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Abstract. The present paper studies certain low-level separation axioms of a topological space, denoted
by A(X), induced by a geometric AC-complex X. After proving that whereas A(X) is an Alexandroff space
satisfying the semi-T 1

2
-separation axiom, we observe that it does neither satisfy the pre T 1

2
-separation axiom

nor is a Hausdorff space. These are main motivations of the present work. Although not every A(X) is a
semi-T1 space, after proceeding with an edge to edge tiling (or a face to face crystallization) of Rn,n ∈ N,
denoted by T(Rn) as an AC complex, we prove that A(T(Rn)) is a semi-T1 space. Furthermore, we prove that
A(En), induced by an nD Cartesian AC complex Cn = (En,N, dim), is also a semi-T1 space, n ∈ N. The paper
deals with AC-complexes with the locally finite (LF-, for brevity) property, which can be used in the fields
of pure and applied mathematics as well as digital topology, computational topology, and digital geometry.

1. Introduction

The well-known Alexandroff space X [1], i.e. every point x ∈ X has the smallest open neighborhood of x,
plays an important role in the fields of pure and applied topology as well as computational topology. Thus
the works [14–16] have intensively studied about locally finite spaces with a special kind of axioms, the
so called axiomatic locally finite (ALF, for short) spaces based on an abstract cell (AC for brevity) complexes
[24, 29]. Indeed, AC complexes, cell complexes and simplicial complexes have been often used for studying
digital (or discrete) spaces in computer imaginary and discrete (or digital) geometry [16, 30, 31]. Unlike
simplicial and cell complexes in geometric topology, the present paper deals with AC complexes and an
edge to edge tiled space or a face to face crystallized spaces of the Euclidean n-dimensional space Rn from
the viewpoint of computational topology.

The papers [3, 5, 7, 18, 19, 21] introduced the notions of T 1
2
-separation axiom, preopen set, preclosed

set, semi-open set, semi-closed set, and nowhere dense set. Motivated by these notions, the present paper
proves that a topological space, denoted by A(X), derived from a geometric AC-complex X is an Alexandroff
space satisfying the semi-T 1

2
-separation axiom instead of the pre-T 1

2
-separation axiom. Furthermore, let us
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denote T(Rn) by an edge to edge tiled (or face to face crystallized) space of Rn,n ∈ N, as an AC-complex.
Then A(T(Rn)) is proved to be a semi-T1 space. Besides, the paper studies some properties of an A(X).

The rest of this paper is organized as follows: Section 2 investigates some properties of smallest open
neighborhoods of elements of AC complex. Besides, it also refers to several examples for AC complexes
over the n-dimensional real space via their edge to edge tilings and face to face crystallizations. Section 3
investigates some topological properties of A(X). Section 4 studies some properties of a certain singleton of
A(X) related to a semi-open and a semi-closed set. Furthermore, it studies low-level separation axioms of
A(X). In addition, we prove that A(X) is a good example showing that the semi-T 1

2
-separation axiom need

not imply the pre-T 1
2
-separation axiom. Section 5 concludes the paper with a summary.

Based on AC complexes, Kovalevsky [15] developed an ALF space [29]. The author [6] also studied
some properties of ALF spaces. Let R, Z, and N be the sets of real numbers, integers, and natural numbers,
respectively. For a, b ∈ Z we use the notation [a, b]Z := {x ∈ Z | a ≤ x ≤ b}. For a set X we follow the notation
|X| as the cardinality of the set. In order to establish a special kind of neighborhood space, we shall use
various properties of the tiling (or tessellation) of the plane [2], a face to face quasi-crystallization of the 3
dimensional real space [26] and an (n − 1) dimensional face to face quasi-crystallization of Rn,n ≥ 4. The
recent paper [4] proved that an Alexandroff space satisfying the T0-separation axiom is a semi-T 1

2
space.

But the converse does not hold. Thus we have the following queries.
[Question] (1) What is an Alexandroff space satisfying the semi-T 1

2
-separation axiom ?

(2) What separation axiom characterizes A(X) ?
(3) For A(X), what about the preopen property ?
(4) For a given A(X), under what condition does a semi-T 1

2
space imply a semi-T1 space ?

(5) What is a locally finite space satisfying the semi-T1-separation axiom ?
The neighborhood was developed in a way characteristic for a so-called neighborhood space described

in [25]. Indeed, the original neighborhood space was based on the notion of abstract cell complex established
by J. Listing [20], E. Steinitz [28], A.W Tucker [29] and K. Reidemeister [24]. Unlike an abstract cell complex
C := (E,B, dim) [15], where E is an abstract set, B is a bounding relation [15, 16] among the elements of E
and dim is a function assigning a non-negative integer to each element of E.

The present paper prefers to the neighborhood relation for establishing an abstract cell complex (see
Definition 2.1, Proposition 2.11, and Definition 2.10).

Before studying an abstract cell complex, we need to establish a certain criteria for both elements of an
abstract cell complex and the neighborhoods of e ∈ E, as follows:

(2-1) Any element (or cell) of an abstract cell complex is not a subset of another element (or cell).
(2-2) We follow the notion of neighborhood space in the book [25] (see the Axioms A and B below).

Indeed, the book [25] takes only two axioms for a neighborhood space such as Axiom A and Axiom B below.
A finite or an infinite nonempty set of mathematical objects, which will be called points (or elements), is
called a neighborhood space if, to each point, certain subsets are assigned as neighborhoods of that point;
these neighborhoods must satisfy both of the following axioms:
Axiom A: Each element p of a neighborhood space has at least one neighborhood; each neighborhood of p
contains p.

If E is a neighborhood space, a neighborhood of p is denoted by N(p |E) (or N(p) if there is no danger of
ambiguity).
Axiom B: Given a neighborhood N(p |E), each subset of E containing this neighborhood is also a neighbor-
hood of p.

At the moment the terminology “neighborhood” need not be a topological neighborhood.

2. Smallest Neighborhoods of Elements of an AC Complex

By using this neighborhood relation, we can represent an AC complex, as follows:

Definition 2.1. ([6, 15]) An abstract cell (for short, AC) complex C := (X,N, dim) is a nonempty set X of
elements provided with
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(1) a reflexive, antisymmetric and transitive binary relation N ⊂ X×X called the neighborhood relation,
where a is an element of a neighborhood of b if (a, b) ∈ N, and

(2) a dimension function dim: X → I from X into the set I of non-negative integers such that (a, b) ∈ N
implies dim(a) ≥ dim(b).

In Definition 2.1 if for x ∈ X, dim(x) = i, then:
(2.1): x is called an i-dimensional cell (or i-cell, for brevity) denoted by ci

j ∈ X = {ci
j | i ∈ M, j ∈ M′i }

(see Fig.1(f)) and the subscript j of the cell means the only index for discriminating the i-dimensional cells,
where the index set M is finite and M′i need not be finite. For instance, as shown in Fig.1(f), as an example
we can suggest a 0-, 1-, 2-, 3-cell of an AC complex [14–16]. Besides, we can see the dimension property of
Definition 2.1 from the objects in Fig.1 (a) and (b) (see Example 3.2 of the present paper).

(2.2): In case there is no confusion, we may denote ci instead of ci
j by the i-cell for short. Besides,

depending on the situation, we may use a more convenient notation if there is no confusion (see Fig.1).
(2.3): In view of Definition 2.1(2), the neighborhood relation N of an AC complex C := (X,N, dim) is not a

simple partial order. We need to remind that it is associated with the function “dim” from Definition 2.1(2).
(2.4): Although an element of an AC-complex can be objects or set or ordinary element of set theory and

so forth, the present paper focuses only on geometric objects.
(2.5): Hereafter, we denote a ≤ b by the relation (a, b) ∈ N satisfying the properties (1) and (2) of Definition

2.1. Then the AC-complex of Definition 2.1 can be considered to be a special kind of partially ordered set (for
short, poset) denoted by (X,≤).
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Figure 1: (a) Example of an AC-complex with fifteen elements such as five 0-cells, seven 1-cells and three 2-cells; (b) Another AC-
complex with seventeen elements; (c)-(e) Based on the AC-complex in (b), examples of several types of smallest open neighborhoods
SN(p1),SN(c2) and SN( f2) of the given elements p1, c2 and f2, respectively; (f) Examples of n-cells, n ∈ [0, 3]Z.

As mentioned in (2.1) above, the complex is called “abstract” since its elements called “cells” are not
subsets of a Hausdorff space as it is the case in a Euclidean and CW complex. Besides, they are neither
simplices in simplicial complexes nor cells in cell complexes. Namely, any element of an AC-complex does
not consist of a part of the other element. Unlike the number i of the i-cell in Fig.(f), it was demonstrated
that the dimension of a cell c of an abstract cell complex is equal to the length (number of cells minus 1)
of the maximum neighborhood path leading from any cell of the complex to the cell c (see Definition 3.4
of the present paper). Namely, the dimension of an element of an AC-complex depends on the situation.
Besides, it is quite distinctive from that in ordinary geometry as well as topology. The neighborhood path
is a sequence of cells in which each cell is a neighbor of the next one in terms of the relation “ ≤” from
Definition 2.1 [15] (see the property (2.5)).
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Definition 2.2. ([15, 16]) A nonempty neighborhood space E is called a locally finite (LF-, for brevity) space
if to each element e(∈ E) certain subsets of E are assigned as neighborhoods of e and some of them are finite.
Hereafter, we call this space E a neighborhood space with the LF-property, i.e., an LF-space.

Since the paper stresses on studying geometric AC-complexes from the viewpoint of computational
topology, in what follows we shall consider only neighborhood spaces satisfying the LF-property. Namely,
for a given element of an LF-space, there is the smallest neighborhood of e that is the intersection of
all neighborhoods of e. Thus each neighborhood of e contains its smallest neighborhood with a finite
cardinality. Hereafter, we shall denote SN(e) by the smallest neighborhood of e. By using this neighborhood
SN, we define the notion of neighborhood relation on an LF-space.

Definition 2.3. ([15, 16]) The neighborhood relation N on a neighborhood space E with the LF-property
is a binary relation in the set of the elements of the space E. The ordered pair (a, b) is in N if and only if
a ∈ SN(b). And it is denoted by a ≤ b as a partial relation on E.

Let us now introduce the smallest neighborhood of an element of an AC complex.

Definition 2.4. ([8]) Let C := (X,N, dim) be an AC complex. For an element a ∈ X let SN(a,X) = {b ∈ X | b ≤ a}
(for short, SN(a) if there is no confusion). Then we call SN(a) the smallest neighborhood of a in X.

In this state we need to point out that the smallest neighborhood of Definition 2.4 is used without
topology (see Fig.1(c)-(e)). Besides, we need to speak out the following: The notion of ‘bounding relation’
in an AC complex can be defined as follows: In case a , b, a ∈ SN(b), we say that ‘ b bounds a’ or ‘ a is
bounded by b’ [15].

Let us now define the terminology “adjacent (or joins)” between two cells of an AC complex, as follows:

Definition 2.5. ([6, 15]) Let C := (X,N, dim) be an AC complex. For two distinct elements a and b in X we
say that a is adjacent to (or joins) b if a ∈ SN(b) (or a ≤ b) or b ∈ SN(a) (or b ≤ a).

For instance, consider the object in Fig.1(b). Then we say that each of the 2-cells f1 and f2 is adjacent to
the 1-cell c3. Besides, each of the 2-cells fi, i ∈ {1, 2}, 1 j, j ∈ {3, 4} and the 1-cells ck, k ∈ [1, 4]Z is adjacent to
0-cell p1. Consider an AC complex C := (X,N, dim), where X := {ci

j | i ∈ M, j ∈ M′i }. According to Definitions
2.4 and 2.5, we can represent the smallest neighborhood of an element ci

j ∈ X via the notion of adjacency of
Definition 2.5, as follows:

SN(ci
j) = {ci

j} ∪ {c
i1
j1
| ci1

j1
is adjacent to ci

j, i1 > i}. (2.6)

By using the property (2.6), we obtain the following: Let C := (X,N, dim) be an AC complex, where
X := {ci

j | i ∈ M, j ∈ M′i }. Consider an element ct
j ∈ X with the maximal dimension in X. Then we have

SN(ct
j) = {ct

j}. For instance, consider the AC-complex in Fig.1(b). Since each of the 2-cells fi, i ∈ {1, 2} and
1 j, j ∈ {3, 4}has the maximal dimension 2 in the AC-complex in Fig.1(b). Hence we have SN( fi) = { fi}, i ∈ {1, 2}
and SN(1 j) = {1 j}, j ∈ {3, 4}.

Example 2.6. In Fig.1(c) we can observe that SN(p1) = {p1, ci, f j, 1k | i ∈ [1, 4]Z, j ∈ [1, 2]Z, k ∈ [3, 4]Z}, SN(c2) =
{c2, f2, 14} and SN( f2) = { f2}.

Remark 2.7. ([6]) The binary relation SN of the property (2.6) is reflexive, antisymmetric, and transitive.

The following boundary (see Definition 2.8 is a slight generalization of the earlier version of [15, 16].
More precisely, the original boundary of an element ci

j of an AC complex in [6, 15] was defined only for the
case i  1. However, the present paper considers it for the case i ≥ 0.

Definition 2.8. ([8]) Let C := (X,N, dim) be an AC complex, where X := {ci
j |i ∈M, j ∈M′i }. For each m-cell cm

in X, its boundary, denoted by ∂({cm
}) (or ∂cm), is defined as follows:

∂cm := {ci
j | c

i
j is adjacent to (or joins) cm, i � m}. In addition, for a 0-cell (or point), denoted by c0, we say

that ∂c0 = ∅.



S.-E. Han / Filomat 33:7 (2019), 1889–1901 1893

In this state we also need to point out that the notion of boundary is used without topology.

After proceeding with several types of edge to edge tilings (or face to face crystallizations) of Rn [2, 26],
we have the following example.

Example 2.9. Let T(Rn) be an edge to edge tiled (or a face to face crystallized) space of Rn,n ∈ N. Then
(T(Rn),N, dim) is an AC complex. For instance, in case n = 1, consider T(R) in Fig.3(h). Then we have T(R)
as an AC complex.
Next, in case n = 2, consider T(R2) in Fig.3(a). Then we can have T(R2) as an AC complex [9].
Finally, by using the method similar to the above approach, we can obtain an AC complex structure over
T(Rn),n ≥ 3.

It is well known that in general a poset (X,≤) induces an Alexandroff topological space with T0 separation
axiom [1, 22] induced by the set of all Ux := {x′ ∈ X | x′ ≤ x, x ∈ X} as a base.

Definition 2.10. ([6]) Let C := (X,N, dim) be an AC-complex. Let (X,B) be a binary set, where B = {SN(x) | x ∈
X}. Then we obtain the topology on X generated by the set B as a base. Then this topology is denoted by
A(X) in the present paper.

Since an AC-complex is a special kind of poset, according to Definition 2.4 and the property (2.5), we
have the following.

Proposition 2.11. Owing to the poset structure (X,≤) derived from an AC-complex C := (X,N, dim), we have an
Alexandroff topological space A(X) with T0-separation axiom generated by the set {SN(x) | x ∈ X} as a base.

For an A(X), we need to point out that the smallest neighborhood of (2.6) is exactly that of Definition
2.10 so that it is the smallest open set of an element of A(X). Furthermore, if |X| ≥ 2, then a connected A(X)
cannot be a discrete topological space [8].

3. Dimension and Topological Properties of A(X)

Let us now introduce a neighborhood path to characterize a dimension of an AC complex C := (X,N, dim).

Definition 3.1. ([6, 8, 15]) In an AC complex C := (X,N, dim), consider the following sequence

“aNbNc · · ·Nk” (3.1)

of pairwise distinct cells of X in which each cell belongs to the smallest neighborhood of the next one:
a ∈ SN(b) and a , b, i.e. (a, b) ∈ N; b ∈ SN(c) and b , c, i.e. (b, c) ∈ N etc. We shall call it the neighborhood path
from a to k. The number of cells in the sequence minus one is called the length of the neighborhood path. For
an element x ∈ X consider the longest neighborhood path containing the element x. Then the first element
(resp. the last element) of this path is called the maximal (resp. minimal) element of the given longest
neighborhood path containing the element x. Besides, for each element x ∈ X the first element (resp. the
last element) of the given longest neighborhood path containing the element x is called the maximal (resp.
minimal) element of X(or C) related to the element x.

Example 3.2. (1) For the AC complex X of Fig.2, each of 0-cells pi, i ∈ [1, 7]Z is a minimal element of X.
(2) Consider the element c4 in Fig.2. Then we have the chain f1 ≤ c4 ≤ p2 such that f1 ∈ SN(c4) and

c4 ∈ SN(p2). Hence the element f1 is the maximal element related to the element c4 and further, the element
p2 is the minimal element related to the element c4.

(3) The object X in Fig.2 has three types of maximal elements such as the 1-cell c1, the 2-cell f1 and the
3-cell, i.e. the open tetrahedron based on the elements p4, p5, p6 and p7.
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Figure 2: An explanation of a maximal element and a minimal element of an AC-complex X related to the dimension of a given
element in the AC complex C := (X,N, dim).

Remark 3.3. Owing to the property (1) of Definition 2.1, we need to point out that in the neighborhood
path of (3.1) the relation a ∈ SN(k) holds because of the transitivity of the neighborhood relation.

The notion of dimension of a cell c(∈ X) in an AC complex C := (X,N, dim) can be defined by using the
notion of neighborhood path, as follows:

Definition 3.4. ([8, 15]) Let C := (X,N, dim) be an AC complex. For c ∈ X the dimension of the cell c of C,
denoted by dim(c,C), is the length of a longest neighborhood path from c to any element of C. For a cell
that does not belong to any smallest neighborhood of another cell, its length and dimension are zero. The
dimension of an AC complex is the greatest dimension of its cells.

For instance, as mentioned in Example 3.2(2), the maximal dimension related to the elements p2, c4 and
f1 is 2. Besides, in view of Definition 3.4, the dimension of the given AC complex X of Fig.2 is three because
we have the following neighborhood path

t ≤ f2 ≤ c7 ≤ p4 or t ≤ f3 ≤ c9 ≤ p7,

where t is the open tetrahedron, which is an element of an AC-complex, generated by the elements
p4, p5, p6, and p7.

Motivated by Remark 3.3, we introduce the following:

Definition 3.5. ([10]) Consider A(X) derived from an AC complex C := (X,N, dim). Then we say that the
dimension of A(X), denoted by dim(A(X)), is that of the AC-complex inducing the given A(X).

Remark 3.6. Consider A(X) induced by an AC complex C := (X,N, dim). Then the existence of a maximal
n-cell of C := (X,N, dim) does not imply dim(A(X)) = n. For instance, consider the set {c1

j | j ∈ [1, 4]Z} := V in
Fig.3(g). Namely, the set V consists of only four 1-cells. Hence, whereas V has the maximal 1-cell, we have
dim(A(V)) = 0.

Motivated by Definitions 2.10 and 3.5, we introduce the following: For an A(X) induced by an AC
complex C := (X,N, dim) and for each element xi ∈ X, we obtain a finite and the longest neighborhood path
such as

· · · ≤ xk ≤ x j ≤ xi ≤ · · · (3.2)

satisfying both xk ∈ SN(x j), x j , xk and x j ∈ SN(xi), x j , xi and so forth. Then we say that the first element
(resp. the last element) of the path is the maximal (resp. minimal) element of A(X) (see also (3.1)).

The following statement related to the property (2.6), Definition 3.4, and the property (3.2) will be used
in Section 4.
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Hereafter, we assume that A(X) has both a maximal and a minimal element.

Proposition 3.7. Consider A(X) derived from an AC complex C := (X,N, dim), where X := {ci
j | i ∈M, j ∈M′i }. Let

ci1
j ∈ X (resp. ci2

j ∈ X) be a minimal element (resp. a maximal element) of A(X). Then each i-cell ci
j has the following

property in A(X).
(1) The singleton {ci1

j } is closed.
(2) Let the i-cell ci

j be neither a maximal element nor a minimal element. Then the singleton {ci
j} is neither open

nor closed.
(3) The singleton {ci2

j } is open.

Proof. Owing to the topological structure of A(X) established in Proposition 2.11 and Definition 2.10, the
proofs of (1) and (3) are completed. Thus we suffice to prove the assertion (2) for A(X) with dim(A(X)) ≥ 2.
Let us now prove that for each i with i1 � i � i2 the singleton {ci

j} is not open in A(X) because there is no
open set included in the singleton {ci

j} (see the property (2.6)), where i1 (resp. i2) is a minimal dimension
(resp. a maximal dimension) related to the given element ci

j.
It is clear that for each i with i1 � i � i2 the singleton {ci

j} is not closed in A(X) because X \ {ci
j} is not an

open set in A(X).

Based on the above properties of an A(X), let us now investigate some properties of A(X) related to the
T 1

2
-separation axiom. We say that a topological space (X,T) satisfies the T 1

2
-separation axiom if each singleton

as a subset of X is either open or closed in (X,T) [18]. For instance, the Khalimsky line is an example for
a topological space satisfying the T 1

2
-separation axiom, where the Khalimsky line is the topological space

on Z generated by the set {[2n − 1, 2n + 1]Z |n ∈ Z} as a subbase [12]. Then the Khalimsky line topology is
denoted by (Z, κ) [12].
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Figure 3: (a) A portion of an edge to edge tiling of R2, i.e. T(R2); (b),(d) Configuration of the T 1
2

-separation axiom of A(X)(resp. A(Z))
over the given AC complex X(resp. Z); (c) Configuration of the non-T 1

2
-separation axiom of A(Y) over the given AC complex Y (see

the element c1).

In view of Proposition 3.7, we obtain the following:

Corollary 3.8. Consider A(X) derived from an AC-complex C := (X,N, dim), where X := {ci
j | i ∈M, j ∈M′i }. Then

we obtain the following:
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(1) If dim(A(X)) ≤ 1, then A(X) satisfies the T 1
2
-separation axiom.

(2) If dim(A(X)) ≥ 2, then A(X) does not satisfy the T 1
2
-separation axiom.

Example 3.9. (1) Consider the AC complex X of Fig.3(b) with dim(A(X)) = 1 and |X | = 3. Then it is clear
that A(X) satisfies the T 1

2
-separation axiom.

(2) Consider the AC complex Z of Fig.3(d) with dim(A(Z)) = 1 and |Z | = 7. Then it is clear that A(Z)
satisfies the T 1

2
-separation axiom.

(3) Assume the AC complex Y of Fig.3(c) with dim(A(Y)) = 2. Then it is obvious that A(Y) does not
satisfy the T 1

2
-separation axiom. To be specific, the singleton {c1

}(⊂ Y) is neither open nor closed in A(Y).

4. Low-Level Separation Axioms of A(X)

This section examines if A(X) satisfies some low-level separation axioms such as pre-T 1
2
, semi-T 1

2
and

semi-T1-separation axiom. In particular, we prove that A(X) satisfies the semi-T 1
2
-separation axiom which is

weaker than the separation axiom T 1
2
. Furthermore, we investigate some conditions which make A(X) a

semi-T1 space. To do this work, let us now recall basic notions associated with low level separation axioms.
The papers [5, 18, 19, 21] introduced the notions of preopen set and semi-open or semi-closed, as follows.

Definition 4.1. ([21]) A subset B of a topological space (X,T) is called preopen ( resp. preclosed) if B ⊂
Int(Cl(B)) (resp. X \ B is preopen), where the notation “Int” means the operator ‘interior’ of a topological
space.

Definition 4.2. ([18]) A subset B is called a semi-open set of a topological space (X,T) if there is an open
set O ∈ T such that O ⊂ B ⊂ Cl(O) (or B ⊂ Cl(Int(B))). A subset F ⊂ X is called semi-closed of a topological
space (X,T) if X \ F is semi-open.

Lemma 4.3. Consider A(X) induced by an AC-complex C := (X,N, dim), where X := {ci
j | i ∈ M, j ∈ M′i }. Let ci1

j

(resp. ci2
j ) be a minimal (resp. maximal) element of A(X). Let the i-cell ci

j be neither a maximal element nor a minimal
element (i.e. i1 � i � i2). Then the singleton {ci

j} is semi-closed in A(X).

Proof. Consider the singleton {ci
j}, where ci

j is neither a maximal element nor a minimal element. According
to Proposition 3.7(2), the singleton {ci

j} is neither open nor closed, Then we obtain an open set X\Cl({ci
j}) := O

in A(X) such that

O ⊂ X \ {ci
j} ⊂ Cl(O) = X,

which implies that the singleton {ci
j} is semi-closed in A(X).

To support Lemma 4.3, as an example, consider the element c8 in the AC-complex X in Fig.2, Then the
singleton {c8} is obviously neither a maximal element nor a minimal element. Since

Cl({c8}) = {c8, p4, p7},

we have an open set O := X \ Cl({c8}) such that

O ⊂ X \ {c8} ⊂ Cl(O) = X,

which implies that the singleton {c8} is semi-closed in A(X).
Thus we may pose the following query.

[Question 2] What separation axiom characterizes A(X) ?
We will address this topic with Theorems 4.7 and 4.12, and Example 4.11 in the paper.
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Definition 4.4. ([5]) We say that a topological space (X,T) has the semi-T 1
2
-separation axiom if every

singleton of X is either semi-open or semi-closed.

By Proposition 3.7 and Lemma 4.3, we obtain the following:

Proposition 4.5. The topological space A(X) satisfies the semi-T 1
2
-separation axiom.

At this moment, we may pose the following query.

[Question 3] Under what condition does a semi-T 1
2

space imply a semi-T1 space ?

Definition 4.6. ([5]) We say that a topological space (X,T) has the semi-T1-separation axiom if every sin-
gleton of X is semi-closed. The space (X,T) is called a semi-T1 space.

Unlike Proposition 3.7(3), A(T(Rn)),n ∈ N, has the following property.

Theorem 4.7. A(T(Rn)) is a semi-T1 space, n ∈ N.

Proof. By using Proposition 3.7, it is obvious that first of all the singleton {c0
j } of A(T(Rn)) is not semi-open

but semi-closed. Second, for each i-cell ci
j of A(T(Rn)), 0 � i � n,n ∈ N which is neither a maximal element

nor a minimal element, we see that the singleton {ci
j} is semi-closed (see Proposition 3.7). Third, although

the singleton {cn
j } is semi-open (see Proposition 3.7(3)), in particular, we need to further prove that it is also

semi-closed in (A(T(Rn)),n ∈ N.
To be precise, indeed, A(T(Rn)) \ {cn

j } is semi-open according to the following property with A(T(Rn)) \
Cl({cn

j }) := O

O ⊂ A(T(Rn)) \ {cn
j } ⊂ Cl(O) = A(T(Rn)) \ {cn

j }, (4.1)

because Cl({cn
j }) = {{cn

j }} ∪ ∂({cn
j }), which implies that {cn

j } is a semi-closed subset of A(T(Rn)).

To support Theorem 4.7, let us examine the proof of the property (4.1) in A(T(R)), A(T(R2)) and
A(T(Rn)),n ≥ 3, as follows.

(Case 1) Let us take any singleton {c1
j } ⊂ A(T(R)) such as the singleton {c2} consisting of the element

c2 ∈ T(R) in Fig.3(h). Then, to guarantee the property (4.1), putting O := A(T(R)) \ Cl({c2}) = {c1, c3} as an
open set, we have the following property

O ⊂ A(T(R)) \ {c2} ⊂ Cl(O) = A(T(R)) \ {c2}, (4.2)

which implies that the singleton {c2} is semi-closed in A(T(R)).
(Case 2) Let us take any singleton {c2

j } ⊂ A(T(R2)) such as the singleton { f1} consisting of the element
f1 ∈ T(R2) in Fig.3(f). Then, to support the property (4.1), putting O := A(T(R2)) \ Cl({ f1}) as an open set
because Cl({ f1}) = { f1, c1

1, c
1
4, c

0
}, we have the following property

O ⊂ A(T(R2)) \ { f1} ⊂ Cl(O) = A(T(R2)) \ { f1}, (4.3)

which implies that the singleton { f1} is semi-closed in A(T(R2)).
(Case 3) Let us take any singleton {cn

j } ⊂ A(T(Rn)),n ≥ 3. Then, by using the similar method as that of
Cases 1 and 2, we conclude that the singleton { f1} is semi-closed in A(T(Rn)).

Owing to Proposition 3.7 and Lemma 4.3, we obtain the following:

Corollary 4.8. (1) An A(X) with dim(A(X)) = 0 is a semi-T1 space.
(2) A connected A(X) with dim(A(X)) = 1 with |X | = 2 is not a semi-T1 space.
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Proof. (1) By Theorem 4.7, the assertion is trivial.
(2) Under the hypothesis, not every each singleton of A(X) is semi-closed. For instance, consider the

singleton {c} in Fig.3(e). Then it is not semi-closed in A(X) because X \ {c} is not semi-open. To be specific,
since the biggest open set contained in X \ {c} is the empty set, X \ {c} is not semi-open.

Owing to Corollary 4.8(2), we conclude that A(X) with dim(A(X)) ≥ 1 need not be a semi-T1 space.
Namely, it turns out that not every A(X) is a semi-T1 space, which makes us further study some properties
of A(X) related to the semi-T1-separation axiom. To perform topological and geometrical calculations with
abstract cell complexes, it is necessary to assign “names” to the cells. One of the possibilities of doing this
consists in introducing coordinates. Consider an AC complex C = (E,N, dim) whose elements compose a
sequence E = (e0, e1, e2, · · · , e2m),m ≥ 1 (see Fig.4(a) with ei := i). The smallest neighborhoods SN(ei) are the
following [8, 15]: {

SN(ei) = {ei−1, ei, ei+1} ∩ E, if i is even and
SN(ei) = {ei}, if i is odd.

}
(4.4)

The dimension of ei is defined according to Definition 3.5:
dim(ei) = 0 if i is even and dim(ei) = 1 if i is odd. Thus C becomes a one-dimensional AC complex

consisting of a single adjacent path (see Definition 2.1). We shall call such a complex a path complex [15].
We now provide a path complex C with a coordinate function X : E → I(⊂ Z) assigning subsequent

integers (not necessarily positive) to subsequent cells of E in such a way that a cell of dimension 0 (a 0-cell
for short) obtains an even number while a cell of dimension 1 (1-cell) obtains an odd one. We call the
numbers combinatorial coordinates in C [15].

Definition 4.9. ([15]) A combinatorial coordinate axis A = (E,X) is a one-dimensional path complex pro-
vided with a coordinate function X : E→ I(⊂ Z) assigning subsequent integers to subsequent cells of E. It
is also called a coordinate axis for short.

In view of Definition 4.9, it is obvious that dim(A(E)) = 1.
To address the above Question 2, we need to recall the Cartesian product of n combinatorial coordinate

axes in [8, 16]. It possesses the product topology derived from the topology over a coordinate axis in terms
of the smallest neighborhood suggested in (2.6), as follows:

Definition 4.10. ([8, 15]) An nD Cartesian AC complex Cn = (En,N, dim) is the Cartesian product of n
combinatorial coordinate axes Ai = (Ei,Xi); i = 1, 2, · · · ,n; provided with a coordinate function Xn on the set
En = E1×E2×· · ·×En. A cell c of Cn is an n-tuple, i.e. an ordered sequence of cells ai of the axes: ai ∈ Ai. For an
n-tuple c = (a1, a2, · · · , an) ∈ En we define its smallest neighborhood as SN(c) = SN1(a1)×SN2(a2)×· · ·×SNn(an)
where SNi(ai) is the smallest neighborhood of ai in Ai. The coordinate function Xn : En

→ In(⊂ Zn) assigns
the n-tuple Xn(c) = (X1(a1),X2(a2), · · · ,X1(an)) to a cell c = (a1, a2, · · · , an) of En. The dimension function
dim assigns to each cell c ∈ En its dimension according to Definition 3.4. It is equal to the number of odd
coordinates Xi(ai) of c.

Example 4.11. In the subspace of the 2D combinatorial coordinate, for example see Fig.4(c), we name the
2-cells f1 := (1, 7), f5 := (5, 1), etc. Besides, we name the 1-cells c1 := (1, 6), c5 := (5, 2) and so forth. In
addition, we also name the 0-cells p1 := (2, 4) and p2 := (4, 2).

As we can see several examples for subsets of the combinatorial coordinate and the Cartesian product of
n combinatorial coordinate axes, we may have the notation such as ei := i and (ei, e j) := (i, j) for convenience.

Unlike Corollary 4.8, in case dim(A(X)) = 1 with |X | = ℵ0, we have the following:

Theorem 4.12. Consider A(En) induced by an nD Cartesian AC complex Cn = (En,N, dim). Then A(En) is a
semi-T1 space, n ∈ N.
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Figure 4: (a) A portion of the one dimensional combinatorial coordinate with ei := i ∈ Z [15]; (b) A portion of the 2D combinatorial
coordinate with ei := i and (ei, e j) := (i, j); (c) A finite portion of an A(E2); (d) An infinite subset of the one dimensional combinatorial
coordinate, i.e. L := {ei | i ∈ N}; (e) A finite subset of the one dimensional combinatorial coordinate, i.e. F := {ei | i ∈ [1, 2n + 1]Z}.

Proof. First, since the singleton {(e2i1 , e2i2 , · · · , e2in )} is a closed set in A(En), it is semi-closed because it
is minimal element of A(X) (Proposition 3.7(1)). Second, since dim(A(En)) = n, we have the following
neighborhood path {

(e2i1+1, e2i2+1, · · · , e2in+1) � · · · � (e2i1+1, e2i2+1, · · · , e2in−1+1, e2in )
� (e2i1 , e2i2 , · · · , e2in )

}
(4.5)

By Proposition 3.7(2), any singleton consisting of an element which is neither a minimal element nor a maxi-
mal element of A(X) is semi-closed. Third, we need to only prove that every singleton {(e2i1+1, e2i2+1, · · · , e2in+1)}
is a semi-closed set in A(En). Since we have the following property with A(En)\Cl({(e2i1+1, e2i2+1, · · · , e2in+1)}) :=
O in A(En) {

O ⊂ A(En) \ {(e2i1+1, e2i2+1, · · · , e2in+1)}
⊂ Cl(O) = A(En) \ {(e2i1+1, e2i2+1, · · · , e2in+1)

}
(4.6)

which completes the proof.

At this moment, we may pose the following remark.

Remark 4.13. Unlike the subspace (V,A(E)V) in the proof of Theorem 4.12, to have a semi-T1 subspace of
A(E), we can take the following two ways:

(1) In studying an infinite semi-T1 subspace of A(E), we need to take (L,A(E)L) induced by A(E) on L ⊂ E,
where L is an infinite subset of the combinatorial coordinate axis E := {ei | i ∈ N} (see Fig.4(d)). Then any
singleton consisting of each 1-cell c1 such as c1

∈ {e2n−1 |n ∈ N} is semi-closed in (L,A(E)L) because

L \ Cl({c1
}) = L \ {c1

} ⊂ Cl(L \ Cl({c1
})) = L,

which implies that the subspace (L,A(E)L) is a semi-T1 space.
(2) When dealing with a finite semi-T1 subspace of A(E), we need to take (F,A(E)F) induced by A(E)

on F ⊂ E, where F is a finite subset of the combinatorial coordinate axis E represented by the set {ei | i ∈
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[1, 2n + 1]Z} ⊂ E (see Fig.4(e)). Then any singleton consisting of each 1-cell c1
∈ {e2m−1 |m ∈ [1,n + 1]Z} ⊂ F is

semi-closed in (F,A(E)F) because

F \ Cl({e2m−1}) = F \ {e2m−1} ⊂ Cl(F \ Cl({e2m−1})) = F,

which implies that the subspace (F,A(E)F) is a semi-T1 space. �

In order to take a semi-T1 subspace of A(En), in view of Theorem 4.12 and Remark 4.13, we obtain the
following:

Corollary 4.14. (1) In taking an infinite and connected subspace of an A(En) over an nD Cartesian AC complex
Cn = (En,N, dim), we need to point out that we should take the n-dimensional product space, for example (Ln, (A(E)L)n,
induced by (L,A(E)L) of Remark 4.13(1) because (Ln, (A(E)L)n is a semi-T1 space.

(2) In taking a finite and connected subspace of an A(En) over an nD Cartesian AC complex Cn = (En,N, dim),
we need to point out that we should take the n-dimensional product space, denoted by (Fn, (A(E)F)n), induced by
(F,A(E)F) of Remark 4.13(2) because (Fn, (A(E)F)n) is a semi-T1 space.

As a weaker form of the T 1
2
-separation axiom we can propose the following:

Definition 4.15. We say that a topological space (X,T) has the pre-T 1
2
-separation axiom if every singleton

of X is either preopen or preclosed.

According to the definition, we obtain the following:

Remark 4.16. An A(X) does not satisfy the pre-T 1
2
-separation axiom.

5. Summary and Further Work

We have studied some properties of an A(X) related to an Alexandroff space, the notions of T 1
2
-separation

axiom, a preopen set, a preclosed set, a semi-open set, a semi-closed set and so forth. Furthermore, an A(X)
is proved to be a locally finite topological spaces satisfying the semi-T 1

2
-separation axiom instead of both

the pre-T 1
2
-separation axiom. Besides, A(X) with some conditions can satisfy the semi-T1-separation axiom.

Finally, we have addressed the above four questions.
As a further work we have the following query.

[Question 4] Let (X,T) be an Alexandroff space satisfying the semi-T 1
2
-separation axiom. What semi-Ti-

separation axiom, 1
2 � i � 1 such as i ∈ { 34 , · · · }, characterizes the given space (X,T) ?

[Question 5] As a further work related to Corollary 4.8, we need to find a condition of which A(X) with
dim(A(X)) ≥ 1 is a semi-T1 space.

The topological space A(X) can be used in the field of computer geometry and digital imaginary.
Furthermore, based on the properties of A(X) we can study a function space of AC complexes in terms of
fuzzy topology. Using the results in the paper, we can study Jordan curve theorem under a locally finite
topology instead of Hausdorff topology, boundary tracking, finding an interior and an exterior which can
be used in computational topology.
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