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Abstract. A discrete-time SIS epidemic model with vaccination is presented and studied. The model
includes deaths due to disease and the total population size is variable. First, existence and positivity
of the solutions are discussed and equilibria of the model and basic reproduction number are obtained.
Next, the stability of the equilibria is studied and conditions of stability are obtained in terms of the basic
reproduction number R0. Also, occurrence of the fold bifurcation, the flip bifurcation, and the Neimark-
Sacker bifurcation is investigated at equilibria. In addition, obtained results are numerically discussed and
some diagrams for bifurcations, Lyapunov exponents, and solutions of the model are presented.

1. Introduction

Most of epidemic models has been formulated and analyzed as differential equations that yields to
continuous-time models[1–4]. However, in recent years the interest to discrete-time models which are based
on difference equations has been increased[5–8]. It may be for some reasons such as reacher dynamics of a
discrete model in compare with a continuous one, availability of discrete data in time increments, necessity
of discretization continuous models when a numerical solution is required, etc. The probably most well-
known epidemic model, the SIS model, has been formulated in discrete formulation and analyzed in many
works[9, 10]. Among them some models include vaccination as a efficient strategy to control and eliminate
the disease[11–15]. These models consider the vaccinated individuals as a separate component in the
model. The vaccination may be permanent or temporal, perfect (with efficiency %100) or imperfect (with
efficiency less than %100). In this paper we introduce and analyze a discrete-time SIS epidemic model with
a temporary vaccination program, namely SIVS model. The structure of the paper is as follows: In the next
section the SIVS epidemic model is developed and after describing its components, parameters, and how
to transmit individuals between components, we obtain equilibria of the model and the basic reproduction
number. Section 3 is devoted to study the stability of the equilibria and in section 4 the bifurcations of the
model are investigated. Finally, after a numerical discussion about the theoretical results obtained in other
sections, we end the paper with conclusions.
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Email addresses: m.parsamanesh@uoz.ac.ir (Mahmood Parsamanesh), smehrshad@uoz.ac.ir (Saeed Mehrshad)



M. Parsamanesh, S. Mehrshad / Filomat 33:8 (2019), 2393–2408 2394

2. The SIS model with vaccination

2.1. Description of the model
Consider a population with N(t) individuals at time t from them S(t) individuals are susceptible, I(t)

individuals are infected, and V(t) individuals are vaccinated. In a simple SIS epidemic model (an SIS
model without vital dynamics) the susceptible individuals are be infected and then after a period of time
they will be recovered from infection and become susceptible again. The number of cases that become
infected per unit time is β(N)SI/N in which β(N) is the contact rate, i.e., the number of successful contacts
for each individual per unit time. Thus the average number of successful contact of an infected individual
with a susceptible individual is λ = β(N)I/N per unit time. The expression λ is called force of infection.
Therefore with S susceptible individuals, the all number of successful contacts due to I infected individuals
will be λS = β(N)SI/N per unit time that is called the incidence rate and we denote it by Υ. When
β(N) = β the incidence is called standard incidence and when β(N) = βN it is called mass-action incidence
or bilinear incidence[16]. The under study model considers not only natural deaths, but also deaths due
to disease. Moreover,the recruitment in population consists of newborns and immigrants. The vaccination
program is performed on both new individuals added to the population and susceptible individuals. The
vaccination is assumed to be perfect and thus the vaccinated individuals don’t become infected. However,
the immunity caused by vaccination is temporary and after a period of time it is lost and individuals become
susceptible again. Figure 1 shows the SIVS epidemic model and transmission rates (probabilities) between
its compartments. All changes in population and transmissions of individuals between compartments take
place per unit time (during time interval) ∆t and it is assumed that follow a uniform distribution. The
probability that a susceptible individual becomes infected during time interval ∆t is Υ =

βIS
N that is assumed

as the standard incidence rate. The SIVS epidemic model is given by the following system of difference
equations:

I(t + ∆t) = Υ(t) + [1 − (µ + γ + α)]I(t),
S(t + ∆t) = (1 − σ)Λ − Υ(t) + [1 − (µ + ϕ)]S(t) + γI(t) + ψV(t),
V(t + ∆t) = σΛ + ϕS(t) + [1 − (µ + ψ)]V(t),

(1)

where Υ(t) = βS(t)I(t)/N(t). Table 1 explains the parameters of the model.
It is assumed all parameters are in interval (0, 1). Then it can be seen that with positive initial values for

Table 1: Parameters and explanations in the SIVS epidemic model (1).
Parameter Explanation
βI
N probability a susceptible individual becomes infected
γ probability an infected individual recovers from infection
ϕ probability a susceptible individual becomes vaccinated
ψ probability a vaccinated individual looses immunity
σ probability a new member becomes vaccinated
µ probability an individual dies from natural reasons
α probability an individual dies from infection

S(0), I(0) and V(0), solutions of system (1) are non-negative if the following conditions hold:

0 < µ + ϕ + β < 1,
0 < µ + γ + α < 1,
0 < µ + ϕ + ψ < 1.

(2)
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Figure 1: Diagram of the SIVS epidemic model and transmissions there in.

By adding the equations in system (1) we see that the number of all individuals in population obeis
from the following difference equation:

N(t + ∆t) = Λ + (1 − µ)N(t) − αI(t). (3)

This implies

N(t + ∆t) ≤ Λ + (1 − µ)N(t)

≤ Λ
[
1 + (1 − µ)

]
+ (1 − µ)2N(t − ∆t)

≤ Λ
[
1 + (1 − µ) + (1 − µ)2

]
+ (1 − µ)3N(t − 2∆t)

...

≤ Λ
[1 − (1 − µ)n+1

1 − (1 − µ)

]
+ (1 − µ)n+1N(t − n∆t)

= Λ
[1 − (1 − µ)n+1

µ

]
+ (1 − µ)n+1N(0)

≤
Λ

µ
+ N(0),

for some n ∈ N, t = n∆t. Thus not only N(t) but also S(t), I(t) and V(t) are bounded and moreover
lim sup

t−→∞
N(t) ≤ Λ/µ.

2.2. Equilibria of the model

From system (1) we find two following equilibria for the model:

(1) The disease-free equilibrium Ed f in which I = 0:

Ed f = (Id f ,Sd f ,Vd f ) =
(
0,

Λ[µ(1 − σ) + ψ]
µ(µ + ψ + ϕ)

,
Λ(µσ + ϕ)
µ(µ + ψ + ϕ)

)
, (4)

(2) The endemic equilibrium Ee in which I > 0:

Ee = (Ie,Se,Ve),
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with

Ie =
Λ
[
β[µ(1 − σ) + ψ] − (µ + γ + α)(µ + ϕ + ψ)

]
µβ(µ + ψ) + α[β(µ + ψ) − (µ + γ + α)(µ + ϕ + ψ)]

,

Se =
µ + γ + α

βµ
(Λ − αIe),

Ve =
1

µ + ψ
(σΛ + ϕSe).

Also, by adding the components of Ed f and Ee we get Nd f = Λ
µ and Ne = 1

µ (Λ − αIe), respectively.

2.3. The basic reproduction number
The basic reproduction (reproductive) number is defined as the average number of individuals who

become infected by entering one infected individual into a fully susceptible population[2, 16]. We use a
method based on the next generation matrix to determine the basic reproduction number for the model.
The Jacobian matrix of the system (1) at (I,S,V) is

J = J(I,S,V) =

 1 + ΥI − (µ + γ + α) ΥS ΥV
−ΥI + γ 1 − ΥS − (µ + ϕ) −ΥV + ψ

0 ϕ 1 − (µ + ψ)

 , (5)

where ΥI, ΥS and ΥV are partial derivatives of incidence rate Υ(t) with respect to I, S and V respectively
and are obtained as

ΥI =
βSN − βSI

N2 ,

ΥS =
βIN − βSI

N2 ,

ΥV = −
βSI
N2 .

Thus the Jacobian matrix at Ed f becomes

J(Ed f ) =


1 +

βSd f

Nd f
− (µ + γ + α) 0 0

−
βSd f

Nd f
+ γ 1 − (µ + ϕ) ψ

0 ϕ 1 − (µ + ψ)

 . (6)

We write J(Ed f ) in the block form as

J(Ed f ) =

(
F + T 0

A C

)
, (7)

in which

F =
βSd f

Nd f
,

T = 1 − (µ + γ + α),

A = (−
βSd f

Nd f
+ γ, 0)>,

C =

(
1 − (µ + ϕ) ψ

ϕ 1 − (µ + ψ)

)
.

(8)
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Now, the basic reproduction number can be determined as[17]

R0 = ρ
(
F(1 − T)−1

)
=

β[µ(1 − σ) + ψ]
(µ + γ + α)(µ + ϕ + ψ)

. (9)

On the other hand, if we take

R(τ) =
β[µ(1 − τ) + ψ]

(µ + γ + α)(µ + ϕ + ψ)
, (10)

then components of Ee can be written as

Ie =
Λ(R0 − 1)

µR(0) + α[R(0) − 1]
,

Se =
Λ(µ + γ + α)

βµ

[
1 −

α(R0 − 1)
µR(0) + α[R(0) − 1]

]
,

Ve =
σΛ

µ + ψ

[
1 +

ϕ(µ + ασ + ψ)/[σ(µ + ϕ + ψ)]
µR(0) + α[R(0) − 1]

]
.

Here we must notice that R(τ) is a decreasing function and thus R0 = R(σ) < R(0). Therefore when R0 > 1,
we have R(0) − 1 > 0. This implies Ie > 0 exists if R0 > 1 and we can state the following:

Theorem 2.1. The SIVS epidemic model described by system (1) has only equilibrium Ed f when R0 ≤ 1 and it has
also equilibrium Ee when R0 > 1.

3. Stability of the equilibria

We first consider the stability of the equilibrium Ed f in the following subsection.

3.1. Stability of the disease-free equilibrium
From relations (8) it is found that the summations of columns in matrix C are all less than one thus its

matrix norm is less than one:

‖ C ‖1 = max{1 − (µ + ϕ) + ϕ,ψ + 1 − (µ + ψ)}
= 1 − µ < 1.

Since ρ(C) <‖ C ‖1, thus the spectral radius of C is less than one, ρ(C) < 1.
On the other hand

ρ(F + T) < 1⇐⇒ R0 < 1.

Therefore the Jacobian matrix J(Ed f ) in (7) has the spectral radius less than one if and only if R0 < 1. Then
the following theorem has been proven:

Theorem 3.1. The disease-free equilibrium Ed f is stable if and only if R0 < 1 and it is unstable if R0 > 1.

3.2. Stability of the endemic equilibrium
At the endemic equilibrium Ee we have

βSe

Ne
= µ + γ + α,

σΛ + ϕ(Ne − Ie) − (µ + ϕ + ψ)Ve = 0,
Λ − µNe − αIe = 0,
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then we can write

ΥIe = (µ + γ + α)
(
1 −

Ie

Ne

)
,

ΥSe = [β − (µ + γ + α)]
Ie

Ne
,

ΥVe = −(µ + γ + α)
Ie

Ne
,

(11)

and

(µ + γ + α) − ΥIe = −ΥVe = (µ + γ + α)
Ie

Ne
. (12)

For Jacobian matrix at the endemic equilibrium (J(Ee)), we have

tr
(
J(Ee)

)
= 3 −

(
(µ + γ + α) − ΥIe + ΥSe + (µ + ϕ) + (µ + ψ)

)
,(

J2(Ee)
)

(1,1)
=

(
1 − [(µ + γ + α) − ΥIe ]

)2
+ ΥSe (−ΥIe + γ),(

J2(Ee)
)

(2,2)
= ΥSe (−ΥIe + γ) +

(
1 − [ΥSe + (µ + ϕ)]

)2
+ ϕ(−ΥVe + ψ),(

J2(Ee)
)

(3,3)
= ϕ(−ΥVe + ψ) +

(
1 − (µ + ψ)

)2
.

Therefore we have

tr
(
J2(Ee)

)
− tr2

(
J(Ee)

)
= 2ΥSe (−ΥIe + γ) + 2ϕ(−ΥVe + ψ)

− 2
{
1 − [(µ + γ + α) − ΥIe ] − [ΥSe + (µ + ϕ)] + [(µ + γ + α) − ΥIe ][ΥSe + (µ + ϕ)]

}
− 2

{
1 − [(µ + γ + α) − ΥIe ] − (µ + ψ) + [(µ + γ + α) − ΥIe ](µ + ψ)

}
− 2

{
1 − [ΥSe + (µ + ϕ)] − (µ + ψ) + [ΥSe + (µ + ϕ)](µ + ψ)

}
= −6 + 4

{
[(µ + γ + α) − ΥIe ] + [ΥSe + (µ + ϕ)] + (µ + ψ)

}
− 2

{
[(µ + γ + α) − ΥIe ][ΥSe + (µ + ϕ)] + [(µ + γ + α) − ΥIe ](µ + ψ)

+ [ΥSe + (µ + ϕ)](µ + ψ) − ΥSe (−ΥIe + γ) − ϕ(−ΥVe + ψ)
}
.

Also, by expanding the determinant of J(Ee) according to the first column we get

det
(
J(Ee)

)
=

1 −
{
[ΥSe + (µ + ϕ)] + (µ + ψ) + [(µ + γ + α) − ΥIe ]

}
+

{
[ΥSe + (µ + ϕ)](µ + ψ) − ϕ(−ΥVe + ψ) + [(µ + γ + α) − ΥIe ][ΥSe + (µ + ϕ)]

+ [(µ + γ + α) − ΥIe ](µ + ψ) − ΥSe (−ΥIe + γ)
}

−

{
[(µ + γ + α) − ΥIe ][ΥSe + (µ + ϕ)](µ + ψ) − ϕ[(µ + γ + α) − ΥIe ](−ΥVe + ψ)

− ΥSe (−ΥIe + γ)(µ + ψ) − ϕ(−ΥIe + γ)ΥVe

}
.
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Now assuming

b1 = [(µ + γ + α) − ΥIe ] + [ΥSe + (µ + ϕ)] + (µ + ψ),
b2 = [(µ + γ + α) − ΥIe ][ΥSe + (µ + ϕ)] + [(µ + γ + α) − ΥIe ](µ + ψ)

+ [ΥSe + (µ + ϕ)](µ + ψ) − ΥSe (−ΥIe + γ) − ϕ(−ΥVe + ψ),
b3 = [(µ + γ + α) − ΥIe ][ΥSe + (µ + ϕ)](µ + ψ) − ϕ[(µ + γ + α) − ΥIe ](−ΥVe + ψ)

− ΥSe (−ΥIe + γ)(µ + ψ) − ϕ(−ΥIe + γ)ΥVe ,

(13)

we can write

tr
(
J(Ee)

)
= 3 − b1,

tr
(
J2(Ee)

)
− tr2

(
J(Ee)

)
= −6 + 4b1 − 2b2,

det
(
J(Ee)

)
= 1 − b1 + b2 − b3.

The characteristic equation for the Jacobian matrix J(Ee) is then as

P(λ) = λ3 + a1λ
2 + a2λ + a3,

in which

a1 = −tr
(
J(Ee)

)
= −3 + b1,

a2 = −
1
2

[
tr
(
J2(Ee)

)
− tr2

(
J(Ee)

)]
= 3 − 2b1 + b2,

a3 = −det
(
J(Ee)

)
= −1 + b1 − b2 + b3.

(14)

The following theorem considers conditions under which the endemic equilibrium is stable.

Theorem 3.2. When R0 > 1, the endemic equilibrium Ee is locally asymptotically stable.

Proof. The Jury conditions[5] state that roots of characteristic equation P(λ) (i.e. eigenvalues of J(Ee)) lie
inside the unite circle if and only if

(i) P(1) > 0,

(ii) −P(−1) > 0,

(iii) |a2 − a1a3| < 1 − a2
3.

We see that P(1) = 1 + a1 + a2 + a3 = b3 and thus the condition (i) is equivalent to b3 > 0. By replacing partial
derivatives of Υ at endemic equilibrium from (11) and (12) into relations (13) we will have

P(1) = b3

= (µ + γ + α)
Ie

Ne
[β − (µ + γ + α)]

Ie

Ne
(µ + ψ)︸                                                ︷︷                                                ︸

I

+(µ + ϕ)(µ + ψ)(µ + γ + α)
Ie

Ne︸                                 ︷︷                                 ︸
II

−ϕ(µ + γ + α)
Ie

Ne
(µ + γ + α)

Ie

Ne︸                                   ︷︷                                   ︸
III

−ϕψ(µ + γ + α)
Ie

Ne︸                  ︷︷                  ︸
II

+[β − (µ + γ + α)]
Ie

Ne
(µ + γ + α)

(
1 −

Ie

Ne

)
(µ + ψ)︸                                                          ︷︷                                                          ︸

I

−[β − (µ + γ + α)]
Ie

Ne
γ(µ + ψ)

−ϕ(µ + γ + α)
(
1 −

Ie

Ne

)
(µ + γ + α)

Ie

Ne︸                                          ︷︷                                          ︸
III

+ϕγ(µ + γ + α)
Ie

Ne
,
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and by considering

I = [β − (µ + γ + α)](µ + γ + α)(µ + ψ)
Ie

Ne
,

II = (µ + γ + α)
Ie

Ne
[µ(µ + ϕ + ψ)],

III = −ϕ(µ + γ + α)2 Ie

Ne
,

we get

b3 = [β − (µ + γ + α)](µ + γ + α)(µ + ψ)
Ie

Ne︸                                            ︷︷                                            ︸
F

+ (µ + γ + α)
Ie

Ne
µ(µ + ϕ + ψ)︸                             ︷︷                             ︸

FF

+ ϕγ(µ + γ + α)
Ie

Ne︸               ︷︷               ︸
z

−ϕ(µ + γ + α)2 Ie

Ne
−[β − (µ + γ + α)]

Ie

Ne
γ(µ + ψ)︸                                ︷︷                                ︸

F

and observing

F = [β − (µ + γ + α)](µ + α)(µ + ψ)
Ie

Ne
,

FF = ϕµ(µ + γ + α)
Ie

Ne︸               ︷︷               ︸
z

+µ(µ + ψ)(µ + γ + α)
Ie

Ne
,

z = ϕ(µ + γ)(µ + γ + α)
Ie

Ne
,

we obtain

b3 = −ϕ(µ + γ + α)α
Ie

Ne
+ µ(µ + ψ)(µ + γ + α)

Ie

Ne
+ [β − (µ + γ + α)](µ + α)(µ + ψ)

Ie

Ne

=
[
− ϕα(µ + γ + α) + β(µ + α)(µ + ψ) − α(µ + ψ)(µ + γ + α)

] Ie

Ne

=
[
− α(µ + γ + α)(µ + ϕ + ψ) + β(µ + α)(µ + ψ)

] Ie

Ne

= (µ + γ + α)(µ + ϕ + ψ)
[
− α + (µ + α)R(0)

] Ie

Ne

= (µ + γ + α)(µ + ϕ + ψ)
[ (µ + α)R(0) − α
(µ + α)R(0) − αR0

]
︸                    ︷︷                    ︸

>1

µ(R0 − 1) > 0,

(15)

because R0 > 1 and

Ie

Ne
=

µ(R0 − 1)
µR(0) + α(R(0) − R0)

.

Also, we can write condition (ii) as

−P(−1) = 1 − a1 + a2 − a3

= 8 − 4b1 + 2b2 − b3
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= 8−4(µ + γ + α)
Ie

Ne
− 4

{
[β − (µ + γ + α)]

Ie

Ne
+ (µ + ϕ)

}
︸                                                               ︷︷                                                               ︸

I

−4(µ + ψ)︸     ︷︷     ︸
II

+2(µ + γ + α)
Ie

Ne
ϕ︸                 ︷︷                 ︸

III

+2(µ + γ + α)
Ie

Ne
[β − (µ + γ + α)]

Ie

Ne︸                                          ︷︷                                          ︸
�

+2(µ + γ + α)
Ie

Ne
µ

+ 2(µ + γ + α)
Ie

Ne
(µ + ψ) +2

{
[β − (µ + γ + α)]

Ie

Ne
+ (µ + ϕ)

}
(µ + ψ)︸                                                ︷︷                                                ︸

IV

+2[β − (µ + γ + α)]
Ie

Ne
(µ + γ + α)

(
1 −

Ie

Ne

)
︸                                                 ︷︷                                                 ︸

V

−2γ[β − (µ + γ + α)]
Ie

Ne︸                        ︷︷                        ︸
�

−2ϕ(µ + γ + α)
Ie

Ne︸                 ︷︷                 ︸
III

−2ϕψ︸︷︷︸
♠

−(µ + γ + α)
Ie

Ne

{
[β − (µ + γ + α)]

Ie

Ne
+ (µ + ϕ)

}
(µ + ψ)︸                                                                  ︷︷                                                                  ︸

IV

+ ϕ(µ + γ + α)
Ie

Ne
(µ + γ + α)

Ie

Ne
+ ϕψ(µ + γ + α)

Ie

Ne

−[β − (µ + γ + α)]
Ie

Ne
(µ + γ + α)

(
1 −

Ie

Ne

)
(µ + ψ)︸                                                          ︷︷                                                          ︸

F

+ [β − (µ + γ + α)]
Ie

Ne
γ(µ + ψ) + ϕ(µ + γ + α)

(
1 −

Ie

Ne

)
(µ + γ + α)

Ie

Ne

−ϕγ(µ + γ + α)
Ie

Ne︸                 ︷︷                 ︸
♣

Now, considering the sufficient conditions for positive solutions stated in (2), and inequalities

β > µ + γ + α,

β(µ + ψ) > (µ + γ + α)(µ + ψ + ϕ),

which are concluded from R0 > 1, we will have

I = −4
[
β

Ie

Ne
+ (µ + ϕ)

]
= −4(β + µ + ϕ) + 4β

(
1 −

Ie

Ne

)
> −4 + 4β

(
1 −

Ie

Ne

)
︸       ︷︷       ︸

�

,

II = −4(µ + ϕ + ψ) + 4ϕ > −4 +2ϕ︸︷︷︸
♠

+ϕ︸︷︷︸
♣

+ϕ,

III = 0,
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IV >
{
[β − (µ + γ + α)]

Ie

Ne
+ (µ + ϕ)

}
(µ + ψ),

V > [β − (µ + γ + α)]
Ie

Ne
(µ + γ + α)

(
1 −

Ie

Ne

)
+ [β − (µ + γ + α)]

Ie

Ne
(µ + γ + α)

(
1 −

Ie

Ne

)
ϕ

+[β − (µ + γ + α)]
Ie

Ne
(µ + γ + α)

(
1 −

Ie

Ne

)
(µ + ψ)︸                                                          ︷︷                                                          ︸

F

,

F = 0,

♠ > 0,

♣ > 0,

� > −2γ[β − (µ + γ + α)]
Ie

Ne

+ [β − (µ + γ + α)]
Ie

Ne

{
2(µ + γ + α)

Ie

Ne
+ 4β

(
1 −

Ie

Ne

)}
> −2γ[β − (µ + γ + α)]

Ie

Ne

+ [β − (µ + γ + α)]
Ie

Ne

{
2(µ + γ + α)

Ie

Ne
+ 2(µ + γ + α)

(
1 −

Ie

Ne

)
+ 2β

(
1 −

Ie

Ne

)}
= 2[β − (µ + γ + α)]

Ie

Ne

[
µ + α + β

(
1 −

Ie

Ne

)]
.

Therefore all negative parts in −P(−1) are covered by positive parts and thus −P(−1) > 0.
Condition (iii) holds if and only if a2 − a1a3 < 1 − a2

3 and a2 − a1a3 > −(1 − a2
3). From (14), a2 − a1a3 < 1 − a2

3 is
equivalent to b3 < (b2 − b3)(b1 − b2 + b3). Consider the following nonlinear programming problem

maximization b3 − (b2 − b3)(b1 − b2 + b3)
subject to
µ > 0, ϕ > 0, β > 0,
ψ > 0, α > 0, γ > 0,
η > 0, η < 1,
µ + ϕ + β < 1,
µ + ϕ + ψ < 1,
µ + γ + α < 1,
β > µ + γ + α,

β(µ + ψ) > (µ + γ + α)(µ + ϕ + ψ),

(16)

where bi, i = 1, 2, 3, are as in (13) and η = Ie
Ne

. By solving this problem we see that maximum value is negative
and thus b3 < (b2 − b3)(b1 − b2 + b3). Besides, a2 − a1a3 > −(1− a2

3) is equivalent to b3 > (b1 − b2 + b3)(−b2 + b3)
and by solving the nonlinear programming problem

minimization b3 − (b1 − b2 + b3)(−b2 + b3),

subject to the constrains as problem (16), we find that the minimum value is positive and thus we have
b3 > (b1 − b2 + b3)(−b2 + b3). Therefore condition (iii) holds also.



M. Parsamanesh, S. Mehrshad / Filomat 33:8 (2019), 2393–2408 2403

4. Bifurcations

In this section we consider bifurcations at the equilibria of the model. Bifurcation occurs when the
eigenvalue of the Jacobian matrix has module one. When a real eigenvalue is either 1 or -1, the fold
bifurcation or the flip bifurcation occurs, respectively and the Neimark-Sacker bifurcation occurs if there is
a pair of complex conjugate eigenvalues with module one [18].

4.1. Bifurcations at the disease-free equilibrium
As we saw in (6), the eigenvalues of the Jacobian matrix at Ed f are as

λ1 = 1 +
βSd f

Nd f
− (µ + γ + α),

λ2 = 1 − µ,
λ3 = 1 − (µ + ϕ + ψ).

|λ2| < 1 and |λ3| < 1. Moreover, λ1 = 1 if and only if
βSd f

Nd f
= (µ + γ + α) if and only if R0 = 1. Thus the

fold bifurcation occurs at Ed f if and only if R0 = 1. As the same way we see that λ = −1 if and only if
R0 = 1 − 2

µ+γ+α .This implies R0 < 0 since µ + γ + α < 1. This is a contradiction and shows that the flip
bifurcation does not appear at Ed f . In addition, all eigenvalues are real and therefore the Neimark-Sacker
bifurcation does not appear also. By these discussions we can state the following theorem:

Theorem 4.1. At the disease-free equilibrium of the model (1) the flip bifurcation and the Neimark-Sacker bifurcation
don’t appear while the fold bifurcation occurs if R0 = 1.

4.2. bifurcations at the endemic equilibrium
Here we consider the bifurcations of the model at Ee in the following theorem:

Theorem 4.2. At the endemic equilibrium of the model (1) the fold bifurcation occurs when R0 = 1 while the flip
bifurcation and the Neimark-Sacker bifurcation don’t take place.

Proof. We notice that λ = 1 is an eigenvalue of the Jacobian matrix at the endemic equilibrium Ee if and only
if it is a root of characteristic equation i.e., p(1) = 0 that is equivalent to b3 = 0. From (15) we have

b3 = (µ + γ + α)(µ + ϕ + ψ)
[ (µ + α)R(0) − α
(µ + α)R(0) − αR0

]
µ(R0 − 1),

which implies b3 = 0 if and only if R0 = 1. Therefore the fold bifurcation happens if R0 = 1.
Using similar argument, λ = −1 if and only if p(−1) = 0 or equivalently −8 + 4b1 − 2b2 + b3 = 0. After some
manipulations we get

p(−1) =
{
β[2 − (µ + ψ)][2 − (µ + α)] + α(µ + γ + α)[2 − (µ + ϕ + ψ)]

} Ie

Ne

− 2(2 − µ)[2 − (µ + ϕ + ψ)].
(17)

In proof of Theorem 3.2 we found that −p(−1) > 0 when R0 > 1. On the other hand if R0 = 1, then Ie
Ne

= 0
and so we must have 2(2 − µ)[2 − (µ + ϕ + ψ)] = 0 which is impossible. Therefore the flip bifurcation does
not appear at Ee.
For investigating the Neimark-Sacker bifurcation we notice that characteristic equation p(λ) = λ3 + a1λ2 +
a2λ + a3 has a pair of complex roots on the unit circle and a root inside the unit circle if and only if the
following conditions hold[19]:

(i) p(1) > 0,
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(ii) −p(−1) > 0,

(iii) |a3| < 1,

(iv) a2 − a1a3 = 1 − a2
3.

In proof of theorem (3.2) it was proven that conditions (i) and (ii) hold when R0 > 1. Condition (iii) holds
if and only if 0 < b1 − b2 + b3 < 2. Firstly, we have

b1 − b2 + b3 =

(µ + γ + α)
Ie

Ne︸           ︷︷           ︸
III

+ [β − (µ + γ + α)]
Ie

Ne︸                   ︷︷                   ︸
I

+ (µ + ϕ)︸  ︷︷  ︸
VII

+ (µ + ψ)︸  ︷︷  ︸
VI

+ [β − (µ + γ + α)]γ
Ie

Ne︸                    ︷︷                    ︸
V

+ϕ(µ + γ + α)
Ie

Ne︸             ︷︷             ︸
II

+ ϕψ︸︷︷︸
IV

+ (µ + γ + α)
Ie

Ne
[β − (µ + γ + α)]

Ie

Ne
(µ + ψ)︸                                                ︷︷                                                ︸

IIX

+(µ + γ + α)
Ie

Ne
(µ + ϕ)(µ + ψ)

+ (µ + γ + α)
Ie

Ne
[β − (µ + γ + α)]

(
1 −

Ie

Ne

)
(µ + ψ)︸                                                       ︷︷                                                       ︸

IIX

+ϕγ(µ + γ + α)
Ie

Ne

−

{
(µ + γ + α)

Ie

Ne
[β − (µ + γ + α)]

Ie

Ne︸                                      ︷︷                                      ︸
I

+ (µ + γ + α)
Ie

Ne
(µ + ϕ)︸                     ︷︷                     ︸

III

+ (µ + γ + α)
Ie

Ne
(µ + ψ)︸                     ︷︷                     ︸

VI

+ [β − (µ + γ + α)]
Ie

Ne
(µ + ψ)︸                            ︷︷                            ︸

VI

+ (µ + ϕ)(µ + ψ)︸            ︷︷            ︸
VII

+ [β − (µ + γ + α)]
Ie

Ne
(µ + γ + α)

(
1 −

Ie

Ne

)
︸                                             ︷︷                                             ︸

I

+ ϕ(µ + γ + α)
Ie

Ne
(µ + γ + α)

Ie

Ne︸                                 ︷︷                                 ︸
II

+ϕψ(µ + γ + α)
Ie

Ne︸                ︷︷                ︸
IV

+ [β − (µ + γ + α)]
Ie

Ne
γ(µ + ψ)︸                              ︷︷                              ︸

V

+ϕ(µ + γ + α)
(
1 −

Ie

Ne

)
(µ + γ + α)

Ie

Ne
,︸                                         ︷︷                                         ︸

II

}

and thus

b1 − b2 + b3 >

ψ(µ + γ + α)
Ie

Ne︸             ︷︷             ︸
III

+ϕψ(µ + γ + α)
(
1 −

Ie

Ne

)
︸                       ︷︷                       ︸

IV

+ϕ[β − (µ + γ + α)]γ
Ie

Ne︸                       ︷︷                       ︸
V

+ (µ + γ + α)
Ie

Ne
[β − (µ + γ + α)](µ + ψ)︸                                            ︷︷                                            ︸

IIX

+(µ + γ + α)
Ie

Ne
(µ + ϕ)(µ + ψ)

+ ϕγ(µ + γ + α)
Ie

Ne
> 0.
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Notice that from the right hand side of b1 − b2 + b3 in the previous expression we have

IV = ϕψ − ϕψ(µ + γ + α)
Ie

Ne
.

But (µ + γ + α) < 1 and thus ϕψ > ϕψ(µ + γ + α). Therefore,

IV > ϕψ(µ + γ + α) − ϕψ(µ + γ + α)
Ie

Ne
= ϕψ(µ + γ + α)

(
1 −

Ie

Ne

)
.

Secondly,

2 − (b1 − b2 + b3) =

2︸︷︷︸
I

+ (µ + γ + α)[β − (µ + γ + α)]
Ie

Ne︸                                  ︷︷                                  ︸
II

+ (µ + γ + α)(µ + ϕ)
Ie

Ne︸                     ︷︷                     ︸
III

+ (µ + γ + α)(µ + ψ)
Ie

Ne︸                     ︷︷                     ︸
V

+ [β − (µ + γ + α)](µ + ψ)
Ie

Ne︸                            ︷︷                            ︸
IV

+(µ + ϕ)(µ + ψ)

+ ϕ(µ + γ + α)(µ + γ + α)
Ie

Ne︸                            ︷︷                            ︸
VI

+ϕψ(µ + γ + α)
Ie

Ne
+ [β − (µ + γ + α)]γ(µ + ψ)

Ie

Ne

−

{
(µ + γ + α)

Ie

Ne
+ [β − (µ + γ + α)]

Ie

Ne
+ (µ + ϕ)︸                                                       ︷︷                                                       ︸

<µ+ϕ+β<1, I

+ (µ + ψ)︸  ︷︷  ︸
I

+ [β − (µ + γ + α)]γ
Ie

Ne︸                    ︷︷                    ︸
II

+ϕ(µ + γ + α)
Ie

Ne︸             ︷︷             ︸
III

+ ϕψ︸︷︷︸
I

+ (µ + γ + α)[β − (µ + γ + α)](µ + ψ)
Ie

Ne︸                                            ︷︷                                            ︸
IV

+ (µ + γ + α)(µ + ϕ)(µ + ψ)
Ie

Ne︸                               ︷︷                               ︸
V

+ ϕγ(µ + γ + α)
Ie

Ne︸               ︷︷               ︸
VI

}

> (µ + ϕ)(µ + ψ) + ϕψ(µ + γ + α)
Ie

Ne
+ [β − (µ + γ + α)]γ(µ + ψ)

Ie

Ne
> 0.

For expression I notice that Firstly, (µ + γ + α) Ie
Ne

+ [β − (µ + γ + α)] Ie
Ne

+ (µ + ϕ) = β Ie
Ne

+ (µ + ϕ) < β + µ + ϕ,
since Ie

Ne
< 1, and therefore by first inequality in (2), it is less than one. Secondly, (µ+ψ)+ϕψ < µ+ψ+ϕ < 1

by last inequality in (2). Thus the summation of these two expressions is less than 2 i.e., I < 2.
Therefore condition (iii) holds. Also, condition (iv) holds if and only if

b3 = (b1 − b2 + b3)(b2 − b3).

But we saw that the nonlinear programming problem (16) implies

b3 − (b2 − b3)(b1 − b2 + b3) < 0.

This shows that a2−a1a3 < 1−a2
3 and condition (iv) is not satisfied. Therefore the Neimark-Sacker bifurcation

does not take place at Ee.
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Remark 4.3. The condition β < 1 with other conditions stated in (2) are sufficient condition to the model (1) has
positive solutions but not a necessary condition for this. If we omit this constraint from β and allow it to take greater
values also (as it may take place in real world) , then it becomes possible that p(−1) = 0 while R0 > 1 and thus the flip
bifurcation may occur. In this case, some sufficient conditions can be extracted from (17).

5. Numerical discussions

In this section we simulate the model and challenge numerically the theoretical results obtained in
preceding sections. Take the parameters of the model as

σ = 0.4, µ = 0.1, ϕ = 0.2, α = 0.05, γ = 0.15, and ψ = 0.25. (18)

Also, suppose that the unit of time is one day and unit of population is one million persons and initial
population of susceptible, infected and vaccinated individuals are S0 = 0.8, I0 = 0.4, and V0 = 0.5 while a
constant number of new members Λ = 0.2 enters the population per unit time. We take β as the bifurcation
parameter and get the bifurcation diagram as in Figure 2. From (9) we have R0 = 1 if β = 0.5323 and
R0 < (>)1 when β < (>)0.5323. As it was stated in Theorem 3.1 Figure 2 shows that the disease-free
equilibrium Ed f is stable when β < 0.5323 and it is unstable for β > 0.5323. In this case the endemic
equilibrium Ee becomes stable as it was stated in Theorem 3.2. We see that at β = 0.5323 the stability of
the model is changed and a fold bifurcation occurs as it was stated in Theorem 4.1 and Theorem 4.2. Also,
Theorem 4.1 and Theorem 4.2 state that when β < 1 the flip bifurcation and the Neimark-Sacker bifurcation
can not be occurred but if we let it to take values greater than one, then the flip bifurcation may take place
as it was stated in Remark 4.3. From (17) we find that for β = 2.6810, p(−1) = 0 and thus the flip bifurcation
happens. This is observable also in Figure 2. In Figure 3 we graph the Lyapunov exponent as a function of

Figure 2: Bifurcation diagram for infected population It in terms of β as bifurcation parameter.

β. The Lyapunov exponent at equilibrium X = (I,S,V) is calculated by[2]

λ0(X0) = lim
t→∞

1
t

lnρ
( t−1∏

k=0

J(Xk)
)
,
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where X0 is the under consideration equilibrium and Xk, k = 1, · · · , t− 1 are its next t− 1 solutions after each
time interval ∆t. For those values of β at which the Lyapunov exponent has not negative value the model
is not stable. It is seen that at β = 0.5323, 2.6810, and3.479 this quantity is not negative and bifurcations
occur. Moreover, for β > 3.6 the most Lyapunov exponents are positive and thus the solution has chaotic
behavior. Figure 4 illustrates solutions of the model for various values for β and parameters value as in

Figure 3: Lyapunov exponent of the Jacobian matrix in terms of β.

(18). At β = 0.5, the basic reproduction number isR0 = 0.9394 < 1 and as Theorem 3.1 states the disease-free
equilibrium is stable and it is seen that the disease is extinct. However, at β = 0.6, R0 = 1.1273 > 1 and
according to Theorem 3.2 the endemic equilibrium is stable. In this case, the disease persists in population.
For parameter values β = 2.7 and β = 3.6 the system is unstable as Figure 2 shows and has oscillatory
behavior.

6. Conclusions

In this paper, a discrete-time epidemic model for infectious diseases was presented and studied. The
vital dynamics such as natural deaths, deaths due to disease, newborns, and immigrants are included
in the model and number of individuals in population is not fixed. The model includes a perfect but
temporary vaccination program which is performed on both newcomers and susceptibles. For under study
model, the SIVS epidemic model, some basic properties such as two equilibria of the model and basic
reproduction number R0 were obtained. Next, the stability of the equilibria were investigated and proved
that disease-free equilibrium Ed f and endemic equilibrium Ee are stable if R0 < 1 and R0 > 1, respectively.
The bifurcations of the model were studied also and it was shown that under assumptions on the model that
guaranties positivity of the solutions, the model has only the fold (transcritical) bifurcation when R0 = 1
and the flip (period-doubling) bifurcation and the Neimark-Sacker bifurcation don’t appear. However, as
it was shown in simulations if we omit some restrictions on bifurcation parameter, the flip bifurcation may
also be appeared. Moreover, the theoretical results of the paper were investigated and confirmed in some
numerical experiments via diagrams of bifurcations, Lyapunov exponents, and solutions of the model.
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Figure 4: Solutions of the model for various values of β, I(t):’-.’ green line, S(t):’-’ blue line, V(t):’–’ red line.
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