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Abstract. In this work we have studied the deterministic behaviours of a competition model with herd
behaviour and Allee effect. The uniform boundedness of the system has been studied. Criteria for local
stability at equilibrium points are derived. The effect of discrete time-delay on the model is investigated.
We have carried out numerical simulations to validate the analytical findings. The biological implications
of our analytical and numerical findings are discussed.

1. Introduction

In many situations, two or more species live in proximity and share the same basic resources (such as
food, water, habitat, or territory). As these resources are not unlimited, therefore it is quite obvious that
these species might have to fight for these. Competition among organisms or species can be defined as an
interaction in which the fitness of one is diminished by the presence of the other [10]. Competition among
individuals of the same species is called intraspecific competition. On the other hand, interspecific competition
is the competition between individuals of different species. The so called Competitive exclusion principle (or
Gause’s law of competitive exclusion [26]) states that stronger (or best suited) species will always dominate the
weaker (or less suited) leading to either the extinction of the weaker or an evolutionary or behavioral shift
toward a different ecological niche. But there are many evidences where this principle fails, the best known
example being the paradox of plankton [31].

So far as the growth of a single-species population is concerned, it has long been recognised that
the famous logistic growth function is a logical choice. The function is introduced in 1838 by the Belgian
mathematician Pierre Francois Verhulst [57] and later it is rediscovered in 1920 by American biologists
Reymon Pearl and Lowell Reed [43]. If X(T) denotes the population density at time T, then the logistic
growth equation is given by

dX
dT

= rX
(
1 −

X
K

)
, (1)

where r is the intrinsic per capita growth rate and K is the carrying capacity of the environment. The
logic behind this is very simple. As the resources (e.g., space, food, essential nutrients) are limited, every
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population grows into a saturated phase from which it cannot grow further; the ecological habitat of the
population can carry just so much of it and no more. This suggests that the per capita growth rate is a
decreasing function of the size of the population, and reaches zero as the population achieved a size K (in the
saturated phase). Further, any population reaching a size that is above this value will experience a negative
growth rate. The term −rX2/K may also be regarded as the loss due to intraspecific competition. Although
logistic growth function became extremely popular, but, in real life situations, researchers found many
evidences where the populations show a reverse trend in low population density [14, 19, 22, 23, 41, 44].
This phenomenon of positive density dependence of population growth at low densities is known as the
Allee effect [23, 51].

The phenomenon of Allee effect is named after the US Behavioral scientist Warder Clyde Allee (although
Allee never used the term ‘Allee effect’). Allee described this concept in three of his papers [4–6]. Actually,
the term ‘Allee effect’ was introduced by Odum [42]. Since the late eighties of the 20th century, the
concept gained importance but there were necessity of clear-cut definitions and clarification of concepts.
The necessity was fulfilled when three reviews by Stephens et al. [51], Courchamp et al. [22], Stephens
and Sutherland [50]. There are many reasons for Allee effect, such as difficulty in mate finding, reduced
antipredator vigilance, problem of environmental conditioning, reduced defense against predators, and
many others (for thorough reviews, see references [14, 23]).

The Allee effect can be divided into two main types, depending on how strong the per capita growth
rate is depleted at low population densities. These two types are called the strong Allee effect [39, 46, 47,
52, 53, 56, 59, 60] or critical depensation [17, 18, 34], and the weak Allee effect [49, 51, 58] or noncritical
depensation [17, 18, 34]. Usually, the Allee effect is modelled by a growth equation of the form

dX
dT

= rX
(
1 −

X
K

)
(X −m) , (2)

where X(T) denotes the population density at time T, r is the intrinsic per capita growth rate, and K is the
carrying capacity of the environment. Here 0 < m << K. When m > 0 and the population size is below
the threshold level m, then the population growth rate decreases [9, 20, 25, 32], and the population goes to
extinction. In this case, the equation describes the strong Allee effect [53, 56, 59, 60]. On the contrary, the
description of weak Allee effect is also available (see references [27, 49, 59]). In this paper, we are concerned
with strong Allee effect. The above growth is often said to have a multiplicative Allee effect. There is
another mathematical form of the growth function featuring the additive Allee effect. In this paper, we are
not interested in additive Allee effect (interested readers might see the works of Aguirre et al. [1, 2]). A
comparison of the logistic growth function of (1) and the function representing Allee effect in equation (2)
can be found in [36].

A herd or pack is a social grouping of different animals of the same species. When a species shows herd
behaviour, the individuals of the species show a collective social behavior, and each individual chooses
a behaviour that corresponds to that of the majority of other members (for example, all moving in the
same direction at a given time). There are several reasons for herd behaviour (see [11–13, 36–38, 48] and
references therein).

Now, when a population lives forming groups, then all members of a group do not interact at a time.
There are many reasons for this herd behaviour, such as searching for food resources, defending the
predators, etc. Usually the species, which exhibits this social behaviour, allows the weakest individuals to
occupy the interior of the herd, leaving the healthier and stronger animals around it. As a consequence, it
is necessary to search for suitable function to describe this social behaviour. Only a few works have so far
tried to enlighten this area. These works demonstrated an ingenious idea that suitable powers of the state
variables can account for the social behaviour of the populations. For example, to explore the consequence
of forming spatial group of fixed shape by predators, Cosner et al. [21] introduced the idea that the square
root of the predator variable is to be used in the function describing the encounter rate in two-dimensional
systems. Unfortunately, such an idea has not been used by the researchers for about a decade. The work
of Chattopadhyay et al. [16] may be regarded as a strong recognition of this concept. Then came the most
innovative work of Ajraldi et al. [3], which gave such modelling a new dimension. Their idea is very
interesting. If X is the density of a population that gathers in herds and the herd occupies an area A, then
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the number of individuals staying at outermost positions in the herd is proportional to the length of the
perimeter of the patch where the herd is located. Clearly, its length is proportional to

√
A. Since X is

distributed over a two-dimensional domain,
√

X would therefore count the individuals at the edge of the
patch.

In the Lotka-Volterra competition model (which was later studied empirically by Gause [26]), the
competition between two species is depicted and this model becomes extremely popular. In this model,
it is assumed that each of the competing species follows logistic growth dynamics in the absence of the
other. The description of this model with clear interpretation of different terms can be found in the classical
book of Edelstein-Keshet [24]. Recently, Ajraldi et al. [3] have derived and analyzed a competition model,
where one of the species shows a herd behaviour. Here we have considered a competition model where
one species shows herd behaviour, whereas the other species is subject to strong Allee effect.

In recent times, it is well understood that many of the processes, both natural and manmade, in biology,
medicine, et cetera, involve time-delays or time-lags. Time-delays occur so often, in almost every situation,
that to ignore them is to ignore reality. Kuang [33] mentioned that animals must take time to digest their
food before further activities and responses take place and hence any model of species dynamics without
delays is an approximation at best. Now it is beyond doubt that in an improved analysis, the effect of
time-delay due to the time required in going from egg stage to the adult stage, gestation period, et cetera,
has to be taken into account. Detailed arguments on importance and usefulness of time-delays in realistic
models may be found in the classical books of Gopalsamy [28], Kuang [33] and MacDonald [35].

Hutchinson [30] pointed out that the logistic equation would be inappropriate for the description of
population growth in the case where there is a time-delay in some of the processes involved. The delayed
logistic equation or Hutchinson’s equation is one of the first examples of a delay differential equation that
has been thoroughly examined (see for example [7, 28, 33, 35], and the references within).

In this paper, we have considered a two-species competition model. The first species is vulnerable to
Allee effect and displays a herd behaviour. On the other hand, the second species has a logistic growth
with time-delay in it. The paper is structured as follows. In section 2, the basic deterministic model
(without time-delay) is introduced. In section 3, positivity and boundedness of the model are discussed.
The equilibria and their stability are studied in section 4. The effect of time-delay in the logistic growth
of the second species is analyzed in section 5. In section 6, the analytical findings of sections 4 and 5
are verified through computer simulation. Section 7 contains the general discussions of the paper and
biological implications of our mathematical findings.

2. The basic mathematical model

The model we analyze in this paper is composed of two competing species, whose population biomass
at time t are denoted by x and y. Before we introduce the model and dip into the depth of the rigorous
analysis, we would like to present a brief sketch of the construction of the model which may indicate the
biological relevance of it.

1. We assume that the first species (with biomass x) follows a logistic growth in absence of the other
species.

2. It is assumed that the second species is subject to a strong Allee effect.
3. Naturally, we assume that the presence of each population leads to the depression of its competitor’s

growth rate.
4. We also assume that the first species shows a herd behaviour. Then its members, who are at the edge

of the herd, interact mostly with the members of the second species, which lives independently. As it is a
two-dimensional system, following the main idea of Ajraldi et al.[3], Melchionda et al. [40], we notice that
√

x will count the number of individuals of the first species at the outer edge of the herd. Hence the loss
due to interaction of two competing species will be proportional to

√
xy.

These considerations motivate us to introduce the following prey-predator system under the framework
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of the following set of nonlinear ordinary differential equations:

dx
dt

= rx
(
1 −

x
k

)
− a
√

xy, x(0) > 0,

dy
dt

= sy
(
1 −

y
c

)
(y −m) − b

√
xy, y(0) > 0.

(3)

Here r is the intrinsic growth rate of the first species, k is its carrying capacity. The parameter s is the
intrinsic growth rate of the second species, c is its carring capacity, m indicates the Allee threshold for the
first species (since the Allee effect is strong, we have 0 < m << c). The term a

√
xy in the first equation can

be thought of as the contribution made by the second species to a decline in the growth rate of the first
species. Similarly, b

√
xy is the decline in the growth rate of the second species (caused by individuals of

the first species).

3. Positivity and boundedness

In this section, we discuss the positivity and boundedness of the solutions of the system (3). The first
theorem is on positivity of solutions.

Theorem 3.1. All solutions of the system (3) that start in R2
+ remain positive forever.

The proof is simple and therefore it is omitted. The following theorem ensures the boundedness of the
system (3).

Theorem 3.2. All solutions of the system (3) that start in R2
+ are uniformly bounded.

Proof. Let (x(t), y(t)) be any solution of the system (3). From the first equation of (3), we obtain

dx
dt
≤ rx

(
1 −

x
k

)
,

which implies that
lim sup

t→∞
x(t) ≤ k.

Next we prove that lim supt→∞ y(t) ≤ c. We consider two possible cases separately.

Case-I. Let y(0) ≤ c. We claim that y(t) ≤ c for all t ≥ 0.
If possible, assume that our claim is not true. Then it is possible to find two positive real numbers t′ and t′′

such that y(t′) = c and y(t) > c for all t ∈ (t′, t′′).
Now, for all t ∈ (t′, t′′), we have from the second equation of(3)

y(t) = y(0) exp
(∫ t

0
φ(x(s), y(s))ds

)
,

where φ(x(t), y(t)) = s
(
1 − y(t)

c

)
(y(t) −m) − b

√
x(t).

This implies that

y(t) = y(0)
[
exp

(∫ t′

0
φ(x(s), y(s))ds

)] [
exp

(∫ t

t′
φ(x(s), y(s))ds

)]
= y(t′) exp

(∫ t

t′
φ(x(s), y(s))ds

)
, for all t ∈ (t′, t′′).
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Since m < c, we have φ(x(t), y(t)) < 0 for all t ∈ (t′, t′′). Consequently, we have

y(t) < y(t′), where y(t′) = c.

This is contrary to the assumption that y(t) > c for all t ∈ (t′, t′′). Thus our claim is true.

Case-II. Let y(0) > c. We claim that lim supt→∞ y(t) ≤ c.
If possible, assume that this claim is false. Then y(t) > c for all t > 0. So φ(x(t), y(t)) < 0 (where φ has the
same expression as in Case-I); and consequently, we have from the second equation of (3) that

y(t) = y(0) exp
(∫ t

0
φ(x(s), y(s))ds

)
< y(0).

Also from the second equation of (3), we obtain

dy
dt
< s(y(0) −m)y

(
1 −

y
c

)
, where y(0) −m > 0.

This implies that lim supt→∞ y(t) ≤ c, which is contradictory to our assumption. Therefore our claim is true.

The above two cases can be combined together as

lim sup
t→∞

y(t) ≤ c.

Hence the theorem follows.

4. Equilibria and their stability

In this section, we find the equilibrium points of the system (3) and study their stability. The eqilibrium
points and the conditions of their existence is given in the following lemma.

Lemma 4.1. The trivial equilibrium E0(0, 0) of the system (3) always exists. There are three boundary equilibrium
points E1(k, 0), E2(0, c) and E3(0,m), each of which also exists unconditionally. The first component x∗ of the
interior or coexistence equilibrium E∗(x∗, y∗) exists if and only if the equation

sr2x
a2c

(
1 −

x
k

)2
−

rs
√

x
a

(
1 +

m
c

) (
1 −

x
k

)
+ b
√

x + sm = 0 (4)

has a positive root. When this condition is satisfied, then x∗ is a positive root of (4). If further, x∗ < k, then y∗ exists
and is given by

y∗ =
r
√

x∗

a

(
1 −

x∗

k

)
.

4.1. Behaviour near the boundary equilibria E0,E2,E3

System (3) cannot be linearized at E0 = (0, 0), E2 = (0, c) and E3 = (0,m), so local stability of E0, E2 and
E3 cannot be studied in the usual way. However, we provide some logical arguments to understand the
behaviours of the system (3) near the above equilibrium points.

If the first populations disappears, the system reduces to one equation. In this circumstance, the
surviving population y follows the equation dy

dt = sy
(
1 − y

c

)
(y −m) having three equilibrium points 0,m, c.

It is well known that the equilibrium points 0 and c are asymptotically stable, and m is unstable. Therefore,
if y(0) < m, then y will approach 0; otherwise it will grow toward its own carrying capacity c. Thus E2(0, c)
is locally asymptotically stable, and E3(0,m) is unstable.

To study the behaviour near E0(0, 0), it is reasonable to assume that x << min{1, k} and y << min 1,m.
Then x <

√
x and y <

√
y, and x, y are so small that, following the approach of Melchionda et al. [40], we

have
dx
dt
≈ r
√

x > 0,
dy
dt
≈ s
√

y > 0.

This indicates that the origin is unstable.
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4.2. Stability of E1 and E∗

The Jacobian matrix of system (3) at an equilibrium point (x, y) (when x , 0) is

J(x, y) =

 r − 2r
k x − ay

2
√

x
−a
√

x

−
by

2
√

x
(y −m)(s − 2sy

c ) + sy(1 − y
c ) − b

√
x

 .
Theorem 4.2. The equilibrium point E1(k, 0) of system is stable if and only if b

√
k + ms > 0.

Proof. The Jcobian matrix at E1 = (k, 0) is

J(E1) =

[
−r −a

√
k

0 −b
√

k −ms

]
.

Clearly, its eigenvalues are λ1 = −r and λ2 = −b
√

k −ms.
Since λ1 < 0, E1 is stable or unstable according as λ2 < or > 0.
Hence the theorem follows.

The Jacobian matrix at E∗(x∗, y∗) is given by

J(E∗) =

[
a11 a12
a21 a22

]
,

where

a11 = r −
2rx∗

k
−

ay∗

2
√

x∗
a12 = −a

√
x∗

a21 = −
by∗

2
√

x∗

a22 = (y∗ −m)(s −
2sy∗

c
) + sy∗(1 −

y∗

c
) − b

√
x∗.

The characteristic equation of J(E∗) is
λ2 + Pλ + Q = 0,

where P = −tr J(E∗) = −(a11 + a22) and Q = det J(E∗) = a11a22 − a12a21.
Then we have the following theorem guaranteeing the stability of E∗.

Theorem 4.3. If the equilibrium point E∗(x∗, y∗) exists with P > 0 and Q > 0, then E∗ is locally asymptotically
stable.

Proof. It is easy to notice that, if the conditions of the theorem are satisfied, then all the eigenvalues of J(E∗)
have negative real parts. Hence the theorem follows.

5. Effect of discrete time-delay

It is mentioned that time-delay is a vital factor in biological systems. In particular, delay in logistic
growth function is extremely important [7, 28, 30, 33, 35, 45]. As a starting point of this section, we consider
the following generalization of the model (3) involving discrete time delay:

dx
dt

= rx
[
1 −

x(t − τ)
k

]
− a
√

xy,

dy
dt

= sy
(
1 −

y
c

)
(y −m) − b

√
xy.

(5)
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Initial conditions: x(0) > 0, y(0) > 0 with x(ψ) ≥ 0,∀ψ ∈ [−τ, 0).
Here it is assumed that the net per capita rate of change might depend on the state of the system τ time

units in the past [7].
The system (5) has the same equilibria as in the previous case. The main purpose of this section is to

study the stability behaviour of E∗(x∗, y∗) in presence of delay (τ , 0).
We linearize the system (5) by using the following transformations:

x = x∗ + x1, y = y∗ + y1.

Then the linear system is given by

du
dt

= Au(t) + Bu(t − τ) (6)

where u(t) = [x1 y1]T, A = (ai j)2×2, B = (bi j)2×2,
and a11 = 0, a12 = 0, a21 = −

by∗

(2
√

x∗)
, a22 = (y∗ −m)(s − 2sy∗

c ) + sy∗(1 − y∗

c ) − b
√

x∗,

b11 = − rx∗
k , b12 = 0, b21 = 0, b22 = 0.

We look for solution of the model (6) of the form u(t) = ρeλt, 0 , ρ ∈ R2. This leads to the following
characteristic equation:

λ2 + a1λ + (a2λ + a3)e−λτ = 0, (7)

where a1 = −a22, a2 = −b11, a3 = b11a22.
It is well known that the signs of the real parts of the solutions of (7) characterize the stability behaviour of
E∗. Therefore, substituting λ = ξ + iη in (7), we obtain real and imaginary parts, respectively, as

ξ2
− η2 + a1ξ +

[
{a2ξ + a3} cos ητ + a2η sin ητ

]
e−ξτ = 0, (8)

and

2ξη + a1η +
[
a2η cos ητ − {a2ξ + a3} sin ητ

]
e−ξτ = 0. (9)

A necessary condition for a stability change of E∗ is that the characteristic equation (7) has purely imaginary
solutions. Hence to obtain the stability criterion, we set ξ = 0 in (8) and (9) to obtain

η2 = a3 cos ητ + a2η sin ητ, (10)

and

a1η = a3 sin ητ − a2 cos ητ. (11)

Eliminating τ by squaring and adding (10) and (11), we get the equation for determining η as

η4 + d1η
2 + d2 = 0, (12)

where d1 = a2
1 − a2

2, d2 = −a2
3.

Substituting η2 = σ in (12), we get a quadratic equation given by

σ2 + d1σ + d2 = 0. (13)

The quadratic (13) always has one and only one positive real root. Let σ0 be the unique positive root of
(13). So there exist σ0 = η2

0 that satisfy equation (12). In the following theorem, we have given a criterion
for switching the stability behaviour of E∗.
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Theorem 5.1. Let E∗(x∗, y∗) exists with P > 0 and Q > 0. Then E∗ is locally asymptotically stable for 0 ≤ τ < τ∗,
and unstable for τ > τ∗ and the system exhibits a hopf bifurcation near E∗ for τ = τ∗, provided

f (η0) =
1
η0

(a1a3η0 sin η0τ − a1a2η
2
0 cos η0τ + 2a2η

3
0 sin η0τ + 2a3η

2
0 cos η0τ − a2

2η
2
0) > 0,

where

τ∗ =
1
η0

arcsin

η3
0a2 + a1a3η0

a2
3 + a2

2η
2
0

 .
Proof First we note that η0 is a solution of (12). Solving (10) for cos τη0 and substituting in (11), we find that
for τ = τ∗, the characteristic equation (7) has purely imaginary roots, ±iη0. Again it may be noted that if
±η0 is a solution of (10) and (11), then η2

0 is a solution of (12). The theorem will be proved if we can show
that

[
dξ
dτ

]
τ=τ∗

> 0. To show this, we differentiate (10) and (11) with respect to τ and then set ξ = 0 to obtain

C(η)
dξ
dτ

+ D(η)
dη
dτ

= G(η) (14)

and

−D(η)
dξ
dτ

+ C(η)
dη
dτ

= H(η), (15)

where

C(η) = a1 + a2 cos ητ − a3τ cos ητ − a2ητ sin ητ
D(η) = −2η − a3τ sin ητ + a2 sin ητ + a2ητ cos ητ
G(η) = a3η sin ητ − a2η

2 cos ητ
H(η) = a2η

2 sin ητ + a3η cos ητ.

Solving (14) and (15) with τ = τ∗ and η = η0, we get

[
dξ
dτ

]
τ=τ∗

=
η2

0 f (η0)

C2(η0) + D2(η0)
,

which is positive under the condition of the theorem ( f (η0) > 0).
Thus the theorem is established.

6. Numerical simulation

Analytical studies can never be complete without numerical verification of the results. In this section
we present computer simulation of different solutions of the system (3) using MATLAB.

First we choose the parameters of the system as a = 0.05, b = 3, c = 0.02, r = 8, s = 1, k = 3.5, m = 0.2
and x(0) = 1, y(0) = 0.5. Then condition (b

√
k + ms = 5.81 > 0) of Theorem 4.2 is satisfied, and as such

E1(k, 0) is locally asymptotically stable. The behaviour of x and y with time is depicted in Figure 1. Clearly
x approaches k = 3.5 and y approaches 0 in finite time.
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x(t)
y(t)

Figure 1. Behaviour of x and y with t for the system (3) when a = 0.05, b = 3, c = 0.02, r = 8, s = 1, k = 3.5, m = 0.2
and x(0) = 1, y(0) = 0.5.

Now we choose the parameters of the system as a = 0.05, b = 3, c = 0.02, r = 10, s = 1, k = 4, m = 0.75.
Then conditions of Theorem 4.3 are satisfied, and as such E∗(4, 0.5) is locally asymptotically stable. The
corresponding phase portrait with different initial choices [(x(0), y(0)) = (1, 2), (2, 3), (3, 4)] is shown in Figure
2. The behaviour of x and y with time is shown in Figure 3 when x(0) = 1 and y(0) = 1.
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Figure 2. Phase portrait of the system (3) for different values of x(0) and y(0) when a = 0.05, b = 3, c = 0.02, r =
10, s = 1, k = 4, m = 0.75.
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Figure 3. Behaviour of x and y with t for the system (3) when the parameter values are same as in Figure 2 and
x(0) = 1, y(0) = 1.

For the above choices of parameters as in Figure 2, using Theorem 5.1, we see that τ∗ = 0.1566. Therefore,
by Theorem 5.1, E∗(4, 0.5) is locally asymptotically stable for 0 ≤ τ < τ∗, and Hopf bifurcation occurs at
τ = τ∗. We verify that, for τ = 0.15 < τ∗, E∗ is locally asymptotically stable. The corresponding phase
portrait for different initial choices [(x(0), y(0)) = (0.1, 0.2), (0.3, 0.4), (0.4, 0.5)] is shown in Figure 4. The
stable behaviour of x and y with time is presented in Figure 5, when x(0) = 0.2, y(0) = 0.3.
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Figure 4. Phase portrait of the system (5) for different values of x(0) and y(0) when a = 0.05, b = 3, c = 0.02, r =
10, s = 1, k = 4, m = 0.75 and τ = 0.15.
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Figure 5. Stable behaviour of x and y with t for the system (5) when the parameter values are same as in Figure 4
and x(0) = 0.2, y(0) = 0.3.

On the other hand, if we take τ = 0.16 > τ∗ keeping other parameters fixed, then E∗ becomes unstable.
The corresponding phase portrait for different initial choices [(x(0), y(0)) = (0.1, 0.2), (0.3, 0.4), (0.4, 0.5)] is
shown in Figure 6, which shows that there is a limit cycle that grows out of E∗. The oscillations of x and y
with time is presented in Figure 7, when x(0) = 0.2, y(0) = 0.3.
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Figure 6. Phase portrait of the system (5) for different values of x(0) and y(0) when the parameter values are same as
in Figure 4 except τ = 0.16 > τ∗.
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Figure 7. Oscillations of x and y with t for the system (5) when the parameter values are same as in Figure 6 and
x(0) = 0.2, y(0) = 0.3.

7. Concluding remarks

Many populations in nature live in herd for numerous reasons. When two or more species share a
common resource, there might be competition among them. Further, a population might be susceptible
to Allee effect due to many reasons. There should be no denying that, studies of interplay between these
phenomena would be very exciting and challenging. In this paper, we have constructed a two-species
competition model (3), where one species shows a herd behaviour and the other is subject to strong Allee
effect.

It is shown (in Theorem 3.1 and Theorem 3.2) that the solutions of the system (3) remains non-negative
forever, and they are uniformly bounded. These, in turn, imply that the system is biologically well-behaved.
Analysis of stability of the equilibrium points is presented. The effect of discrete time-delay in the growth
term of the first species is studied. Our results are illustrated through computer simulation using MATLAB.

One of the main goals of mathematical modeling is to observe formation of different patterns, which are
commonly exhibited in nature, through mathematical models [54, 55]. Again, on the issue of population
control, we usually get very useful suggestions from mathematical modeling of the concerned system.
Very often, modelers identify the factors which might leave a stabilizing or destabilizing influence on the
underlying system [8, 15]. In our model, we have observed some patterns like spiral pattern, cyclic pattern,
etc. Also it is shown that the time-delay has the capability to control the dynamics of the system.

Nowadays, preservation of ecological balance in nature is an issue which the entire globe is concerned
with. Stability analysis of the interior equilibrium might provide the conditions for ecological balance in
nature. From our analysis, it is evident that if conditions of Theorem 4.3 are satisfied, and τ lies below τ∗,
then competitive exclusion can be avoided and ecological balance can be preserved.

Acknowledgment: We are grateful to the anonymous referees and Prof. Miljana Jovanovic, Editor for
their careful reading, valuable comments and helpful suggestions which have helped us to improve the
presentation of this work significantly.
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