
Filomat 33:8 (2019), 2355–2365
https://doi.org/10.2298/FIL1908355K

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Reeb Flow Symmetry on 3-Dimensional Almost
Paracosymplectic Manifolds
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Abstract. Mainly, we prove that the Ricci operator Q of an 3-dimensional almost paracosymplectic
manifold M is invariant along the Reeb flow, that is M satisfies LξQ = 0 if and only if M is an almost
paracosymplectic κ-manifold with κ , −1.

1. Introduction

Almost (para)contact metric structure is given by a pair (η,Φ), where η is a 1-form, Φ is a 2-form and
η ∧ Φn is a volume element. It is well known that then there exists a unique vector field ξ, called the
characteristic (Reeb) vector field, such that iξη = 1, iξΦ = 0. The Riemannian or pseudo-Riemannian
geometry appears if we try to introduce a compatible structure which is a metric or pseudo-metric 1 and an
affinor ϕ ((1,1)-tensor field), such that

Φ(X,Y) = 1(ϕX,Y), ϕ2 = ε(Id − η ⊗ ξ). (1)

We have almost paracontact metric structure for ε = +1 and almost contact metric for ε = −1. Then, the
triple (ϕ, ξ, η) is called almost paracontact structure or almost contact structure, resp.

Combining the assumption concerning the forms η and Φ, we obtain many different types of almost
(para)contact manifolds, e.g. (para)contact if η is contact form and dη = Φ, almost (para)cosymplectic if
dη = 0, dΦ = 0, almost (para)Kenmotsu if dη = 0, dΦ = 2η ∧Φ.

Almost paracosymplectic manifolds were studied by [6], [7]. Later, İ. Küpeli Erken et al. study almost
α-paracosymplectic manifolds in [11].

A paracontact metric manifold whose characteristic vector field ξ is a harmonic vector field is called an
H-paracontact manifold. In [1], G. Calvaruso and D. Perrone proved that ξ is harmonic if and only if ξ is an
eigenvector of the Ricci operator for contact semi-Riemannian manifolds. G. Calvaruso and D. Perrone [2]
proved that all 3-dimensional homogeneous paracontact metric manifolds are H-paracontact. Recently, İ.
Küpeli Erken, P. Dacko and C. Murathan in [11] study the harmonicity of the characteristic vector field of
3-dimensional almost α-paracosymplectic manifolds. It is proved that characteristic (Reeb) vector field ξ
is harmonic on almost α-para-Kenmotsu manifold if and only if it is an eigenvector of the Ricci operator.
3-dimensional almost α-para-Kenmotsu manifolds are also classified.
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A symmetry in general relativity is a smooth vector field whose local flow diffeomorphisms preserve
certain mathematical or physical quantities ([8], [9]). So, one can regard it as vector fields preserving certain
geometric quantities like the metric tensor, the curvature tensor or the Ricci tensor in general relativity.

In [3–5], J.T. Cho study Reeb flow symmetry on almost contact and almost cosymplectic three-manifolds.
Ricci collineations on 3-dimensional paracontact metric manifolds were studied in [12]. But no effort has
been made to investigate Reeb flow symmetry on 3-dimensional almost paracosymplectic manifolds.

The class of almost paracontact manifolds with which we concerned holds the propertiesLξξ = Lξη = 0,
that is, the Reeb vector field and its associated 1-form are invariant along the Reeb flow, or the Reeb flow
yields a contact transformation, which means a diffeomorphism preserving a contact form. In the present
work, we study such a class of almost paracontact metric three-manifolds whose Ricci operator Q is invariant
along the Reeb flow ξ, that is, LξQ = 0.

The paper is organized in the following way.
Section 2 is preliminary section, where we recall the definition of almost paracontact metric manifold

and the class of almost paracontact metric manifolds which are called almost α-paracosymplectic. Section
3 is focused on harmonicity of the characteristic vector field of 3-dimensional almost paracosymplectic
manifolds. In Section 4, we proved that for any 3-dimensional almost paracosymplectic κ-manifold is η-
Einstein and satisfies the condition ξ(r) = 0, where r denotes the scalar curvature. Also we proved that the
Ricci operator Q on a 3-dimensional almost paracosymplectic manifold is invariant along the Reeb vector
field if and only if the manifold is an almost paracosymplectic κ-manifold with κ , −1.

For the case κ = −1, we proved that LξQ = 0 if and only if ∇ξQ = 0.

2. Preliminaries

An (2n + 1)-dimensional smooth manifold M is said to have an almost paracontact structure if it admits a
(1, 1)-tensor field ϕ, a vector field ξ and a 1-form η satisfying the following conditions:

(i) η(ξ) = 1, ϕ2 = I − η ⊗ ξ,
(ii) the tensor field ϕ induces an almost paracomplex structure on each fibre of D = ker(η), i.e. the
±1-eigendistributions,D± := Dϕ(±1) of ϕ have equal dimension n.

From the definition it follows that ϕξ = 0, η ◦ ϕ = 0 and the endomorphism ϕ has rank 2n. If an almost
paracontact manifold admits a pseudo-Riemannian metric 1 such that

1(ϕX, ϕY) = −1(X,Y) + η(X)η(Y), (2)

for all X,Y ∈ Γ(TM), then we say that (M, ϕ, ξ, η, 1) is an almost paracontact metric manifold.
On an almost paracontact metric manifold M, if the Ricci operator satisfies

Q = αid + βη ⊗ ξ,

where both α and β are smooth functions, then the manifold is said to be an η-Einstein manifold.
Moreover, we can define a skew-symmetric tensor field (a 2-form) Φ by

Φ(X,Y) = 1(ϕY,X), (3)

usually called fundamental form. Notice that any such a pseudo-Riemannian metric is necessarily of
signature (n + 1,n). For an almost paracontact metric manifold, there always exists an orthogonal basis
{X1, . . . ,Xn,Y1, . . . ,Yn, ξ} such that 1(Xi,X j) = δi j, 1(Yi,Y j) = −δi j and Yi = ϕXi, for any i, j ∈ {1, . . . ,n}. Such
basis is called a ϕ-basis.

On an almost paracontact manifold, one defines the (1, 2)-tensor field N(1) by

N(1)(X,Y) =
[
ϕ,ϕ

]
(X,Y) − 2dη(X,Y)ξ,
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where
[
ϕ,ϕ

]
is the Nijenhuis torsion of ϕ[

ϕ,ϕ
]

(X,Y) = ϕ2 [X,Y] +
[
ϕX, ϕY

]
− ϕ

[
ϕX,Y

]
− ϕ

[
X, ϕY

]
.

If N(1) vanishes identically, then the almost paracontact manifold (structure) is said to be normal [13].
The normality condition says that the almost paracomplex structure J defined on M ×R

J(X, λ
d
dt

) = (ϕX + λξ, η(X)
d
dt

),

is integrable.
An almost paracontact metric manifold M2n+1, with a structure (ϕ, ξ, η, 1) is said to be an almost α-

paracosymplectic manifold, if

dη = 0, dΦ = 2αη ∧Φ, (4)

where α may be a constant or function on M.
For a particular choices of the function α we have the following subclasses,
• almost α-para-Kenmotsu manifolds, α = const. , 0,
• almost paracosymplectic manifolds, α = 0.
If additionaly normality conditon is fulfilled, then manifolds are called α-para-Kenmotsu or paracosym-

plectic, resp.
İ. Küpeli Erken et al. proved the following results in [11]. We will use them in our original results.

Proposition 2.1. [11] For an almost α-paracosymplectic manifold M2n+1, we have

i) Lξη = 0, ii) 1(AX,Y) = 1(X,AY), iii)Aξ = 0,
iv) LξΦ = 2αΦ, v) (Lξ1)(X,Y) = −21(AX,Y),

vi) η(AX) = 0, vii) dα = fη if n > 2 (5)

where L indicates the operator of the Lie differentiation, X, Y are arbitrary vector fields on M2n+1 and f = iξdα.

Proposition 2.2. [11] For an almost α-paracosymplectic manifold, we have

Aϕ + ϕA = −2αϕ, (6)
∇ξϕ = 0. (7)

Let define h = 1
2Lξϕ. In the following proposition we establish some properties of the tensor field h.

Proposition 2.3. [11]For an almost α-paracosymplectic manifold, we have the following relations

1(hX,Y) = 1(X, hY), (8)
h ◦ ϕ + ϕ ◦ h = 0, (9)

hξ = 0, (10)
∇ξ = αϕ2 + ϕ ◦ h = −A. (11)

Corollary 2.4. [11]All the above Propositions imply the following formulas for the traces

tr(Aϕ) = tr(ϕA) = 0, tr(hϕ) = tr(ϕh) = 0,
tr(A) = −2αn, tr(h) = 0. (12)

Theorem 2.5. [11]Let (M2n+1, ϕ, ξ, η, 1) be an almost α-para-Kenmotsu manifold. Then, for any X,Y ∈ χ(M2n+1),

R(X,Y)ξ = αη(X)(αY + ϕhY) − αη(Y)(αX + ϕhX) + (∇Xϕh)Y − (∇Yϕh)X. (13)
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Theorem 2.6. [11]Let (M2n+1, ϕ, ξ, η, 1) be an almost α-para-Kenmotsu manifold. Then, for any X ∈ χ(M2n+1) we
have

R(ξ,X)ξ = α2ϕ2X + 2αϕhX − h2X + ϕ(∇ξh)X, (14)
(∇ξh)X = −α2ϕX − 2αhX + ϕh2X − ϕR(X, ξ)ξ, (15)

1
2

(R(ξ,X)ξ + ϕR(ξ, ϕX)ξ) = α2ϕ2X − h2X, (16)

S(X, ξ) = −2nα2η(X) + 1(div(ϕh),X), (17)
S(ξ, ξ) = −2nα2 + trh2 (18)

where S(X,Y) = 1(QX,Y).

Henceforward, we denote Si j = S(ei, e j) for i, j = 1, 2, 3.

3. Classification of the 3-Dimensional Almost Paracosymplectic Manifolds

In this section, we will give the summary of the classification of 3-dimensional almost paracosymplectic
manifolds. 3-dimensional almost paracosymplectic manifolds under assumption that the curvature satisfies
(κ, µ, ν)-nullity condition

R(X,Y)ξ = η(Y)BX − η(X)BY, (19)

where B is Jacobi operator of ξ, BX = R(X, ξ)ξ, and

BX = κϕ2X + µhX + νϕhX,

for all X,Y ∈ Γ(TM), where κ, µ, ν are smooth functions on M. Particularly Bξ = 0.
If an almost paracosymplectic manifold satisfies (19), then the manifold is said to be almost paracosym-

plectic (κ, µ, ν)-space.
A 3-dimensional almost paracosymplectic manifold κ-manifold satisfies [11]

Qξ = 2κξ. (20)

Theorem 3.1. [11]Let (M2n+1, ϕ, ξ, η, 1) be an almost α-para-Kenmotsu manifold. Characteristic vector field ξ is
harmonic if and only if it is an eigenvector of the Ricci operator.

Beside the other results, the different possibilities for the tensor field h are analyzed in [11].
The tensor h has the canonical form (I). Let (M, ϕ, ξ, η, 1) be a 3-dimensional almost α-paracosymplectic

manifold. Then operator h has following types.

U1 =
{
p ∈M | h(p) , 0

}
⊂M

U2 =
{
p ∈M | h(p) = 0, in a neighborhood of p

}
⊂M

That h is a smooth function on M implies U1∪U2 is an open and dense subset of M, so any property satisfied
in U1 ∪U2 is also satisfied in M. For any point p ∈ U1∪ U2 there exists a local orthonormal ϕ-basis {e, ϕe, ξ}
of smooth eigenvectors of h in a neighborhood of p, where −1(e, e) = 1(ϕe, ϕe) = 1(ξ, ξ) = 1. On U1 we put
he = λe, where λ is a non-vanishing smooth function. Since trh = 0, we have hϕe = −λϕe. The eigenvalue
function λ is continuous on M and smooth on U1 ∪U2. So, h has following form λ 0 0

0 −λ 0
0 0 0

 (21)

respect to local orthonormal ϕ-basis {e, ϕe, ξ}. In this case, we will say the operator h is of h1 type.
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Lemma 3.2. [11]Let (M, ϕ, ξ, η, 1) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h1 type. Then for
the covariant derivative onU1 the following equations are valid

i) ∇ee =
1

2λ
[
σ(e) − (ϕe)(λ)

]
ϕe + αξ, (22)

ii) ∇eϕe =
1

2λ
[
σ(e) − (ϕe)(λ)

]
e − λξ,

iii) ∇eξ = αe + λϕe,

iv) ∇ϕee = −
1

2λ
[
σ(ϕe) + e(λ)

]
ϕe − λξ,

v) ∇ϕeϕe = −
1

2λ
[
σ(ϕe) + e(λ)

]
ϕe − αξ,

vi) ∇ϕeξ = αϕe − λe,
vii) ∇ξe = a1ϕe, viii) ∇ξϕe = a1e,
ix) [e, ξ] = αe + (λ − a1)ϕe,
x) [ϕe, ξ] = −(λ + a1)e + αϕe,

xi) [e, ϕe] =
1

2λ
[
σ(e) − (ϕe)(λ)

]
e +

1
2λ

[
σ(ϕe) + e(λ)

]
ϕe,

xii) h2
− α2ϕ2 =

1
2

S(ξ, ξ)ϕ2

where

a1 = 1(∇ξe, ϕe), σ = S(ξ, .)ker η .

Proposition 3.3. [11]Let (M, ϕ, ξ, η, 1) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h1 type.
Then we have

∇ξh = −2a1hϕ + ξ(λ)s, (23)

where s is the (1, 1)-type tensor defined by sξ = 0, se = e, sϕe = −ϕe.

Lemma 3.4. [11]Let (M, ϕ, ξ, η, 1) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h1 type. Then the
Ricci operator Q is given by

Q = (
r
2

+ α2
− λ2)I + (−

r
2

+ 3(λ2
− α2))η ⊗ ξ − 2αϕh − ϕ(∇ξh)

+σ(ϕ2) ⊗ ξ − σ(e)η ⊗ e + σ(ϕe)η ⊗ ϕe (24)

where r denotes scalar curvature.

Moreover from (24) the components of the Ricci operator Q are can be given by

Qξ = 2(λ2
− α2)ξ − σ(e)e + σ(ϕe)ϕe,

Qe = σ(e)ξ + (
r
2

+ α2
− λ2

− 2a1λ)e − (2αλ + ξ(λ))ϕe, (25)

Qϕe = σ(ϕe)ξ + (2αλ + ξ(λ))e + (
r
2

+ α2
− λ2 + 2a1λ)ϕe.

From (25), we get

S11 = −(
r
2

+ α2
− λ2

− 2a1λ), S12 = −(2αλ + ξ(λ)), S22 = (
r
2

+ α2
− λ2 + 2a1λ), S11 + S22 = 4a1λ. (26)

The tensor h has the canonical form (II). Using same methods in [10], one can construct a local pseudo-
orthonormal basis {e1, e2, e3} in a neighborhood of p where 1(e1, e1) = 1(e2, e2) = 1(e1, e3) = 1(e2, e3) = 0 and
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1(e1, e2) = 1(e3, e3) = 1. Let U be the open subset of M where h , 0. For every p ∈ U there exists an open
neighborhood of p such that he1 = e2, he2 = 0, he3 = 0 and ϕe1 = ±e1, ϕe2 = ∓e2, ϕe3 = 0 and also ξ = e3. Thus
the tensor h has the form

 0 0 0
1 0 0
0 0 0

 (27)

relative a pseudo-orthonormal basis {e1, e2, e3}. In this case, we call h is of h2 type.

Remark 3.5. Without loss of generality, we can assume that ϕe1 = e1 ϕe2 = −e2.Moreover one can easily get h2 = 0
but h , 0.

Lemma 3.6. [11]Let (M, ϕ, ξ, η, 1) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h2 type. Then for
the covariant derivative onU the following equations are valid

i) ∇e1 e1 = −b1e1 + ξ, ii) ∇e1 e2 = b1e2 − αξ, iii) ∇e1ξ = αe1 − e2,

iv) ∇e2 e1 = −b2e1 − αξ, v) ∇e2 e2 = b2e2, vi) ∇e2ξ = αe2,

vii) ∇ξe1 = a2e1, viii) ∇ξe2 = −a2e2,

ix) [e1, ξ] = (α − a2)e1 − e2, x) [e2, ξ] = (α + a2)e2, (28)
xi) [e1, e2] = b2e1 + b1e2,

xii) h2 = 0.

where a2 = 1(∇ξe1, e2), b1 = 1(∇e1 e2, e1) and b2 = 1(∇e2 e2, e1) = − 1
2σ(e1).

Proposition 3.7. [11]Let (M, ϕ, ξ, η, 1) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h2 type.
Then we have

∇ξh = 2a2ϕh, (29)

onU .

Lemma 3.8. [11]Let (M, ϕ, ξ, η, 1) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h2 type. Then the
Ricci operator Q is given by

Q = (
r
2

+ α2)I − (
r
2

+ 3α2)η ⊗ ξ − 2αϕh − ϕ(∇ξh) + σ(ϕ2) ⊗ ξ + σ(e1)η ⊗ e2. (30)

A consequence of Lemma 3.8, we can give the components of the Ricci operator Q by following,

Qξ = σ(e1)e2 − 2α2ξ,

Qe1 = σ(e1)ξ + (
r
2

+ α2)e1 − 2(a2 − α)e2, (31)

Qe2 = (
r
2

+ α2)e2.

The tensor h has the canonical form (III).We can find a local orthonormal ϕ-basis {e, ϕe, ξ} in a neigh-
borhood of p where −1(e, e) = 1(ϕe, ϕe) = 1(ξ, ξ) = 1. Now, letU1 be the open subset of M where h , 0 and
letU2 be the open subset of points p ∈M such that h = 0 in a neighborhood of p.U1∪U2 is an open subset
of M. For every p ∈ U1 there exists an open neighborhood of p such that he = λϕe, hϕe = −λe and hξ = 0
where λ is a non-vanishing smooth function. Since trh = 0, the matrix form of h is given by 0 −λ 0

λ 0 0
0 0 0

 (32)

with respect to local orthonormal basis {e, ϕe, ξ}. In this case, we say that h is of h3 type.
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Lemma 3.9. [11]Let (M, ϕ, ξ, η, 1) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h3 type. Then for
the covariant derivative onU1 the following equations are valid

i) ∇ee = b3ϕe + (α + λ)ξ, ii) ∇eϕe = b3e, iii) ∇eξ = (α + λ)e,
iv) ∇ϕee = b4ϕe, v) ∇ϕeϕe = b4e + (λ − α)ξ, vi) ∇ϕeξ = −(λ − α)ϕe,
vii) ∇ξe = a3ϕe, viii) ∇ξϕe = a3e,
ix) [e, ξ] = (α + λ)e − a3ϕe, x) [ϕe, ξ] = −a3e − (λ − α)ϕe, (33)

xi) [e, ϕe] = b3e − b4ϕe,

xii)h2
− α2ϕ2 =

1
2

S(ξ, ξ)ϕ2,

where a3 = 1(∇ξe, ϕe), b3 = − 1
2λ

[
σ(ϕe) + (ϕe)(λ)

]
and b4 = 1

2λ [σ(e) − e(λ)] .

Proposition 3.10. [11]Let (M, ϕ, ξ, η, 1) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h3 type.
So, on U1 we have

∇ξh = −2a3hϕ + ξ(λ)s, (34)

where s is the (1, 1)-type tensor defined by sξ = 0, se = ϕe, sϕe = −e.

Lemma 3.11. [11]Let (M, ϕ, ξ, η, 1) be a 3-dimensional almost α-para-Kenmotsu manifold with h of h3 type. Then
the Ricci operator Q is given by

Q = a I + bη ⊗ ξ − 2αϕh − ϕ(∇ξh) + σ(ϕ2) ⊗ ξ − σ(e)η ⊗ e + σ(ϕe)η ⊗ ϕe, (35)

where a and b are smooth functions defined by a = α2 + λ2 + r
2 and b = −3(λ2 + α2) − r

2 , respectively.

Moreover from the above Lemma the components of the Ricci operator Q are given by

Qξ = −2(α2 + λ2)ξ − σ(e)e + σ(ϕe)ϕe,

Qe = σ(e)ξ + (α2 + λ2 +
r
2
− ξ(λ))e − 2a3λϕe, (36)

Qϕe = σ(ϕe)ξ + 2a3λe + (α2 + λ2 +
r
2

+ ξ(λ))ϕe.

From (36), we get

S11 = −(α2 + λ2 +
r
2
− ξ(λ)), S12 = −2a3λ, S22 = (α2 + λ2 +

r
2

+ ξ(λ)), S11 + S22 = 2ξ(λ). (37)

Theorem 3.12. [11]Let (M, ϕ, ξ, η, 1) be a 3-dimensional almost α-para-Kenmotsu manifold. If the characteristic
vector field ξ is harmonic map then almost α-paracosymplectic (κ, µ, ν)-manifold always exist on every open and
dense subset of M. Conversely, if M is an almost α-paracosymplectic (κ, µ, ν)-manifold with constant α then the
characteristic vector field ξ is harmonic map.

4. Reeb Flow Symmetry on 3-Dimensional Almost Paracosymplectic Manifolds

In this section, we will study reeb flow symmetry on 3-dimensional almost paracosymplectic manifolds.
So, we will take α = 0 in results which were given in Section 3.

We recall that the curvature tensor of a 3-dimensional pseudo-Riemannian manifold satisfies

R(X,Y)Z = 1(Y,Z)QX − 1(X,Z)QY + 1(QY,Z)X − 1(QX,Z)Y −
r
2

(1(Y,Z)X − 1(X,Z)Y) (38)

for all vector fields X,Y,Z, where r denotes the scalar curvature
First of all, we will investigate three possibilities according to canonical form h of 3-dimensional almost

paracosymplectic manifold.
Case1: We suppose that h is h1 type (κ > −1).
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Lemma 4.1. Let (M, ϕ, ξ, η, 1) be a 3-dimensional almost paracosymplectic manifold. If h is h1 type on U1, then we
have,

LξQ = 0 if and only if ∇ξQ = 0 and Qξ = ρξ, where ρ is a function.

Proof. Assume that M satisfies LξQ = 0. In this case, we have

Lξ(QX) −Q(£ξX) = 0
[ξ,QX] −Q[ξ,X] = 0.

From (11), we obtain an equivalent equation to LξQ = 0 as follows

(∇ξQ)X = (ϕhQ −Qϕh)X. (39)

Since ∇ξQ is self-adjoint operator, it follows that

Qϕh − ϕhQ = Qhϕ − hϕQ.

Using the anti-commutative property h with ϕ in the last equation, we have

Qϕh = ϕhQ. (40)

Hence, from (39) and (40), we get ∇ξQ = 0 on U1. Applying ξ to both sides of (40), we get hQξ = 0.
Using this in the first equation of (25), we obtain Qξ = ρξ, ρ = 2λ2 on U1.
Conversely, we assume that ∇ξQ = 0 and Qξ = ρξ, on U1. By (18), we find that ρ = 2λ2 and

S13 = S31 = 0, S23 = S32 = 0. (41)

After some calculations using the fact that (∇ξS)(ξ, ξ) = 0 and ∇ξξ = 0, one can get

ξ(λ) = 0. (42)

Using the second equation of (25), we obtain S12 = 1(Qe1, e2) = −ξ(λ) = 0. So we have

S12 = S21 = 0. (43)

If we take the covariant derivative of (43) according to ξ and use (22) and ∇ξQ = 0, we obtain

a1(S22 + S11) = 0. (44)

By the help of (26) and (44) we find a1 = 0 and

S11 = −S22. (45)

From the assumption of Qξ = ρξ and the equations (41), (43) and (45) we get

Qe = (
r
2
− λ2)e

Qϕe = (
r
2
− λ2)ϕe. (46)

So, we can see Qϕh = ϕhQ by using (46). Hence, LξQ = 0 comes from (39).

Remark 4.2. In Lemma 4.1, for a 3-dimensional almost paracosymplectic manifold with h is h1 type on U1, we proved
that if ∇ξQ = 0 and Qξ = ρξ, then ξ(λ) = 0. Now, acceptLξQ = 0 on U1. Using (∇ξS)(ξ, ξ) = 0 and ∇ξξ = 0, one
can get ξ(λ) = 0. Also, by definition of Ricci curvature S, we have S12 = S21 = 0. From (40) we have S22 = −S11 = 0,
a1 = 0. Moreover, one can write r = −S(e, e) + S(ϕe, ϕe) + S(ξ, ξ) = 2(S22 + λ2) = 2(−S11 + λ2).
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We now check whether λ is constant or not.
In view of (38), Lemma 4.1 and Remark 4.2, the following formulas hold in U1

R(e, ϕe)ϕe = Qe − λ2e,
R(e, ϕe)e = Qϕe − λ2ϕe,

R(ϕe, ξ)ϕe = −λ2ξ,

R(e, ξ)e = λ2ξ, (47)
R(e, ξ)ξ = λ2e,

R(ϕe, ξ)ξ = λ2ϕe,

where R(ei, e j)ek = 0, for i , j , k.
On the other hand, taking into account, (22) and (47), direct calculations give

(∇eR)(ϕe, ξ)ϕe = −e(λ2)ξ,
(∇ϕeR)(ξ, e)ϕe = 0,

(∇ξR)(e, ϕe)ϕe = ξ(
r
2
− λ2)e,

(∇ϕeR)(e, ξ)e = ϕe(λ2)ξ, (48)
(∇eR)(ξ, ϕe)e = 0,

(∇ξR)(ϕe, e)e = −ξ(
r
2
− λ2)ϕe.

With the help of second bianchi identity and (48), we find e(λ) = 0 and ϕe(λ) = 0. Regarding ξ(λ) = 0, we
can conclude that λ is constant on M.

So we can state following

Lemma 4.3. λ is constant.

Using Lemma 4.3, (22) returns to

i) ∇ee = 0, ii) ∇eϕe = −λξ,

iii) ∇eξ = λϕe,
iv) ∇ϕee = −λξ, v) ∇ϕeϕe = 0,
vi) ∇ϕeξ = −λe, (49)
vii) ∇ξe = 0, viii) ∇ξϕe = 0,
ix) [e, ξ] = λϕe, x) [ϕe, ξ] = −λe,

xi) [e, ϕe] = 0.

In view of (47) and (49), we have

Qe = 0, Qϕe = 0, Qξ = 2λ2ξ. (50)

From (50) we can easily see that (LξQ)e = (LξQ)ϕe = 0.
Case2: We suppose that h is h3 type (κ < −1).
As the proof of the following lemma is similar to Lemma 4.1, we don’t give its proof.

Lemma 4.4. Let (M, ϕ, ξ, η, 1) be a 3-dimensional almost paracosymplectic manifold. If h is h3 type on U1, then we
have,

LξQ = 0 if and only if ∇ξQ = 0 and Qξ = ρξ, where ρ is a function.
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We now check whether λ is constant or not.
In view of (38) and Lemma 4.4, the following formulas hold in U1

R(e, ϕe)ϕe = Qe + λ2e,
R(e, ϕe)e = Qϕe + λ2ϕe,

R(ϕe, ξ)ϕe = λ2ξ,

R(e, ξ)e = −λ2ξ, (51)
R(e, ξ)ξ = −λ2e,

R(ϕe, ξ)ξ = −λ2ϕe,

where R(ei, e j)ek = 0, for i , j , k.
On the other hand, taking into account, (33) and (51), direct calculations give

(∇eR)(ϕe, ξ)ϕe = λ(
r
2

+ 3λ2)e + e(λ2)ξ,

(∇ϕeR)(ξ, e)ϕe = −λ(
r
2

+ 3λ2)e,

(∇ξR)(e, ϕe)ϕe = ξ(
r
2

+ λ2)e,

(∇ϕeR)(e, ξ)e = −ϕe(λ2)ξ + λ(
r
2

+ 3λ2)ϕe, (52)

(∇eR)(ξ, ϕe)e = −λ(
r
2

+ 3λ2)ϕe,

(∇ξR)(ϕe, e)e = −ξ(
r
2

+ λ2)ϕe.

With the help of second bianchi identity and (52), we find e(λ) = 0 and ϕe(λ) = 0. Regarding ξ(λ) = 0, we
can conclude that λ is constant on M.

So we can state following

Lemma 4.5. λ is constant.

Using Lemma 4.5, (33) returns to

i) ∇ee = λξ, ii) ∇eϕe = 0,
iii) ∇eξ = λe,

iv) ∇ϕee = 0, v) ∇ϕeϕe = λξ,

vi) ∇ϕeξ = −λϕe, (53)
vii) ∇ξe = 0, viii) ∇ξϕe = 0,
ix) [e, ξ] = λe, x) [ϕe, ξ] = −λϕe,

xi) [e, ϕe] = 0.

In view of (51) and (53), we have

Qe = 0, Qϕe = 0, Qξ = −2λ2ξ. (54)

From (54) we can easily see that (LξQ)e = (LξQ)ϕe = 0.

Theorem 4.6. Any 3-dimensional almost paracosymplectic κ-manifold is η-Einstein and also we have

ξ(r) = 0. (55)
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Proof. If we replace Y = Z by ξ in (38) and use (19), (20) we get

QX =
( r

2
− κ

)
X +

(
−

r
2

+ 3κ
)
η(X)ξ (56)

for any vector field X ∈ χ(M). So, the manifold is η-Einstein. If we use (56), (11) and (20) in the following
well known formula for semi-Riemannian manifolds

trace {Y→ (∇YQ)X} =
1
2
∇Xr

we obtain ξ(r) = 0.

Theorem 4.7. Let M be a 3-dimensional almost paracosymplectic manifold. Then LξQ = 0 if and only if M is an
almost paracosymplectic κ-manifold with κ , −1.

Proof. Assume that M is a 3-dimensional almost paracosymplectic manifold with h of h1 type whose Ricci
operator Q satisfies LξQ = 0. If we take into account Theorem 3.1, Theorem 3.12 and Lemma 4.1, together
we obtain that M is an almost paracosymplectic κ-manifold with κ = λ2. Conversely, let M is an almost
paracosymplectic κ-manifold with κ , −1. Using Lemma 4.3 and (55), if we take the Lie derivative of (56)
according to ξ, we getLξQ = 0. The proof for a 3-dimensional almost paracosymplectic manifold with h of
h3 type is similar to this proved case. So, we complete the proof of the theorem.

Case3:We suppose that h is h2 type (κ = −1).
The proof of following theorem is similar to the Case1(h is h1 type). But in this case, one can should be

careful while computing because of 1(e1, e1) = 1(e2, e2) = 1(e1, e3) = 1(e2, e3) = 0 and 1(e1, e2) = 1(e3, e3) = 1.

Theorem 4.8. Let (M, ϕ, ξ, η, 1) be a 3-dimensional almost paracosymplectic manifold. If h is h2 type on U, then we
have,

LξQ = 0 if and only if ∇ξQ = 0.

Remark 4.9. For a 3-dimensional almost paracosymplectic manifold with h is h2 type on U. Then LξQ = 0 if and
only if ξ(σ(e1)) − a2σ(e1) = 0, ξ(r) = 0 and ξ(a2) − 2a2

2 = 0. Using (28) and (31), one can calculate these relations.
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