WC and Benson type algorithms obtain some dominated points and the approximations obtained by
the DE, SMS-EMOA, and NSGA-II algorithms cannot cover the entire Pareto front.

Table 5 presents the results of Algorithm 2 with ε = 0.02 and the other algorithms for Test problem
3. By attention to this table, Figure 13, and Figure 14, Algorithm 2 can obtain the high quality results for
this problem. For example, the purity of Algorithm 2 is equal 0.9846 and none of the points obtained by
Algorithm 2 is dominated by the points obtained by the other algorithms except the WC algorithm. In the
WC algorithm, (0.68301469, 0.76924913) is only dominated by (0.68301468, 0.76924913), although these two
points are much closer together. Furthermore, the quality of the distributed points obtained by Algorithm
2 is better than the other algorithms in terms of the percentage of non-dominated points and it has the
least number of the function evaluations per each obtained solution, EX and EV among all the algorithms.
Moreover, the CPU time of the DE algorithm is very close to Algorithm 2 while Algorithm 2 is better than
the DE algorithm in the other indexes. It is concluded that the quality of the points obtained by Algorithm
2 and its performance is better than the other algorithms.
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Figure 14: The approximations of the Pareto front of Test problem 3 obtained by the six algorithms

Table 5: The numerical results of the seven algorithms for Test problem 3
Method NS NSOP EV EX P C(Al12,S) C(S,Al12) FE/NS CPU
Algorithm 2 65 68 0.2435 0 0.9846 0 0 21.46 1.53
NC 63 102 0.5418 4.62e-13 0.8710 0.1290 0 86.74 5.09
WC 106 204 0.6795 2.41e-13 0.8861 0.3113 0.01538 40.39 5.24
Benson type 112 226 0.9095 0.0036 0.8468 0.1607 0 31.78 5.63
DE 45 - 0.7665 0.0323 0.1333 0.6000 0 444.44 1.55
SMS-MOEA 100 - 0.7296 0.0023 0.6700 0.1200 0 200.00 14.52
NSGA-II 100 - 0.4218 0.0217 0.3200 0.2700 0 200.00 322.75

4.2.4. Test problem 4
This test problem with a non-convex and connected Pareto front is defined as follows:

min f1(x) = x1

min f2(x) = 1 + x2
2 − x1 − 0.1sin(3πx1)

s.t. 0 ≤ x1 ≤ 1,−2 ≤ x2 ≤ 2.

This bi-objective problem considered in [55] and its ideal and nadir points are (0, 0) and (1, 1), respectively.
Figure 15 indicates points obtained of Algorithm2 by considering the first condition with ε = 0.001 and
ε = 0.0001. Algorithm 2 can obtain 33 points on the Pareto front at 0.3797 seconds, 741 function evaluations,
EV = 0.2198, and EX = 0 for ε = 0.001.
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Figure 15: The approximations of the Pareto front of Test problem 4 obtained by Algorithm 2 for (a) ε = 0.001 and (b) ε = 0.0001

Figure 16 shows the distribution of points obtained by the other mentioned algorithms for Test problem
4, in which the Benson type algorithm considers ε = 0.01, p̂ = (100, 100), and d = (1, 1). By comparing
Figure 15 and Figure 16, it can be concluded that Algorithm 2 obtains a good distribution of the points on
the Pareto front rather than the other algorithms.

Figure 16: The approximations of the Pareto front of Test problem 4 obtained by the six algorithms
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The results of Algorithm 2 with ε = 0.0001 and the other algorithms for Test problem 4 are given in Table
6. These results emphasize that Algorithm 2 can obtain the high quality results at all indexes. For example,
Algorithm 2 runs in an acceptable time, none of the points obtained by Algorithm 2 is dominated by the
points obtained by the other algorithms while the NC, WC, SMS-MOEA, and NSGA-II algorithms have
some points dominated by some points obtained by Algorithm 2. Furthermore, values of EV and EX of the
proposed algorithm are better than those of the other algorithms. Therefore, the performance of Algorithm
2 is acceptable among the other mentioned algorithms.

Table 6: The numerical results of the seven algorithms for Test problem 4
Method NS NSOP EV EX P C(Al12,S) C(S,Al12) FE/NS CPU
Algorithm 2 129 129 0.2410 0 1 0 0 16.13 1.01
NC 97 102 1.1695 8.64e-4 0.9691 0.0300 0 2122 2.08
WC 103 204 1.1125 1.11e-16 0.9903 0.0096 0 4573 2.25
Benson type 158 318 0.4316 0.0303 1 0 0 57.06 8.83
DE 100 - 0.9588 0.0040 1 0 0 20000 1.13
SMS-MOEA 100 - 0.2653 5.88e-15 0.9800 0.0200 0 200.00 19.51
NSGA-II 100 - 0.5436 2.18e-8 0.9700 0.0155 0 200.00 189.67

4.2.5. Test problem 5
Test problem 5 named BNH has a convex and connected Pareto front and non-convex feasible set. This

problem introduced by Binh and Korn [58] is defined as follows:

min f1(x) = 4x2
1 + 4x2

2

min f2(x) = (x1 − 5)2 + (x2 − 5)2

s.t. (x1 − 5)2 + x2
2 ≤ 25,

(x1 − 8)2 + (x2 + 3)2
≥ 3,

0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 3.

The ideal and nadir points are (0, 4) and (136, 50), respectively. Figure 17 shows points obtained by
Algorithm 2 by considering the second condition with ε = 2 and ε = 4. Algorithm 2 obtains 55 points on
the Pareto front at 1.14 seconds, 1134 function evaluations, EV = 0.2081, and EX = 0 for ε = 4.

Figure 17: The approximations of the Pareto front of Test problem 5 obtained by Algorithm 2 for (a) ε = 4 and (b) ε = 2

Figure 18 demonstrates approximations obtained by the Benson type algorithm with ε = 1, p̂ = (500, 500),
and d = (1, 1) and the other mentioned algorithms. This figure shows that there are regions of the Pareto
front such that the points obtained by the WC, Benson type, DE, SMS-EMOA, and NSGA-II algorithms are
not evenly distributed on the regions.

The results of Algorithm 2 with ε = 2 and the other algorithms for Test problem 5 are given in Table
7. The results indicate that Algorithm 2 can obtain the best results with the least number of the function
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evaluations per each obtained solution, shortest CPU time, and least values of EX and EV among all the
algorithms.

Figure 18: The approximations of the Pareto front of Test problem 5 obtained by the six algorithms

Table 7: The numerical results of the seven algorithms for Test problem 5
Method NS NSOP EV EX P C(Al12,S) C(S,Al12) FE/NS CPU
Algorithm 2 110 110 0.2001 0 1 0 0 20.06 2.02
NC 100 102 0.3691 2.7908 0.9900 0 0 38.14 3.79
WC 188 204 2.2530 2.6075 1 0 0 82.77 6.85
Benson type 98 198 0.6055 15.4510 1 0 0 49.99 3.74
DE 47 - 1.2976 20.9472 0.2340 0.9787 0 425.53 0.65
SMS-MOEA 100 - 0.5539 8.4234 1 0 0 200.00 20.04
NSGA-II 100 - 0.8172 0 0.6200 0.4600 0 200.00 216.19

5. Algorithm 3 for solving nonlinear FP problems

In this section, the problem (1) is considered in the general case, i.e., the functions f (x), 1(x), and hi(x),
i = 1, . . . ,m, are nonlinear convex or non-convex functions. We describe how to adjust Algorithm 2 to solve
the problem (1) and to obtain its ε−optimal solution. At first, calculate the ideal point, nadir point, and two
anchor points of the bi-objective problem (3) corresponding to the problem (1) and consider a point b such
that yN 5 b. Two sets A and B are defined as same as Algorithm 2, i.e., A consists of reference points and
initially includes the ideal point and B consists of points corresponding to the reference points and initially
includes the point b. Algorithm 3 examines that the ideal point is feasible or not. If this point is feasible, it
is a global optimal solution of the problem (5), otherwise the following steps are done.
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Algorithm 3 begins with the ideal point and b, and consider Y0 = {y′ ∈ R2
| yI +R2

= 5 y′ 5 b−R2
=}which

YN ⊆ Y0. Set k := 0 and consider LB0 := min{Z(a) | a ∈ A}, and UB0 := Z(b) as an initial lower bound value
and an initial upper bound value, respectively. In addition, the value of the function Z of the problem (5) is
calculated at the anchor points and a minimum of these two values is considered as Z∗. An approximation
error ε > 0 is determined as the stop condition.

At iteration k, a reference point ak
∈ A and its corresponding point bk

∈ B are selected such that
Z(ak) := min{Z(a) | a ∈ A and Z(a) < UBk}. Set A := A\{ak

} and B := B\{bk
}, and obtain (xk, tk) as an

optimal solution of SP(ak, rk) in which rk := bk
−ak

‖bk−ak‖2
is the normalized direction vector. Then, a (weakly)

non-dominated point F(xk) = ( f (xk),−1(xk)) and yk := ak + tkrk are earned. If Z(F(xk)) < UBk, UBk will be
updated to Z(F(xk)). Besides, if UBk − LBk ≤ ε and Z∗ < UBk, then set UBk := Z∗, an ε−optimal solution of
the problem (5) is the anchor point corresponding to Z∗ and Algorithm 3 terminates. If UBk − LBk ≤ ε and
Z∗ > UBk, then Algorithm 3 terminates. Otherwise, do the following steps:

• If ak < yk, then add new reference points (yk
1, a

k
2) and (ak

1, y
k
2) to A and add their corresponding points

(bk
1,F2(xk)) and (F1(xk), bk

2), respectively, to B and set Yk := Yk−1
\Rk in which a rectangle Rk is defined as

{y′ ∈ R2
| ak +R2

= 5 y′ 5 yk
−R2

=}. It should be noted that each reference point and its corresponding
point are distinct from ak and bk, respectively.

• Set LBk = min{Z(a) | a ∈ A}. If UBk − LBk ≤ ε and Z∗ < UBk, then set UBk := Z∗ and an ε−optimal
solution of the problem (5) is the anchor point corresponding to Z∗ and Algorithm 3 terminates. If
UBk − LBk ≤ ε and Z∗ > UBk, then Algorithm 3 terminates. Otherwise, set k : k + 1 and the algorithm
will be repeated.

In Algorithm 3 summarized as follows, xc is an ε−optimal solution of the problem (1), yc is an ε−optimal
solution of the problem (5), and Z(yc) is an ε−approximate of the optimal objective value of the problem
(1).

Algorithm 3: an algorithm for solving nonlinear FP problems

Initialisation:

• Choose ε > 0, the ideal point, nadir point, and two anchor points are obtained and select b such that
yN 5 b. If the ideal point is feasible, then set yc := yI and a global optimal solution of the problem (1)
is a solution corresponding to yI in the decision space.

• Calculate Z∗ that x′ and y′ are solutions corresponding to Z∗ in the decision space and objective space,
respectively. Set LB0 := Z(yI), UB0 := Z(b), A := {yI

}, B := {b}, and k := 0.

Main iteration repeat:

1. Choose ak
∈ A and its corresponding point bk

∈ B such that Z(ak) := min{Z(a) | a ∈ A and Z(a) < UBk}. Set
rk := bk

−ak

‖bk−ak‖2
. Obtain the points F(xk) := ( f (xk),−1(xk)) and yk := ak +tkrk such that (xk, tk) := ar1SP(ak, rk).

Set A := A\{ak
} and B := B\{bk

}.
2. If Z(F(xk)) < UBk, then set UBk := Z(F(xk)), yc := F(xk), and xc := xk.
3. If UBk − LBk ≤ ε and Z∗ < UBk, then set UBk := Z∗, yc := y′, xc := x′ and stop. If UBk − LBk ≤ ε and

UBk ≤ Z∗, then stop. Otherwise do Step 4.
4. If ak

≤ yk, then reference points (yk
1, a

k
2) and (ak

1, y
k
2) are added to A and their corresponding points

(bk
1,F2(xk)) and (F1(xk), bk

2), respectively, are added to B. Set LBk := min{Z(a) | a ∈ A}. If UBk − LBk ≤ ε,
then check Step 3. Otherwise, set k := k + 1, UBk := UBk−1, LBk := LBk−1, and go to Step 1.

In Algorithm 3, Z(ak) is used to update the lower bound values and YN ⊆ Yk for each k. A minimum
value of the function Z on the set Yk is related to a reference point in A. Therefore, it is clear that LBk is
always a lower bound for the objective function value of the problem (1) and Yk

⊆ Yk−1 for each iteration k.
As a result, LBk−1 ≤ LBk. In addition, Z(F(xk)) is used to update the upper bound value, and UBk is always
an upper bound for the objective function value of the problem (1) and UBk ≤ UBk−1 at iteration k.
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Theorem 5.1. Let the functions f (x) and −1(x) be continuous and bounded from below on the set X and Algorithm
3 be infinite. Then, it generates a sequence {F(xk)} of the feasible solutions of the problem (5) such that there exists at
least an accumulation point and every accumulation point is a global optimal solution of the problem (5) and

lim
k→∞

UBk = lim
k→∞

LBk = in f {Z(y) | y ∈ Y′}.

Proof. Since Algorithm 3 is infinite, it generates an infinite sequence {F(xk)} such that F(xk) ∈ Y′N. In addition, by
considering F(xk) ∈ Y0, this infinite sequence is bounded and it has at least an accumulation point such as F∗. It will
prove that F∗ is a global optimal solution of the problem (5).

For this purpose, it is shown that sequences {ak
} of reference points, {r′k} of normalized direction vectors and {t′k}

of real numbers are constructed such that F(xk) = ak + t′kr′k. At iteration k, if F(xk) is along rk, then F(xk) = ak + tkrk

and set r′k = rk and t′k = tk. If F(xk) is not along rk, i.e., F(xk) ≤ ak + tkrk, then there are a vector r′k and a real number
t′k such that t′kr′k ≤ tkrk and F(xk) = ak + t′kr′k. On the other hand, {Rk

} is a bounded sequence of distinct sets in
the rectangle Y0. Consider sk as the area of the rectangle Rk. In this case, since

∑
∞

k=1 sk is smaller than the area of Y0,∑
∞

k=1 sk is convergent and hence, limk→∞ sk = 0. Since r′k is the normalized vector, when k → ∞, t′kr′k → 02. By
according to the convergence of the sequence {F(xk)}, {ak

} is convergent. Let {ak
} converge into a∗, then F∗ = a∗ ∈ Y′.

Furthermore, the sequence {Z(ak)} is non-decreasing and bounded and the sequence {Z(F(xk))} is non-increasing and
bounded in Algorithm 3. Therefore, these sequences are convergent and limk→∞UBk = limk→∞ LBk = Z(F∗).

On the other hand, if ŷ be a global optimal solution of the problem (5), then LBk ≤ Z(ŷ) ≤ UBk. Therefore,
Z(ŷ) = Z(F∗), Z(F∗) = in f {Z(y) | y ∈ Y′}, and the proof is completed.

Theorem 5.2. If ε > 0, then Algorithm 3 is terminated after a finite number of iterations at an ε−optimal solution
of the problem (5).

Proof. Assume ε > 0 and this algorithm is infinite. In this case, according to Theorem 5.1:

lim
k→∞

UBk = lim
k→∞

LBk = in f {Z(y) | y ∈ Y′}.

Since ε > 0, according to steps 3 and 4 of Algorithm 3, there is an integer number k̄ sufficiently large such that
UBk̄ − LBk̄ < ε. In this case, Algorithm 3 terminates and it is a contradiction to the assumption that the algorithm is
infinite. Since the proposed algorithm is finite, assume that it stops at the kth iteration. According to the steps 3 and
4 from the termination condition: UBk − LBk < ε. Therefore, Z(F(xk)) < ε + LBk.

Let y∗ be an optimal solution of the problem (5), then LBk ≤ Z(y∗) ≤ Z(F(xk)) = UBk and as a result, Z(y∗) ≤
Z(F(xk)) < ε + LBk ≤ ε + Z(y∗). Therefore,

Z(y∗) ≤ Z(F(xk)) ≤ ε + Z(y∗),
and it means F(xk) is an ε−optimal solution of the problem (5) and xk is an ε−optimal solution of the problem (1).

It is worth noting that Algorithm 3 has some advantages to Algorithm 1 such as:

1. Algorithm 3 does not need to assume that the functions f (x), −1(x), and hi(x), i = 1, . . . ,m, are convex
and continuously differentiable on X.

2. Algorithm 3 does not need to specify vertices of polyhedrons and it leads to improve in the CPU
times.

3. Algorithm 1 solves two SOPs at each iteration, while Algorithm 3 considers only an SOP at each
iteration.

4. Algorithm 3 can be applied to non-convex FP problems.

5.1. Numerical results of Algorithm 3
In this section, the efficiency of Algorithm 3 is examined by six numerical examples. At first, Example

3.3 is considered. Algorithm 2 obtains 45 points of a bi-objective problem corresponding to Example 3.3
at 0.31 seconds and 702 function evaluations by considering the second condition with ε = 0.2. Figure 19
indicates that the points obtained by Algorithm 2 covering the entire Pareto front.
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Figure 19: The approximation of the Pareto front of the bi-objective problem corresponding to Example 3.3 obtained by Algorithm 2

Algorithm 3 obtains an ε−optimal solution of this problem at five iterations by considering ε = 0.0025,
b = yN, LB0 = 0.0556, UB0 = 0.3571, and Z∗ = 0.071429. Figure 20 displays the set A, set B, and point F(xk) of
Algorithm 3 at four iterations. After five iterations, the upper bound value is 0.0701161, which is less than
Z∗, the lower bound value is 0.0684148 and the difference between these two bounds is less than 0.0025.
Therefore, yc = (1.0168,−14.5018) and xc = 0.1296 are ε− optimal solutions of this example in the decision
space and the objective space, respectively. The CPU time is 0.0611 seconds.

Figure 20: Illustration of four iterations of Algorithm 3 for Example 3.3

Table 8 reports the reference point ak, direction vector rk, point F(xk), UBk, and LBk at five iterations. As
seen in this table, the upper and lower bound values are very close to each other at each iteration of the
algorithm.
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Table 8: The results obtained by Algorithm 3 at five iterations for Example 3.3
Iteration yk ak F(xk) UBk LBk
k=0 (0, -18) (0.7071, 0.7071) (2, -17) 0.1176 0.0588
k=1 (1, -17) (0.3162, 0.9487) (1.3377, -15.9868) 0.0837 0.0626
k=2 (1, -15.9868) (0.1676, 0.9859) (1.1214, -15.2724) 0.0734 0.0655
k=3 (1, -15.2724) (0.0950, 0.9955) (1.0449, -14.8024) 0.0706 0.0676
k=4 (1, -14.8024) (0.0558, 0.9984) (1.0168, -14.5018) 0.0701 0.0684

Table 9 shows the results of Algorithm 1 and Algorithm 3 for Example 3.3. According to this table,
Algorithm 3 is able to find a better objective value of Example 3.3 than Algorithm 1 and the number of SOPs
and CPU time of Algorithm 3 are less than Algorithm 1.

Table 9: Comparing the results obtained by Algorithm 1 and Algorithm 3 for Example 3.3
Algorithm Z(yc) NS NSOP CPU
Algorithm 1 0.070132 4 12 1.22
Algorithm 3 0.070116 5 9 0.06

Now consider Example 3.4. Algorithm 2 obtains 33 points of a bi-objective problem corresponding to
Example 3.4 at 0.23 seconds and 600 function evaluations by considering the first condition with ε = 10.
Figure 21(a) demonstrates that Algorithm 2 generates an approximation of the Pareto front which its points
cover the entire Pareto front almost uniformly. In addition, Algorithm 3 considers ε = 0.001, b = (230,−10),
and Z∗ = 3.217391. An upper bound value in the ninth iteration is 3.217392, which is greater than Z∗.
Therefore, UB9 = 3.217391 is an ε−approximate of the optimal objective function value of Example 3.4 and
(0.5, 5) is an ε−optimal solution of this example. Furthermore, the CPU time is 0.1623 seconds. Figure 21(b)
illustrates points F(xk) obtained by Algorithm 2 in the objective space.

Figure 21: (a) The approximation of the Pareto front of the bi-objective problem corresponding to Example 3.4 obtained by Algorithm
2 and (b) points F(xk) derived from Algorithm 3 for Example 3.4

Table 10 reports the results of Algorithm 1 and Algorithm 3 for Example 3.4. Based on these results, they
obtain the same solution for this example and the CPU time of Algorithm 3 is less than that of Algorithm 1.

Table 10: Comparing the results obtained by Algorithm 1 and Algorithm 3 for Example 3.4
Algorithm Z(yc) NS NSOP CPU
Algorithm 1 3.217391 4 12 3.23
Algorithm 3 3.217391 9 13 0.16

Figure 22(a) shows an almost uniform approximation of the Pareto front of a bi-objective problem
corresponding to Example 3.5 obtained by Algorithm 2. It obtains 34 points at 0.23 seconds and 746
function evaluations by considering the second condition with ε = 0.7. In addition, Algorithm 3 considers
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b = yN = (13,−1.12), ε = 0.001, and Z∗ = 0.178571. It obtains 0.162279 as an ε−optimal value of the objective
function corresponding to yc = (0.2195,−1.3501) and xc = (0.4617, 1.5382) at 0.35 seconds and 37 iterations.
Figure 22(b) shows points F(xk) obtained by the proposed Algorithm 3 in the objective space.

Figure 22: (a) The approximation of the Pareto front of the bi-objective problem corresponding to Example 3.5 obtained by Algorithm
2 and (b) points F(xk) derived from Algorithm 3 for Example 3.5

The results of Algorithm 1 and Algorithm 3 for Example 3.5 are shown in Table 11. As seen in this table,
Algorithm 3 can obtain a better objective function value and less CPU time than Algorithm 1. Besides the
number of SOPs of Algorithm 1 is less than that of Algorithm 3.

Table 11: Comparing the results obtained by Algorithm 1 and Algorithm 3 for Example 3.5
Algorithm Z(yc) NS NSOP CPU
Algorithm 1 0.162305 6 10 2.64
Algorithm 3 0.162278 37 41 0.35

Example 5.3. Consider the following FP problem:

min
x2

1 + 1

x2
2 + 1

s.t. x2
1 + 2x3 ≥ 1,

0 ≤ x1, x2, x3 ≤ 2.

In a bi-objective problem related to this example, (0, 2, 0.5) is a solution corresponding to yI = (1,−5), in the
decision space. Since this solution is a feasible point, it is an optimal solution of Example 5.3 which its objective
function value is 0.2.

Example 5.4. Consider the following concave FP problem:

min
f (x)
1(x)

=
2x2

x2
2 + 1

s.t. 0 ≤ 2x1 + x2
2 ≤ 2,

x1, x2 ≥ 0.01,

where f (x) is an affine function and 1(x) is a convex function. Algorithm 2 obtains 19 points of a bi-objective problem
corresponding to Example 5.4 at 0.13 seconds and 353 function evaluations by considering yI = (0.0200,−2.9800)
and yN = (2.8142,−1.0000), and the second condition with ε = 0.25, see Figure 23(a). In addition, Algorithm 3
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considers LB0 = 0.0067, UB0 = 2.8140, ε = 0.0025, b = (2.8142,−1), and Z∗ = 0.019998. An upper bound value at
the fourth iteration is 0.020003, which is greater than Z∗. Hence, Algorithm 3 earns Z∗ as an ε−approximate of the
optimal objective function value of this example corresponding to yc = (0.0200,−1.0001) and xc = (0.9999, 0.0100)
at 0.0457 seconds and four iterations. Figure 23(b) shows points F(xk) obtained by Algorithm 3 in the objective space.

Figure 23: (a) The approximation of the Pareto front of the bi-objective problem corresponding to Example 5.4 obtained by Algorithm
2 and (b) points derived from Algorithm 3 for Example 5.4

Example 5.5. Consider the following nonlinear FP problem:

min
f (x)
1(x)

=
x1 + x2 + 1
6x2

1 + ex2

s.t. x2
2 + x2 ≥ x2

1,

x1, x2 ≥ 1,

where f (x) is an affine function, 1(x) is a convex function and the constraint function h(x) = x2
1−x2

2−x2 is non-convex.
The points (1,−7.8553) and (2.6180,−1) are the ideal and nadir points of a bi-objective problem corresponding to
Example 5.5, respectively. Algorithm 2 obtains 33 points at 0.21 seconds and 664 function evaluations by considering
the second condition with ε = 0.025. Figure 24(a) illustrates the points obtained by Algorithm 2 which cover the
entire Pareto front almost uniformly. Algorithm 3 considers LB0 = 0.1273, UB0 = 2.6180, ε = 0.05, b = yN, and
Z∗ = 1. In addition, it obtains an ε−optimal objective function value equal to 0.286264, yc = (1.9984,−6.9810), and
xc = (0.9984, 0). Besides, this algorithm finds this solution at 0.0220 seconds and three iterations. Figure 24(b) shows
points F(xk) obtained by Algorithm 3 for Example 5.5 in the objective space.

Figure 24: (a) The approximation of the Pareto front of the bi-objective problem corresponding to Example 5.5 obtained by Algorithm
2 and (b) points F(xk) derived from Algorithm 3 for Example 5.5
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Figure 25 displays the set A, set B, and point F(xk) of Algorithm 3 obtained at three iterations.

Figure 25: Illustration of three iterations of Algorithm 3 for Example 5.5

Remark 5.6. Algorithm 3 may obtain a weakly non-dominate point y = (y1, y2) which it is not a non-dominate point
and is an ε−optimal solution of the problem (5), see Theorem 5.2. Besides, it is obvious that there is a non-dominate
point such as y′ such that y′ ≤ y and Z(y′) < Z(y). Consider the following bi-objective optimization problem:

min f (x) = ( f1(x), f2(x))T

s.t. x ∈ X.

For obtaining the point y′, it is enough two following problems P1 and P2 are solved:

min f1(x)
s.t. f1(x) ≤ y1, (P1)

f2(x) ≤ y2,

x ∈ X.

min f2(x)
s.t. f1(x) ≤ y1, (P2)

f2(x) ≤ y2,

x ∈ X.

By solving the problems P1 and P2, two optimal solutions x1 and x2 are obtained, respectively. Then, between the
points y1 = f (x1) and y2 = f (x2), a point which do not dominate by another point is the point y′, see Figure 26.
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Figure 26: Solving the problems P1 and P2 and obtaining the points y1 and y2 for a bi-objective problem

6. Conclusions

In this paper, it was shown that an optimal solution of a FP problem is a Pareto optimal solution of
its corresponding bi-objective problem. Then, Algorithm 1 and Algorithm 3 were presented to solve FP
problems and proved that these algorithms guarantee to find an ε−optimal solution with considering a
specified approximation error ε. Algorithm 1 is based on the cut and bound method for solving convex FP
problems and assumed that the objective functions and constraint functions are convex and continuously
differentiable on X. Then, Algorithm 2 based on the PS approach was proposed to obtain approximations
of the Pareto front of bi-objective optimization problems with convex, non-convex, connected, and discon-
nected Pareto fronts. In addition, it was shown that Algorithm 2 is able to find a set of non-dominated
points that covers almost uniformly the entire Pareto front. The results of Algorithm 2 on five test problems
indicated that approximation obtained by this algorithm has a better quality than the NC, WC, Benson
type, DE, NSGA-II, and SMS-EMOA algorithms. Finally, Algorithm 3 based on Algorithm 2 was presented
to solve convex and non-convex FP problems for the first time.
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