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Reeb Flow Symmetry on 3-Dimensional Almost
Paracosymplectic Manifolds

Irem Kiipeli Erken?

Faculty of Engineering and Natural Sciences, Department of Mathematics, Bursa Technical University, Bursa, TURKEY

Abstract. Mainly, we prove that the Ricci operator Q of an 3-dimensional almost paracosymplectic
manifold M is invariant along the Reeb flow, that is M satisfies L:Q = 0 if and only if M is an almost
paracosymplectic x-manifold with x # —1.

1. Introduction

Almost (para)contact metric structure is given by a pair (17, @), where 1 is a 1-form, @ is a 2-form and
n A ®@" is a volume element. It is well known that then there exists a unique vector field &, called the
characteristic (Reeb) vector field, such that izn = 1, i® = 0. The Riemannian or pseudo-Riemannian
geometry appears if we try to introduce a compatible structure which is a metric or pseudo-metric g and an
affinor ¢ ((1,1)-tensor field), such that

DX, Y) = g(@X,Y), @*=€eld-n®E). (1)

We have almost paracontact metric structure for € = +1 and almost contact metric for e = —1. Then, the
triple (@, &, ) is called almost paracontact structure or almost contact structure, resp.

Combining the assumption concerning the forms 7 and ®, we obtain many different types of almost
(para)contact manifolds, e.g. (para)contact if 7 is contact form and dn = @, almost (para)cosymplectic if
dn =0,d®d =0, almost (para)Kenmotsu if dn = 0, dD = 2 A .

Almost paracosymplectic manifolds were studied by [6], [7]. Later, I. Kiipeli Erken et al. study almost
a-paracosymplectic manifolds in [11].

A paracontact metric manifold whose characteristic vector field £ is a harmonic vector field is called an
H-paracontact manifold. In [1], G. Calvaruso and D. Perrone proved that & is harmonic if and only if & is an
eigenvector of the Ricci operator for contact semi-Riemannian manifolds. G. Calvaruso and D. Perrone [2]
proved that all 3-dimensional homogeneous paracontact metric manifolds are H-paracontact. Recently, I.
Kiipeli Erken, P. Dacko and C. Murathan in [11] study the harmonicity of the characteristic vector field of
3-dimensional almost a-paracosymplectic manifolds. It is proved that characteristic (Reeb) vector field &
is harmonic on almost a-para-Kenmotsu manifold if and only if it is an eigenvector of the Ricci operator.
3-dimensional almost a-para-Kenmotsu manifolds are also classified.
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A symmetry in general relativity is a smooth vector field whose local flow diffeomorphisms preserve
certain mathematical or physical quantities ([8], [9]). So, one can regard it as vector fields preserving certain
geometric quantities like the metric tensor, the curvature tensor or the Ricci tensor in general relativity.

In [3-5], ].T. Cho study Reeb flow symmetry on almost contact and almost cosymplectic three-manifolds.
Ricci collineations on 3-dimensional paracontact metric manifolds were studied in [12]. But no effort has
been made to investigate Reeb flow symmetry on 3-dimensional almost paracosymplectic manifolds.

The class of almost paracontact manifolds with which we concerned holds the properties L:& = L:n =0,
that is, the Reeb vector field and its associated 1-form are invariant along the Reeb flow, or the Reeb flow
yields a contact transformation, which means a diffeomorphism preserving a contact form. In the present
work, we study such a class of almost paracontact metric three-manifolds whose Ricci operator Q is invariant
along the Reeb flow &, that is, £:Q = 0.

The paper is organized in the following way.

Section 2 is preliminary section, where we recall the definition of almost paracontact metric manifold
and the class of almost paracontact metric manifolds which are called almost a-paracosymplectic. Section
3 is focused on harmonicity of the characteristic vector field of 3-dimensional almost paracosymplectic
manifolds. In Section 4, we proved that for any 3-dimensional almost paracosymplectic x-manifold is -
Einstein and satisfies the condition £(r) = 0, where r denotes the scalar curvature. Also we proved that the
Ricci operator Q on a 3-dimensional almost paracosymplectic manifold is invariant along the Reeb vector
field if and only if the manifold is an almost paracosymplectic x-manifold with x # —1.

For the case k¥ = —1, we proved that L;Q = 0 if and only if V:Q = 0.

2. Preliminaries

An (2n + 1)-dimensional smooth manifold M is said to have an almost paracontact structure if it admits a
(1, 1)-tensor field ¢, a vector field & and a 1-form 7 satisfying the following conditions:

(ii) the tensor field ¢ induces an almost paracomplex structure on each fibre of D = ker(7), i.e. the
+1-eigendistributions, D* := D, (+1) of ¢ have equal dimension n.

From the definition it follows that & = 0, o ¢ = 0 and the endomorphism ¢ has rank 2n. If an almost
paracontact manifold admits a pseudo-Riemannian metric g such that

9(@X, Y) = —g(X,Y) + n(X)n(Y), (2)

for all X, Y € I'(TM), then we say that (M, ¢, &, 1, g) is an almost paracontact metric manifold.
On an almost paracontact metric manifold M, if the Ricci operator satisfies

Q= aid + P ®E,

where both o and f are smooth functions, then the manifold is said to be an 1-Einstein manifold.
Moreover, we can define a skew-symmetric tensor field (a 2-form) ® by

(X, Y) = g(pY, X), )

usually called fundamental form. Notice that any such a pseudo-Riemannian metric is necessarily of
signature (n + 1,n). For an almost paracontact metric manifold, there always exists an orthogonal basis
{X1,..., X, Y1,..., Yy, & such that g(X;, X;) = 64, 9(Yi,Yj) = —6;jand Y; = ¢X;, forany i,j € {1,...,n}. Such
basis is called a @-basis.

On an almost paracontact manifold, one defines the (1,2)-tensor field N by

NOX,Y) = [p, 9] (X,Y) - 2dn(X, ),
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where [, ¢] is the Nijenhuis torsion of ¢

[0, 9] (X, Y) = * [X, Y] + [0X, Y] — @ [¢X, Y] - @ [X, ¢Y].

If N® vanishes identically, then the almost paracontact manifold (structure) is said to be normal [13].
The normality condition says that the almost paracomplex structure | defined on M X R

d d
JXAT) = (@X+ A& (0 5),

is integrable.
An almost paracontact metric manifold M1 with a structure (p,&,1,9) is said to be an almost a-
paracosymplectic manifold, if

dn=0, do=2anA, 4)

where a may be a constant or function on M.

For a particular choices of the function o we have the following subclasses,

e almost a-para-Kenmotsu manifolds, o« = const. # 0,

e almost paracosymplectic manifolds, o = 0.

If additionaly normality conditon is fulfilled, then manifolds are called a-para-Kenmotsu or paracosym-
plectic, resp.

I Kiipeli Erken et al. proved the following results in [11]. We will use them in our original results.

Proposition 2.1. [11] For an almost a-paracosymplectic manifold M*"+', we have

) Len = 0, i) g(AX,Y) = g(X, AY), iii) AE =0,
iv) L& = 20, 1) (L)X, ) = ~29(AX, V),
vi)NAX) = 0, vi)da= fnifn>2 (5)

where L indicates the operator of the Lie differentiation, X, Y are arbitrary vector fields on M*'"*! and f = izda.

Proposition 2.2. [11] For an almost a-paracosymplectic manifold, we have

Ap + A = a0, (6)
Vep = 0. 7)

Let define i = 1 L. In the following proposition we establish some properties of the tensor field h.

Proposition 2.3. [11]For an almost a-paracosymplectic manifold, we have the following relations

g(hX/ Y) = 9% hY), t))
hop+@oh = 0, 9)
hE = 0, (10)

VE = ap*+poh=-A. (11)

Corollary 2.4. [11]All the above Propositions imply the following formulas for the traces

tr(Ap) = tr(pA) =0, tr(hp) = tr(ph) =0,
tr(A) = —2an, tr(h)=0. (12)

Theorem 2.5. [11]Let (M*"*, ¢, &, 1, g) be an almost a-para-Kenmotsu manifold. Then, for any X, Y € y(M*'*1),
$,c, 1,9 p Y

R(X, V)¢ = an(X)(aY + phY) — an(Y)(aX + phX) + (Vxph)Y — (Vyph)X. (13)
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Theorem 2.6. [11]Let (M*'*1, ¢, &, 1, g) be an almost a-para-Kenmotsu manifold. Then, for any X € x(M>**1) we
have

R(EX)E = a?@*X +2aphX — WX + p(V:h)X, (14)
(Ve)X = —a?pX —2ahX + ph*X — pR(X, &), (15)

1
5REX)E+PRE 9X)E) = a*¢?X 17X, (16)
S(X, &) = -2na*n(X) + g(div(ph), X), (17)
S, &) = —2na®+trh? (18)

where S(X,Y) = g(QX, Y).

Henceforward, we denote S;; = S(e;, ¢;) fori,j =1,2,3.

3. Classification of the 3-Dimensional Almost Paracosymplectic Manifolds

In this section, we will give the summary of the classification of 3-dimensional almost paracosymplectic
manifolds. 3-dimensional almost paracosymplectic manifolds under assumption that the curvature satisfies
(x, y, v)-nullity condition

R(X,Y)¢é = n(Y)BX — n(X)BY, (19)
where B is Jacobi operator of &, BX = R(X, £)&, and
BX = k¢*X + phX + vphX,

for all X, Y € I'(TM), where «, u, v are smooth functions on M. Particularly BE = 0.

If an almost paracosymplectic manifold satisfies (19), then the manifold is said to be almost paracosym-
plectic (x, u, v)-space.

A 3-dimensional almost paracosymplectic manifold x-manifold satisfies [11]

Q& = 2ké. (20)

Theorem 3.1. [11]Let (M*™*,¢, &, 1, 9) be an almost a-para-Kenmotsu manifold. Characteristic vector field & is
harmonic if and only if it is an eigenvector of the Ricci operator.

Beside the other results, the different possibilities for the tensor field & are analyzed in [11].
The tensor I has the canonical form (I). Let (M, ¢, &, 71, g) be a 3-dimensional almost a-paracosymplectic
manifold. Then operator / has following types.

U,
Up)

lpeM|h(p)#0}cM
{p € M| h(p) = 0, in a neighborhood of p} c M

That & is a smooth function on M implies U; U U, is an open and dense subset of M, so any property satisfied
in Uy U U, is also satisfied in M. For any point p € U;U U, there exists a local orthonormal ¢-basis {e, e, &}
of smooth eigenvectors of /1 in a neighborhood of p, where —g(e, ) = g(pe, pe) = g(£,&) = 1. On U; we put
he = Ae, where A is a non-vanishing smooth function. Since trh = 0, we have hpe = —Ape. The eigenvalue
function A is continuous on M and smooth on U; U Uy. So, k has following form

A0 0
[0 —A o] (21)
0 0 0

respect to local orthonormal ¢-basis {¢, pe, &}. In this case, we will say the operator & is of b type.



L. Kiipeli Erken / Filomat 33:8 (2019), 2355-2365 2359

Lemma 3.2. [11]Let (M, @, &, 1, g) be a 3-dimensional almost a-para-Kenmotsu manifold with h of b1 type. Then for
the covariant derivative on U, the following equations are valid

1
i) Vee = 5 [0() = (pe)(N)] pe + ag, (22)
1
ii) Vepe = 7 [0(0) = (pe)(D] e = A&,
iif) V.& = ae + Age,
1
i) Ve = ~51 [o(pe) + e(A)] pe — AE,
1
v) Vgepe = =5 [o(pe) +e(V)] pe - ag,
vi) Vel = age — Ae,
vii) Vge = aype, viii) Vepe = aze,

ix) [e,&] = ae + (A — a1)pe,
x) [pe, &l = —(A + a1)e + age,

. 1 1
xi) [e, pe] = o [o(e) — (pe)(A)] e + 7 [o(pe) +e(A)] pe,
i) 12— o2 = 35(E, )
where
m = g(vée/ (pe)r 0= S(é, -)kerr] .

Proposition 3.3. [11]Let (M, @, &,1,9) be a 3-dimensional almost a-para-Kenmotsu manifold with h of by type.
Then we have

Veh = =2a1hg + E(M)s, (23)
where s is the (1, 1)-type tensor defined by s& = 0, se = e, spe = —e.

Lemma 3.4. [11]Let (M, @, &, 1, g) be a 3-dimensional almost a-para-Kenmotsu manifold with h of by type. Then the
Ricci operator Q is given by

Q = (g +a?— AN+ (-% +3(A2 = 22 ® & — 2aph — p(Vh)
+0(pH) ® & — a(e)n ® e + a(pe)n ® e (24)
where r denotes scalar curvature.

Moreover from (24) the components of the Ricci operator Q are can be given by

Q& = 242 =a?)E —o(e)e + o(pe)pe,
Qe = ale)E+ (% +a2 = A2 = 2a10)e — (2a) + E(N))pe, (25)

Qpe = o(@e)E + Qad + E(A))e + (% +a? = A2 + 201 A)e.

From (25), we get
Suw==(5 +0a% = A2 =2mA), Si2 = ~QaA+ ), S = (5 +a* = A2+ 2m10), Sy + S = dmA. (26)

The tensor /1 has the canonical form (II). Using same methods in [10], one can construct a local pseudo-
orthonormal basis {e1, 2, €3} in a neighborhood of p where g(e1,e1) = g(ez, e2) = gle1,e3) = g(e2,e3) = 0 and
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g(e1,e2) = g(es,e3) = 1. Let U be the open subset of M where i # 0. For every p € U there exists an open
neighborhood of p such that he; = ey, he; = 0,he; = 0 and pe; = +eq, pe, = Fep, pe3 = 0 and also & = e3. Thus
the tensor & has the form

000
[100] (27)
000

relative a pseudo-orthonormal basis {1, e;, e3}. In this case, we call 4 is of b, type.

Remark 3.5. Without loss of generality, we can assume that pe; = ey ey = —ey. Moreover one can easily get h* = 0
but h # 0.

Lemma 3.6. [11]Let (M, @, &, n, g) be a 3-dimensional almost a-para-Kenmotsu manifold with h of b, type. Then for
the covariant derivative on U the following equations are valid

i) Veer = —=biey + &, ii) Ve er = biep — aé, iii) Vo, & = ae; — e,
iv) Veer = —boer —aé, v) Ve,en = baey, 0i) V,, & = aey,
vii) Veer = agey, viii) Veer = —azes,
ix) [e1,&] = (a—a)er —ex, x)[er,&] = (a +az)ey, (28)
xi) [e1,e2] = boeg + biey,
xiiyh> = 0.

where ay = g(Vier, €2), by = g(Ve,e2,01) and by = g(Ve,e2,01) = —30(e1).

Proposition 3.7. [11]Let (M, @, &, 1,9) be a 3-dimensional almost a-para-Kenmotsu manifold with h of b, type.
Then we have

Vih = 2ayh, (29)
onU .

Lemma 3.8. [11]Let (M, @, &, 1, g) be a 3-dimensional almost a-para-Kenmotsu manifold with h of b, type. Then the
Ricci operator Q is given by

Q= (% +ad) - (g + 302 ® & — 2aph — @(Veh) + 0(9?) ® & + o(e1)n ® ea. (30)

A consequence of Lemma 3.8, we can give the components of the Ricci operator Q by following,

Q& = oa(er)er — 20%,
Qe = olenE+ (5 +ader -2 - ae, (31)
Qe = (% + aP)e,.

The tensor /1 has the canonical form (III).We can find a local orthonormal ¢-basis {e, pe, £} in a neigh-
borhood of p where —g(e, e) = g(pe, pe) = g(&, &) = 1. Now, let U; be the open subset of M where 1 # 0 and
let U, be the open subset of points p € M such that i = 0 in a neighborhood of p. 41U U, is an open subset
of M. For every p € U there exists an open neighborhood of p such that he = Ape, hpe = —Ae and hE = 0
where A is a non-vanishing smooth function. Since trh = 0, the matrix form of 4 is given by

0 -A 0
A 0 0 (32)
0 0 0

with respect to local orthonormal basis {e¢, pe, &}. In this case, we say that / is of b3 type.
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Lemma 3.9. [11]Let (M, @, &, 1, g) be a 3-dimensional almost a-para-Kenmotsu manifold with h of h3 type. Then for
the covariant derivative on U, the following equations are valid

i)Vee = bype+ (a+A)E, i) Vepe = bse, iii) V& = (@ + A)e,
i0) Vgee = bype, 0) Vpepe =bge+ (A —a)s, vi) Vel = —(A - a)pe,
vii) Vee = azpe, viii) Vepe = aze,
ix)[e,&] = (a+A)e—azpe, x)[pe, ] =—aze—(A—a)pe, (33)
xi) [e,pe] = bsze— bape,
xii)h? — a*p? = %S(é, &)¢?,

where a3 = g(Vee, pe), by = =31 [o(pe) + (pe)(A)] and by = 55 [o(e) — e(A)].

Proposition 3.10. [11]Let (M, @, &, n, g) be a 3-dimensional almost a-para-Kenmotsu manifold with h of bs type.
So, on Uy we have

Vih = =2azhe + E(A)s, (34)
where s is the (1, 1)-type tensor defined by s& = 0, se = pe, spe = —e.

Lemma 3.11. [11]Let (M, ¢, &, 1, g) be a 3-dimensional almost a-para-Kenmotsu manifold with h of bz type. Then
the Ricci operator Q is given by

Q=al+n®<&-2aph—-p(Veh)+ a((pz) ® & —o(en®e+ a(pe)n @ ge, (35)
where a and b are smooth functions defined by a = a* + A* + § and b = —3(A* + a®) — §, respectively.

Moreover from the above Lemma the components of the Ricci operator Q are given by

Q& = =2a®+A*)E—a(e)e + o(pe)pe,
Qe = o(e)E+(a®+A%+ % — E(A))e — 2a3Aqe, (36)
Qpe = o(pe)E +2ashe + (% + A% + g + E(A)pe.

From (36), we get
Si1=—(@*+A%+ % — &(A)), S12 = =2a3A, Sy = (@ + A2 + g + &(A)), S11 + Sz = 2E(A). (37)

Theorem 3.12. [11]Let (M, ¢, ¢, 1, g) be a 3-dimensional almost a-para-Kenmotsu manifold. If the characteristic
vector field & is harmonic map then almost a-paracosymplectic (x, u,v)-manifold always exist on every open and
dense subset of M. Conversely, if M is an almost a-paracosymplectic (x, i1, v)-manifold with constant a then the
characteristic vector field & is harmonic map.

4. Reeb Flow Symmetry on 3-Dimensional Almost Paracosymplectic Manifolds

In this section, we will study reeb flow symmetry on 3-dimensional almost paracosymplectic manifolds.
So, we will take @ = 0 in results which were given in Section 3.
We recall that the curvature tensor of a 3-dimensional pseudo-Riemannian manifold satisfies

RX, YV)Z = g(Y, 2)QX - 9(X, Z)QY + g(QY, 2)X - 9(QX, 2)Y - %(9(16 )X = 9(X, 2)Y) (38)

for all vector fields X, Y, Z, where r denotes the scalar curvature

First of all, we will investigate three possibilities according to canonical form / of 3-dimensional almost
paracosymplectic manifold.

Casel: We suppose that / is b; type (x > —1).
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Lemma 4.1. Let (M, @, &, 1, g) be a 3-dimensional almost paracosymplectic manifold. If h is 1 type on U, then we
have,

L:Q =0ifand only if VeQ = 0 and Q& = pé&, where p is a function.
Proof. Assume that M satisfies £:Q = 0. In this case, we have

L:(QX) - QE:X) = 0
[£,0X]-Ql&, X] = 0.

From (11), we obtain an equivalent equation to £:Q = 0 as follows
(V:Q)X = (phQ - Qph)X. (39)
Since V¢Q is self-adjoint operator, it follows that
Qph — phQ = Qhe — heQ.
Using the anti-commutative property & with ¢ in the last equation, we have
Qph = ¢hQ. (40)
Hence, from (39) and (40), we get V:Q = 0 on U;. Applying & to both sides of (40), we get hQ& = 0.
Using this in the first equation of (25), we obtain Q& = p&, p = 242 on U;.
Conversely, we assume that V;Q = 0 and Q& = p&, on U;. By (18), we find that p = 2A? and
S13=531=0, Sx=53=0. (41)
After some calculations using the fact that (V:S)(&, &) = 0 and V& = 0, one can get
&) =0. (42)
Using the second equation of (25), we obtain S1» = g(Qey, e2) = —&(A) = 0. So we have
S12 =521 =0. (43)
If we take the covariant derivative of (43) according to £ and use (22) and V:Q = 0, we obtain
a1(Sx + S11) = 0. (44)
By the help of (26) and (44) we find 2; = 0 and
S11 = =52. (45)
From the assumption of Q& = p& and the equations (41), (43) and (45) we get
Qe = (5-A%e
Qpe = (5-1)ge. (46)
So, we can see Qph = phQ by using (46). Hence, £:Q = 0 comes from (39). O
Remark 4.2. In Lemma 4.1, for a 3-dimensional almost paracosymplectic manifold with h is b, type on U1, we proved
that if VeQ = 0 and Q& = pé&, then E(A) = 0. Now, accept L:Q = 0on Uy. Using (VeS)(E, &) =0and V& = 0, one

can get E(A) = 0. Also, by definition of Ricci curvature S, we have S1o = Sy = 0. From (40) we have Sy, = =S11 =0,
a; = 0. Moreover, one can write r = —S(e, e) + S(pe, pe) + S(E, &) = 2(Sx + A%) = 2(=S11 + A?).



I. Kiipeli Erken / Filomat 33:8 (2019), 2355-2365

We now check whether A is constant or not.
In view of (38), Lemma 4.1 and Remark 4.2, the following formulas hold in U,

R(e, pe)pe =
R(e, pe)e =
R(pe, &)pe
R(e, &e =
R, &)éE =
R(pe, &)E =

Qe — A%,
Qe — /\2(pe,
-A%E,

A%E,

e,

A2 e,

where R(e;, ej)ex = 0, fori # j # k.
On the other hand, taking into account, (22) and (47), direct calculations give

(VeR) (e, E)pe
(V(peR)(g/ e)pe

(VeR)(e, pe)pe

(VgeR)(e, E)e
(VeR)(E, pe)e

(VeR)(pe, e)e

—e(AH)E,
= 0,

_ r oo
= &GN

= @e(A)E,
= 0,

_el 2
5(2 A%)pe.

2363

(47)

(48)

With the help of second bianchi identity and (48), we find e(1) = 0 and @e(A) = 0. Regarding &(A) = 0, we
can conclude that A is constant on M.
So we can state following

Lemma 4.3. A is constant.

Using Lemma 4.3, (22) returns to

i)Vee =

i) V& =
i) Vet

vi) Vpe& =

vii) Vee =

ix) e &] =

xi) [e, pe]

0, i) Vepe = —=AE,
Age,

=A&, v) Vpepe =0,
—Ae,

0, viii) Vspe =0,
Age, x)[pe, &] = —Ae,
0.

In view of (47) and (49), we have

Qe =0, Qpe =0, Q& = 2A%¢.

From (50) we can easily see that (L:Q)e = (L:Q)gpe = 0.
Case2: We suppose that /1 is b3 type (x < —1).

As the proof of the following lemma is similar to Lemma 4.1, we don't give its proof.

(49)

(50)

Lemma 4.4. Let (M, @, &, 1, g) be a 3-dimensional almost paracosymplectic manifold. If h is b type on Uy, then we

have,

L:Q=0ifand only if VeQ = 0 and Q& = p&, where p is a function.
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We now check whether A is constant or not.
In view of (38) and Lemma 4.4, the following formulas hold in U;

R(e, pe)pe Qe + A%,
R(e,pe)e = Qe+ A*pe,
R((pe’ é)(Pe = /\25/

R(e/ E)e = _/\251 (51)
R(e, &) = -A%,
R(pe, &) = —A’pe,

where R(e;, ej)ex = 0, fori # j # k.
On the other hand, taking into account, (33) and (51), direct calculations give

(VR (e, &)pe = Al +3A%e +e(A)e,

(VoR)(E e = =A(5 +3A%)e,

(VeR)e, pepe = £(5 + Ve

(VoeR)e, E)e = —(pe()\z)£+/\(£+3/\2)(pe, (52)
(VeR)E, pole = =A(5 +31%)pe,

(VeR)(pe,cle = =E(5+1%)ge.

With the help of second bianchi identity and (52), we find e(1) = 0 and @pe(A) = 0. Regarding &(A) = 0, we
can conclude that A is constant on M.
So we can state following

Lemma 4.5. A is constant.

Using Lemma 4.5, (33) returns to

i) Vee A&, i) Vepe =0,
i) V& = Ae,
0) Vpee = 0, 1) Vgepe = AE,
vi) Vgl = —Age, (53)
vii) Vee = 0, wiii) Vepe =0,
ix)[e,&] = Ae, x)[pe, &] = —Ape,
xi) [e, pe] 0.

In view of (51) and (53), we have

Qe =0, Qpe =0, Q& = —2A%¢. (54)
From (54) we can easily see that (L:Q)e = (L:Q)pe = 0.
Theorem 4.6. Any 3-dimensional almost paracosymplectic x-manifold is n-Einstein and also we have

&(r) =0. (55)
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Proof. 1f we replace Y = Z by £ in (38) and use (19), (20) we get

OX = (% - K)X + (—% + 31<) (X (56)

for any vector field X € y(M). So, the manifold is n-Einstein. If we use (56), (11) and (20) in the following
well known formula for semi-Riemannian manifolds

trace{Y — (VyQ)X} = %er

we obtain £(r) =0. O

Theorem 4.7. Let M be a 3-dimensional almost paracosymplectic manifold. Then L:Q = 0 if and only if M is an
almost paracosymplectic k-manifold with 1 # —1.

Proof. Assume that M is a 3-dimensional almost paracosymplectic manifold with k of b); type whose Ricci
operator Q satisfies L:Q = 0. If we take into account Theorem 3.1, Theorem 3.12 and Lemma 4.1, together
we obtain that M is an almost paracosymplectic x-manifold with ¥ = A2. Conversely, let M is an almost
paracosymplectic k-manifold with « # —1. Using Lemma 4.3 and (55), if we take the Lie derivative of (56)
according to &, we get L:Q = 0. The proof for a 3-dimensional almost paracosymplectic manifold with & of
bs type is similar to this proved case. So, we complete the proof of the theorem. [

Case3:We suppose that ki is b, type (k = —-1).
The proof of following theorem is similar to the Casel(h is I); type). But in this case, one can should be
careful while computing because of g(e1, e1) = g(ez, e2) = gle1, e3) = glez, e3) = 0 and g(ey, €2) = glez, e3) = 1.

Theorem 4.8. Let (M, @, &, 1, g) be a 3-dimensional almost paracosymplectic manifold. If h is by, type on U, then we
have,

L:Q=0ifand only if V:Q = 0.

Remark 4.9. For a 3-dimensional almost paracosymplectic manifold with h is Yy, type on U. Then L:Q = 0 if and
only if E(o(e1)) — azo(er) = 0, &(r) = 0 and &(az) — 2{1% = 0. Using (28) and (31), one can calculate these relations.
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