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Abstract. Recently, Naghi et al. [32] studied warped product skew CR-submanifold of the form M1 × f M⊥

of order 1 of a Kenmotsu manifold M̄ such that M1 = MT × Mθ, where MT, M⊥ and Mθ are invariant,
anti-invariant and proper slant submanifolds of M̄. The present paper deals with the study of warped
product submanifolds by interchanging the two factors MT and M⊥, i.e, the warped products of the form
M2 × f MT such that M2 = M⊥ ×Mθ. The existence of such warped product is ensured by an example and
then we characterize such warped product submanifold. A lower bound of the squared norm of second
fundamental form is derived with sharp relation, whose equality case is also considered.

1. Introduction

In 1986, Bejancu [4] introduced the notion of CR-Submanifolds. This family of submanifolds was gener-
alized by Chen [9] as slant submanifolds. Then a more generalization is given as semi-slant submanifolds
by Papaghiuc [33]. Next, Cabrerizo et al. [7] defined and studied bi-slant submamifolds and simultanously
gave the notion of pseudo-slant submanifolds. The contact version of slant, semi slant and pseudo-slant
submanifolds are studied in [28], [7] and [24], respectively. As a generalization of all these class of subman-
ifolds, Ronsse [34] introduced the notion of skew CR-submanifolds of Kaehler manifolds.

The notion of warped product was introduced by Bishop and O’Neill in [6] to construct the examples
of manifolds with negative curvature. The study of warped product submanifolds was initiated by Chen
([10], [11]). Then several authors studied warped product submanifolds. For detailed study of warped
product submanifolds, we may refer to ([12], [19]-[22], [31]). In this connection it may be mentioned that
warped product submanifolds of Kenmotsu manifold are studied in ([1]-[3], [25]-[27], [30], [37]-[41]).

Warped product skew CR-submanifolds of Kaehler manifold was studied by Sahin [35] and in [13]
Haider et al. studied this class of submanifolds in cosympletic ambient. Recently Naghi et al. [32] studied
warped product skew CR-submanifolds of the form M1 × f M⊥ of order 1 of a Kenmotsu manifold M̄ such
that M1 = MT ×Mθ, where MT, M⊥ and Mθ are invariant, anti-invariant and proper slant submanifolds
of M̄. In this paper we have concentrated on another class of warped product skew CR-submanifolds of
Kenmotsu manifolds of the form M2× f MT, where M2 = M⊥×Mθ. The present paper is organized as follows:
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in section 2, some preliminaries are given, section 3 is dedicated to the study of skew CR-submanifold of
Kenmotsu manifold, in section 4, we provide an example of warped product skew CR-submanifolds of
the form M2 × f MT and some basic results of such type of submanifolds are obtained, a characterization of
skew CR-warped product of the form M2 × f MT is obtained in section 5. In section 6, we have established
two inequalities on a warped product skew CR-submanifold M = M2 × f MT of a Kenmotsu manifold M̄.

2. Preliminaries

In [36] Tanno classified connected almost contact metric manifolds whose automorphism groups possess
the maximum dimension. For such a manifold, the sectional curvature of plane sections containing ξ is a
constant, say c. He proved that they could be divided into three classes: (i) homogeneous normal contact
Riemannian manifolds with c > 0, (ii) global Riemannian products of a line or a circle with a Kähler manifold
of constant holomorphic sectional curvature if c = 0 and (iii) a warped product space R × f C

n if c < 0.
Kenmotsu [23] characterized the differential geometric properties of the manifolds of class (iii) which

are nowadays called Kenmotsu manifolds and later studied by several authors ([16]-[18]) etc.
An odd dimensional smooth manifold M̄2m+1 is said to be an almost contact metric manifold [5] if it

admits a (1, 1) tensor field φ, a vector field ξ, an 1-form η and a Riemannian metric 1which satisfy

φξ = 0, η(φX) = 0, φ2X = −X + η(X)ξ, (1)

1(φX,Y) = −1(X, φY), η(X) = 1(X, ξ), η(ξ) = 1, (2)

1(φX, φY) = 1(X,Y) − η(X)η(Y) (3)

for all vector fields X,Y on M̄.
An almost contact metric manifold M̄2m+1(φ, ξ, η, 1) is said to be Kenmotsu manifold if the following

conditions hold [23]:

∇̄Xξ = X − η(X)ξ, (4)

(∇̄Xφ)(Y) = 1(φX,Y)ξ − η(Y)φX, (5)

where ∇̄ denotes the Riemannian connection of 1.
Let M be an n-dimensional submanifold of a Kenmotsu manifold M̄. Throughout the paper we assume

that the submanifold M of M̄ is tangent to the structure vector field ξ. Let ∇ and ∇⊥ be the induced
connections on the tangent bundle TM and the normal bundle T⊥M of M respectively. Then the Gauss and
Weingarten formulae are given by

∇̄XY = ∇XY + h(X,Y) (6)

and

∇̄XN = −ANX + ∇⊥XN (7)

for all X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where h and AN are second fundamental form and the shape operator
(corresponding to the normal vector field N) respectively for the immersion of M into M̄ and they are related
by 1(h(X,Y),N) = 1(ANX,Y) for any X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where g is the Riemannian metric on M̄
as well as on M.

The mean curvature H of M is given by H = 1
n trace h. A submanifold M of a Kenmotsu manifold M̄ is

said to be totally umbilical if h(X,Y) = 1(X,Y)H for any X,Y ∈ Γ(TM). If h(X,Y) = 0 for all X,Y ∈ Γ(TM),
then M is totally geodesic and if H = 0 then M is minimal in M̄.

Let {e1, · · · , en} be an orthonormal basis of the tangent bundle TM and {en+1, · · · , e2m+1} be that of the
normal bundle T⊥M. Set

hr
i j = 1(h(ei, e j), er) and ‖h‖2 = 1(h(ei, e j), h(ei, e j)), (8)
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for i, j ∈ {1, · · · ,n} and r ∈ {n + 1, · · · , 2m + 1}. For a differentiable function f on M, the gradient ∇ f is defined
by

1(∇ f ,X) = X f (9)

for any X ∈ Γ(TM). As a consequence, we get

‖∇ f ‖2 =

n∑
i=1

(ei( f ))2. (10)

For any X ∈ Γ(TM) and N ∈ Γ(T⊥M), we can write

(a) φX = PX + QX, (b) φN = bN + cN (11)

where PX, bN are the tangential components and QX, cN are the normal components.
A submanifold M of an almost contact metric manifold M̄ is said to be invariant if φ(TpM) ⊆ TpM and

anti-invariant if φ(TpM) ⊆ T⊥p M for every p ∈M.
A submanifold M of an almost contact metric manifold M̄ is said to be slant if for each non-zero vector

X ∈ TpM, the angle θ between φX and TpM is a constant, i.e. it does not depend on the choice of p ∈ M.
Invariant and anti-invariant submanifolds are particular cases of slant submanifolds with slant angles θ = 0
and π

2 respectively.

Theorem 2.1. [8] Let M be a submanifold of an almost contact metric manifold M̄ such that ξ ∈ Γ(TM). Then, M is
slant if and only if there exists a constant λ ∈ [0, 1] such that

P2 = λ(−I + η ⊗ ξ), (12)

furthermore if θ is slant angle then λ = cos2 θ.

If M is a slant submanifold of an almost contact metric manifold M̄, the following relation holds [38]:

bQX = sin2 θ{−X + η(X)ξ}, cQX = −QPX. (13)

Definition 2.2. [6] Let (N1, 11) and (N2, 12) be two Riemannian manifolds with Riemannian metric 11 and 12
respectively and f be a positive smooth function on N1. The warped product of N1 and N2 is the Riemannian manifold
N1 × f N2 = (N1 ×N2, 1), where

1 = 11 + f 212. (14)

A warped product manifold N1× f N2 is said to be trivial if the warping function f is constant. For a warped
product manifold M = N1 × f N2, we have [6]

∇UX = ∇XU = (X ln f )U (15)

for any X, Y ∈ Γ(TN1) and U ∈ Γ(TN2).
We now recall the following:

Theorem 2.3. (Hiepko’s Theorem, see [15]). Let D1 and D2 be two orthogonal distribution on a Riemannian
manifold M. Suppose that D1 and D2 both are involutive such that D1 is a totally geodesic foliation and D2 is a
spherical foliation. Then M is locally isometric to a non-trivial warped product M1 × f M2, where M1 and M2 are
integral manifolds ofD1 andD2, respectively.
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3. Skew CR-submanifolds of Kenmotsu manifolds

Let M be a submanifold of a Kenmotsu manifold M̄. First from [34], we recall the definition of skew CR-
submanifolds. Throughout the paper we consider the structure vector field ξ is tangent to the submanifold
otherwise the submanifold is C-totally real [14].

For any X and Y in TpM, we have 1(PX,Y) = −1(X,PY). Hence it follows that P2 is symmetric operator on
the tangent space TM, for all p ∈ M. Therefore the eigen values are real and it is diagonalizable. Moreover
its eigen values are bounded by −1 and 0. For each p ∈M, we may set

D
λ
p = ker{P2 + λ2(p)I}p,

where I is the identity transformation and λ(p) ∈ [0, 1] such that λ2(p) is an eigen value of P2
p. We note

that D1
p = kerQ and D0

p = kerP. D1
p is the maximal φ-invariant subspace of TpM and D0

p is the maximal
φ-anti-invariant subspace of TpM. From now on, we denote the distributionsD1 andD0 byDT

⊕ < ξ > and
D
⊥, respectively. Since P2

p is symmetric and diagonalizable, if −λ2
1(p), · · · ,−λ2

k(p) are the eigenvalues of P2

at p ∈M, then TpM can be decomposed as direct sum of mutually orthogonal eigen spaces, i.e.

TpM = Dλ1
p ⊕D

λ2
p · · · ⊕ D

λk
p .

EachDλi
p , 1 ≤ i ≤ k defined on M with values in (0, 1) such that

(i) Each −λ2
i (p), 1 ≤ i ≤ k is a distinct eigen value of P2 with

TpM = DT
p ⊕D

⊥

p ⊕D
λ1
p ⊕D

λ2
p · · · ⊕ D

λk
p ⊕ < ξ >p

for any p ∈M.
(ii) The dimensions ofDT

p ,D
⊥
p andDλi , 1 ≤ i ≤ k are independent on p ∈M.

Moreover, if each λi is constant on M, then M is called a skew CR-submanifold. Thus, we observe that
CR-submanifolds are a particular class of skew CR-submanifolds with k = 0, DT , {0} andD⊥ , {0}. And
slant submanifolds are also a particular class of skew CR-submanifold with k = 1, DT = {0}, D⊥ = {0} and
λ1 is constant. Moreover, ifD⊥ = {0},DT , 0 and k = 1, then M is semi-slant submanifold. Furthermore, if
D

T = {0},D⊥ , {0} and k = 1, then M is a pseudo-slant (or hemi-slant) submanifold.
A submanifold M of M̄ is said to be proper skew CR-submanifold of order 1 if M is a skew CR-

submanifold with k = 1 and λ1 is constant. In that case, the tangent bundle of M is decomposed as

TM = DT
⊕D

⊥
⊕D

θ
⊕ < ξ > .

The normal bundle T⊥M of a skew CR-submanifold M is decomposed as

T⊥M = φD⊥ ⊕QDθ
⊕ ν,

where ν is a φ-invariant normal subbundle of T⊥M.
Now for the sake of further study we give the following useful results.

Lemma 3.1. Let M be a proper skew CR-submanifold of order 1 of a Kenmotsu manifold M̄ such that ξ ∈ Γ(D⊥⊕Dθ),
then we have

1(∇XY,Z) = 1(AφZX, φY) − η(Z)1(X,Y), (16)

1(∇XY,U) = csc2 θ[1(AQUX, φY) − 1(AQPUX,Y)] − η(U)1(X,Y) (17)

for every X,Y ∈ Γ(DT), Z ∈ Γ(D⊥) and U ∈ Γ(Dθ).
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Proof. For any X,Y ∈ Γ(DT), Z ∈ Γ(D⊥), we have

1(∇XY,Z) = 1(φ∇̄XY, φZ) + η(Z)1(∇̄XY, ξ)
= 1(∇̄XφY, φZ) − 1((∇̄Xφ)Y, φZ) − η(Z)1(Y, ∇̄Xξ).

Using (2.4), (2.5) and (2.6) in the above equation, we get (16). Also, for X,Y ∈ Γ(DT), U ∈ Γ(Dθ), we have

1(∇XY,U) = 1(φ∇̄XY, φU) + η(U)1(∇̄XY, ξ)
= 1(∇̄XφY, φU) − 1((∇̄Xφ)Y, φU) − η(U)1(Y, ∇̄Xξ)
= 1(∇̄XφY,PU) + 1(∇̄XφY,QU) − η(U)1(X,Y)
= −1(φY, ∇̄XPU) − 1(φY, ∇̄XQU) − η(U)1(X,Y)
= 1(∇̄XφPU,Y) − 1((∇̄Xφ)PU,Y) − 1(∇̄XQU, φY) − η(U)1(X,Y)
= 1(∇̄XP2U,Y) + 1(∇̄XQPU,Y) − 1(∇̄XQU, φY) − η(U)1(X,Y).

By virtue of (4), (7) and (12) the above equation yields

1(∇XY,U) = − cos2 θ1(∇̄XU,Y) + cos2 θη(U)1(X,Y)
− 1(AQPUX,Y) + 1(AQUX, φY) − η(U)1(X,Y),

Thus we get

sin2 θ1(∇XY,U) = 1(AQUX, φY) − 1(AQPUX,Y) − sin2 θη(U)1(X,Y).

From which the relation (17) follows.

Corollary 3.2. Let M be a proper skew CR-submanifold of order 1 of a Kenmotsu manifold M̄ such that ξ ∈
Γ(D⊥ ⊕Dθ), then we have

1([X,Y],Z) = 1(AφZX, φY) − 1(AφZY, φX) (18)

1([X,Y],U) = csc2 θ{1(AQUX, φY) − 1(AQUY, φX)} (19)

for every X,Y ∈ Γ(DT), Z ∈ Γ(D⊥) and U ∈ Γ(Dθ).

Lemma 3.3. Let M be a proper skew CR-submanifold of order 1 of a Kenmotsu manifold M̄ such that ξ ∈ Γ(D⊥⊕Dθ),
then we have

1(∇ZW,X) = −1(AφWφX,Z), (20)

1(∇ZU,X) = csc2 θ{1(AQPUX,Z) − 1(AQUφX,Z)}, (21)

1(∇UZ,X) = −1(AφZX,U), (22)

1(∇UV,X) = csc2 θ{1(AQPVX,U) − 1(AQVφX,U)}, (23)

1(∇XZ,U) = sec2 θ{1(AQPUZ,X) − 1(AφZPU,X) (24)

for X ∈ Γ(DT), Z,W ∈ Γ(D⊥) and U,V ∈ Γ(Dθ).

Proof. For every X ∈ Γ(DT) and Z,W ∈ Γ(D⊥), we have

1(∇ZW,X) = 1(φ∇̄ZW, φX),
= 1(∇̄ZφW, φX) − 1((∇̄Zφ)W, φX).
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Using (5), (7) and orthogonality of vector fields in the above equation, we get (20). Also, for X ∈ Γ(DT),
Z ∈ Γ(D⊥) and U ∈ Γ(Dθ), we have

1(∇ZU,X) = 1(φ∇̄ZU, φX),
= 1(∇̄ZφU, φX) − 1((∇̄Zφ)U, φX),
= 1(∇̄ZPU, φX) + 1(∇̄ZQU, φX),
= −1(∇̄ZP2U,X) − 1(∇̄ZQPU,X) + 1(∇̄ZQU, φX).

Using (7), (12) and the symmetry of shape operator in the above equation, we obtain

1(∇ZU,X) = cos2 θ1(∇̄ZU,X) + 1(AQPUX,Z) − 1(AQUφX,Z),

from which the relation (21) follows.
Again, for X ∈ Γ(DT), Z ∈ Γ(D⊥) and U ∈ Γ(Dθ), we have

1(∇UZ,X) = 1(φ∇̄UZ, φX) = 1(∇̄UφZ, φX) − 1((∇̄Uφ)Z,X).

By virtue of (5) and (7), the above equation yields

1(∇UZ,X) = −1(AφZU, φX) − 1(φU,X)η(Z),

from which the relation (22) follows. Again we have

1(∇UV,X) = 1(φ∇̄UV, φX),
= 1(∇̄UφV, φX) − 1((∇̄Uφ)V, φX),
= 1(∇̄UPV, φX) + 1(∇̄UQV, φX),
= −1(∇̄UP2V,X) − 1(∇̄UQPV,X) + 1(∇̄UQV, φX).

Using (7), (12) and the symmetry of shape operator in the above equation, we get

1(∇UV,X) = cos2 θ1(∇̄UV,X) + 1(AQPVX,U) − 1(AQVφX,U),

from which we get (23).
For every X ∈ Γ(DT), Z ∈ Γ(D⊥) and U ∈ Γ(Dθ), we have

1(∇XZ,U) = 1(φ∇̄XZ, φU) + η(U)1(∇̄XZ, ξ),
= 1(∇̄XφZ, φU − 1((∇̄Xφ)Z, φU) − η(U)1(Z, ∇̄Xξ),
= 1(∇̄XφZ,PU) + 1(∇̄XφZ,QU) + η(Z)1(φX, φU) − η(U)1(X,Z),
= 1(∇̄XφZ,PU) − 1(∇̄XQU, φZ),
= 1(∇̄XφZ,PU) + 1(∇̄XbQU,Z) + 1(∇̄XcQU,Z).

In view of (7), (13) and the symmetry of shape operator, the above equation reduces to

1(∇XZ,U) = −1(AφZPU,X) − sin2 θ1(∇̄XU,Z) + 1(AQPUZ,X),

from which the relation (24) follows.

4. Warped product skew CR-submanifolds of the form M2 × f MT

Let M = M2 × f MT be a warped product skew CR-submanifold of order 1 of a Kenmotsu manifold M̄
such that ξ is tangent to M2 = M⊥×Mθ, where MT, Mθ and M⊥ are invariant, proper slant and anti-invariant
submanifold of M̄, respectively. Let the dimensions of these submanifolds are dim M⊥ = d1, dim Mθ = d2
and dim MT = d3. If d2 = 0 then M is a CR-warped product of the form M = M⊥ × f MT which have been
studied in [40].

Now, we construct an example of a non-trivial warped product skew CR-submanifold of order 1 of the
form M = M2 × f MT.
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Example 4.1. Consider the Kenmotsu manifold M = R × f C4 with the structure (φ, ξ, η, 1) is given by

φ
( 5∑

i=1

(Xi
∂

∂xi + Yi
∂

∂yi ) + Z
∂
∂t

)
= Yi

∂

∂xi − Xi
∂

∂yi ,

ξ = 3e−t ∂
∂t , η = 1

3 etdt and 1 = η ⊗ η + e3t

9

5∑
i=1

(dxi
⊗ dxi + dyi

⊗ dyi)

Now, we consider a submanifold M of M̄ defined by the immersion χ as follows:

χ(u, v,w, s, θ, φ, t) = 3(e−tu, 0,w, 0, 2θ + 3φ, 0, e−tv, s, 0, 3θ + 2φ, t).

Then the local orthonormal frame of TM is spanned by the following:

Z1 =
3
et (

∂

∂x1 ), Z2 =
3
et (

∂

∂y2 ), Z3 = 3
∂

∂x3 , Z4 = 3
∂

∂y3

Z5 = 3(2
∂

∂x5 + 3
∂

∂y5 ), Z6 = 3(3
∂

∂x5 + 2
∂

∂y5 ), Z7 = 3
∂
∂t
.

Also, we have

φZ1 = −
3
et (

∂

∂y1 ), φZ2 =
3
et (

∂

∂x2 ), φZ3 = −3
∂

∂y3 , φZ4 = 3
∂

∂x3 ,

φZ5 = 3(−2
∂

∂y5 + 3
∂

∂x5 ), φZ6 = 3(−3
∂

∂y5 + 2
∂

∂x5 ), φZ7 = 0.

If we define D⊥ = span{Z1,Z2,Z7}, Dθ = span{Z5,Z6} and DT = span{Z3,Z4} then by simple calculations we can
say that DT is an invariant distribution and Dθ is a slant distribution with slant angle cos−1 5

13 . Hence M is a proper
skew CR-submanifold of M̄ of order 1. Also, it is clear that D⊥ ⊕ Dθ and DT both are integrable. If we denote the
integral manifolds of D⊥ ⊕Dθ and DT by M2 and MT respectively, then the metric tensor 1M of M is given by

1M = (du2 + dv2) + 13(dθ2 + dφ2) + e3t(dw2 + ds2)
= 1M2 + e3t(dw2 + ds2).

Thus M = M2 × f MT is a warped product skew CR-submanifold of M̄ with the warping function f =
√

e3t.

Now, we prove the followings:

Lemma 4.2. Let M = M2 × f MT be a warped product skew CR-submanifold of order 1 of a Kenmotsu manifold M̄
such that ξ is tangent to M2 = M⊥ ×Mθ, then we have

ξ ln f = 1, (25)

1(h(X,Z), φW) = 0, (26)

1(h(X,U), φZ) = 1(h(X,Z),QU) = 0, (27)

and

1(h(X,U),QV) = 0 (28)

for every X ∈ Γ(MT), Z,W ∈ Γ(M⊥) and U,V ∈ Γ(Mθ).
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Proof. The proof of (25) is similar as in [32].
Now, for X ∈ Γ(MT) and Z ∈ Γ(M⊥), we have

1(h(X,Z), φW) = 1(∇̄ZX, φW)
= −1(∇̄ZφX,W) + 1((∇̄Zφ)X,W).

Using (5) and (15) in the above equation, we obtain

1(h(X,Z), φW) = −(Z ln f )1(φX,W) = 0. (29)

Thus, we get (26). Again, for X ∈ Γ(MT), Z ∈ Γ(M⊥) and U ∈ Γ(Mθ), we have

1(h(X,U), φZ) = 1(∇̄UX, φZ) = −1(∇̄UφX,Z) + 1((∇̄Uφ)X,Z).

Using (5) and (15), the above equation reduces to

1(h(X,U), φZ) = −(U ln f )1(φX,Z) = 0. (30)

Also,

1(h(X,U), φZ) = 1(∇̄XU, φZ),
= −1(∇̄XφU,Z) + 1((∇̄Xφ)U,Z),
= −1(∇̄XPU,Z) − 1(∇̄XQU,Z) + 1((∇̄Xφ)U,Z).

Using (5), (7) and (15) in the above equation, we obtain

1(h(X,U), φZ) = 1(h(X,Z),QU). (31)

From (30) and (31) we get (27). Again, for X ∈ Γ(MT) and U,V ∈ Γ(Mθ) we have

1(h(X,U),QV) = 1(∇̄UX,QV)
= 1(∇̄UX, φV) − 1(∇̄UX,PV)
= −1(∇̄UφX,V) + 1((∇̄Uφ)X,V) − 1(∇̄UX,PV).

By virtue of (5) and (15), the above equation yields

1(h(X,U),QV) = −(U ln f )1(φX,V) + η(V)1(φU,X) − (U ln f )1(X,PV)
= 0.

Thus we get (28).

Proposition 4.3. Let M = M2 × f MT be a warped product skew CR-submanifold of order 1 of a Kenmotsu manifold
M̄ such that ξ is tangent to M2 = M⊥ ×Mθ, then we have h(X,E) ∈ ν for every X ∈ Γ(MT) and E ∈ Γ(M2)

Proof. The proof is obvious from (26), (27), (28) and the fact that h(X, ξ) = 0, for every X ∈ Γ(MT).

Lemma 4.4. Let M = M2 × f MT be a warped product skew CR-submanifold of order 1 of a Kenmotsu manifold M̄
such that ξ is tangent to M2 = M⊥ ×Mθ, then we have

1(h(X,Y), φZ) = {(Z ln f ) − η(Z)}1(X, φY), (32)

1(h(X,Y),QU) = {η(U) − (U ln f )}1(φX,Y) + (PU ln f )1(X,Y) (33)

and

1(h(X,Y),QPU) = cos2 θ{η(U) − (U ln f )}1(X,Y) − (PU ln f )1(φX,Y), (34)

for every X,Y ∈ Γ(MT), Z ∈ Γ(M⊥) and U ∈ Γ(Mθ).
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Proof. For every X,Y ∈ Γ(MT) and Z ∈ Γ(M⊥), we have

1(h(X,Y), φZ) = 1(∇̄XY, φZ)
= −1(∇̄XφY,Z) + 1((∇̄Xφ)Y,Z)
= 1(φY, ∇̄XZ) + η(Z)1(φX,Y).

Using (15) in the above equation, we obtain

1(h(X,Y), φZ) = (Z ln f )1(X, φY) + η(Z)1(φX,Y),

from which the relation (32) follows.
Also, for every X,Y ∈ Γ(MT) and U ∈ Γ(Mθ), we have

1(h(X,Y),QU) = 1(∇̄XY, φU) − 1(∇̄XY,PU)
= −1(∇̄XφY,U) + 1((∇̄Xφ)Y,U) + 1(∇̄XPU,Y).

Using (5) and (15) in the above equation, we obtain

1(h(X,Y),QU) = (U ln f )1(X, φY) + η(U)1(φX,Y) + (PU ln f )1(X,Y),

from which the relation (33) follows. Also, replacing U by PU in (33) and using (12), we get (34).

Now, replacing X by φX and Y by φY in (32), we obtain the following:

1(h(φX,Y), φZ) = {(Z ln f ) − η(Z)}1(X,Y), (35)

1(h(X, φY), φZ) = {η(Z) − (Z ln f )}1(X,Y) (36)

and

1(h(φX, φY), φZ) = {(Z ln f ) − η(Z)}1(X, φY). (37)

Also, replacing X by φX and Y by φY in (33), we get the following:

1(h(φX,Y),QU) = {η(U) − (U ln f )}1(X,Y) + (PU ln f )1(φX,Y). (38)

1(h(X, φY),QU) = −{η(U) − (U ln f )}1(X,Y) − (PU ln f )1(φX,Y) (39)

and

1(h(φX, φY),QU) = {η(U) − (U ln f )}1(φX,Y) + (PU ln f )1(X,Y). (40)

Corollary 4.5. Let M = M2 × f MT be a warped product skew CR-submanifold of order 1 of a Kenmotsu manifold M̄
such that ξ is tangent to M2 and M2 = M⊥ ×Mθ, then we have
(i) 1(h(φX,Y), φZ) = −1(h(X, φY), φZ),
(ii) 1(h(φX, φY), φZ) = 1(h(X,Y), φZ),
(iii) 1(h(φX,Y),QU) = −1(h(X, φY),QU),
and (iv) 1(h(φX, φY),QU) = 1(h(X,Y),QU).

Proof. The relation (i) follows from (35) and (36).
The relation (ii) follows from (32) and (37).
The relation (iii) follows from (38) and (39).
The relation (iv) follows from (33) and (40).
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5. Characterization of Skew CR-warped products of the form M2 × f MT

Now, we obtain a characterization for a proper skew CR-warped product submanifold of order 1 of the
form M = M2 × f MT such that M2 = M⊥ ×Mθ of a Kenmotsu manifold M̄.

Theorem 5.1. Let M be a proper skew CR-submanifold of order 1 of a Kenmotsu manifold M̄ such that ξ is orthogonal
to the invariant distributionDT, then M is locally a warped product skew CR-submanifold if and only if

AφZX = {η(Z) − (Zµ)}φX, (41)

AQUX = {η(U) − (Uµ)}φX + (PUµ)X, (42)

and

(ξµ) = 1 (43)

for every X ∈ Γ(DT), Z ∈ Γ(D⊥), U ∈ Γ(Dθ) and for some smooth function µ on M satisfying Y(µ) = 0, for any
Y ∈ Γ(DT).

Proof. Let M = M2 × f MT be a proper warped product skew CR-submanifold of order 1 of a Kenmotsu
manifold M̄ such that M2 = M⊥ ×Mθ. We denote the tangent space of MT, M⊥ and Mθ byDT,D⊥ andDθ,
respectively. Then from (26) and from (27), we have

AφZX ⊥ D⊥ (44)

and

AφZX ⊥ Dθ (45)

for every X ∈ Γ(DT) and Z ∈ Γ(D⊥) respectively. Also since h(B, ξ) = 0, for every B ∈ Γ(TM), we have

1(AφZX, ξ) = 1(h(X, ξ), φZ) = 0. (46)

From (44), (45) and (46), we can say that

AφZX ∈ Γ(DT). (47)

From (32) and (47), we get (41). Also from (27), we have

AQUX ⊥ D⊥, (48)

for every X ∈ Γ(DT) and U ∈ Γ(Dθ), and from (28), we have

AQUX ⊥ Dθ (49)

for every X ∈ Γ(D⊥) and U ∈ Γ(Dθ).
From (46), (48) and (49), we can say that

AQUX ∈ Γ(DT), (50)

for every X ∈ Γ(DT) and U ∈ Γ(Dθ). The relation (42) follows from (33) and (50) and also (43) follows from
(25).

Conversely, let M be a proper skew CR-submanifold of order 1 of a Kenmotsu manifold M̄ such that
(41)-(43) holds. Then from (20), (22) and (41), we have

1(∇ZW,X) = 0 (51)
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and

1(∇UZ,X) = 0 (52)

for every X ∈ Γ(DT) and Z,W ∈ Γ(D⊥). Also, from (21), (23) and (42), we have

1(∇ZU,X) = 0 (53)

and

1(∇UV,X) = 0 (54)

for every X ∈ Γ(DT), Z ∈ Γ(D⊥) and U,V ∈ Γ(Dθ). Hence from (51)-(54), we can conclude that

1(∇EF,X) = 0

for every E,F ∈ Γ(D⊥ ⊕Dθ + {ξ}) and X ∈ Γ(DT).
Therefore, the leaves ofD⊥ ⊕Dθ + {ξ} are totally geodesic in M.
Now, from (18) and (41), we have

1([X,Y],Z) = 0 (55)

for every X,Y ∈ Γ(DT) and Z ∈ Γ(D⊥), Also from (19) and (42), we have

1([X,Y],U) = 0 (56)

for every X,Y ∈ Γ(DT) and U ∈ Γ(Dθ).
Since h(A, ξ) = 0 for every A ∈ Γ(TM), we have from (55) and (56) that

1([X,Y],E) = 0

for every X,Y ∈ Γ(DT) and E ∈ Γ(D⊥ ⊕Dθ + {ξ}). Consequently the distributionDT is integrable.
Next, we consider the integrable manifold MT of DT and let hT be the second fundamental form of MT in
M. Then for any X,Y ∈ Γ(DT), we have from (16) that

1(hT(X,Y),Z) = 1(∇XY,Z) (57)
= 1(AφZX, φY) − η(Z)1(X,Y).

By virtue of (41), (57) yields

1(hT(X,Y),Z) = −(Zµ)1(X,Y). (58)

Similarly for any X,Y ∈ Γ(DT) and U ∈ Γ(Dθ), we have from (17) that

1(hT(X,Y),U = 1(∇XY,U) (59)
= csc2 θ[1(AQUX, φY) − 1(AQPUX,Y)] − η(U)1(X,Y).

In view of (42), (59) reduces to

1(hT(X,Y),U) = csc2 θ[{η(U) − (Uµ)}1(φX, φY) + (PUµ)1(X, φY)
− cos2 θ{η(U) − (Uµ)}1(X,Y) + (PUµ)1(φX,Y)] − η(U)1(X,Y)
= −(Uµ)1(X,Y). (60)

Also for any X,Y ∈ Γ(DT), we have

1(hT(X,Y), ξ) = 1(∇XY, ξ) = −1(Y, ∇̄Xξ) = −1(X,Y).
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Using (43) in the above equation we obtain

1(hT(X,Y), ξ) = −(ξµ)1(X,Y). (61)

From (58), (60) and (61), we conclude that

1(hT(X,Y),E) = −1(∇µ,E)1(X,Y)

for every X,Y ∈ Γ(DT) and E ∈ Γ(D⊥ ⊕ Dθ
⊕ {ξ}). Consequently, MT is totally umbilical in M̄ with mean

curvature vector HT = −∇µ.
Finally, we show that HT is parallel with respect to the normal connection DN of MT in M. We take
E ∈ Γ(D⊥ ⊕Dθ

⊕ {ξ}) and X ∈ Γ(DT), then we have

1(DN
X∇µ,E) = 1(∇X∇

⊥µ,Z) + 1(∇X∇
θ
µ,U) + 1(∇X∇

ξ
µ, ξ),

where ∇⊥µ, ∇θµ and ∇ξµ are the gradient components of µ on M alongD⊥,Dθ and {ξ} respectively. Then
by the property of Riemannian metric, the above equation reduces to

1(DN
X∇µ,E) = X1(∇⊥µ,Z) − 1(∇⊥µ,∇XZ) + X1(∇θµ,U)

−1(∇θµ,∇XU) + X1(∇ξµ, ξ) − 1(∇ξµ,∇Xξ)
= X(Zµ) − 1(∇⊥µ, [X,Z]) − 1(∇⊥µ,∇ZX)

+X(Uµ) − 1(∇θµ, [X,U]) − 1(∇θµ,∇UX)

+X(ξµ) − 1(∇ξµ, [X, ξ]) − 1(∇ξµ,∇ξX)

= Z(Xµ) + 1(∇Z∇
⊥µ,X) + U(Xµ) + 1(∇U∇

θµ,X)

+ξ(Xµ) + 1(∇ξ∇ξµ,X)
= 0,

since (Xµ) = 0, for any X ∈ Γ(DT) and ∇Z∇
⊥µ + ∇U∇

θµ + ∇ξ∇
ξµ = ∇E∇µ is orthogonal to DT for any

E ∈ Γ(D⊥ ⊕Dθ
⊕ {ξ}) as ∇µ is the gradient along M2 and M2 is totally geodesic in M̄. Therefore, the mean

curvature vector HT of MT is parallel. Thus, MT is an extrinsic sphere in M. Hence by Theorem 2.3, M is
locally a warped product submanifold. Thus the proof is complete.

Corollary 5.2. Let M be a proper skew CR-submanifold of order 1 of a Kenmotsu manifold M̄ such that ξ is tangent
to the anti-invariant distributionD⊥, then M is locally a warped product submanifold if and only if
(i)AφZX = {(Zµ) − η(Z)}φX,
(ii) AQUX = (PUµ)X − (Uµ)φX
(iii) (ξµ) = 1,
for every X ∈ Γ(DT), Z ∈ Γ(D⊥), U ∈ Γ(Dθ) and for some smooth function µ on M satisfying Y(µ) = 0, for any
Y ∈ Γ(DT).

Corollary 5.3. Let M be a proper Skew CR-submanifold of order 1 of a Kenmotsu manifold M̄ such that ξ is tangent
to the slant distributionDθ, then M is locally a warped product submanifold if and only if
(i) AφZX = (Zµ)φX,
(ii) AQUX = {η(U) − (Uµ)}φX + (PUµ)X
(iii) (ξµ) = 1,
for every X ∈ Γ(DT), Z ∈ Γ(D⊥), U ∈ Γ(Dθ) and for some smooth function µ on M satisfying Y(µ) = 0 for any
Y ∈ Γ(DT).

6. Generalized inequalities on warped product skew CR-submanifolds

In this section, we establish two inequalities on a warped product skew CR-submanifold M = M2 × f MT
of a Kenmotsu manifold M̄ such that M2 = M⊥ ×Mθ. We take dimMT = 2p, dimM⊥ = q, dimMθ = 2s + 1 and
their corresponding tangent spaces areDT,D⊥ andDθ

⊕ {ξ} respectively.
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Assume that {e1, e2, · · · , ep, ep+1 = φe1, · · · , e2p = φep}, {e2p+1 = e∗1, · · · , e2p+q = e∗q} and {e2p+q+1 = ê1, e2p+q+2 =
ê2, · · · , e2p+q+s = ês, e2p+q+s+1 = ês+1 = secθPê1, · · · , e2p+q+2s = ê2s = secθPês, e2p+q+2s+1 = ê2s+1 = ξ} are local or-
thonormal frames ofDT, D⊥ and Dθ

⊕{ξ} respectively. Then the local orthonormal frames forφD⊥, QDθ and
ν are {en+1 = ẽ1 = φe∗1, · · · , en+q = ẽq = φe∗q}, {en+q+1 = ẽq+1 = cscθQê1, · · · , en+q+s = ẽq+s = cscθQês, en+q+s+1 =
ẽq+s+1 = cscθ secθQPê1, · · · , en+q+2s = ẽq+2s = cscθ secθQPês} and {en+q+2s+1, · · · , e2m+1}, respectively. Clearly
dim ν = (2m + 1 − n − q − 2s).
Now, we have the following inequalities:

Theorem 6.1. Let M = M2 × f MT be a warped product skew CR-submanifold of order 1 of a Kenmotsu manifold M̄
such that ξ is tangent to Mθ, where M2 = M⊥ ×Mθ, then the squared norm of the second fundamental form satisfies

‖h‖2 ≥ 2p[‖ ∇⊥ ln f ‖2 +(csc2 θ + cot2 θ){‖ ∇θ ln f ‖2 −1}], (62)

where ∇⊥ ln f and ∇θ ln f are the gradient of ln f along M⊥ and Mθ, respectively and for the case of equality, M2
becomes totally geodesic and MT becomes totally umbilical in M̄.

Proof. From (8), we have

‖h‖2 =

n∑
i, j=1

1(h(ei, e j), h(ei, e j)) =

2m+1∑
r=n+1

n∑
i, j=1

1(h(ei, e j), er)2.

Decomposing the above relation for our constructed frames, we get

‖h‖2 =

2m+1∑
r=n+1

q∑
i, j=2p+1

1(h(e∗i , e
∗

j), er)2 + 2
2m+1∑
r=n+1

q∑
i=2p+1

2s+1∑
j=1

1(h(e∗i , ê j), er)2 (63)

+

2m+1∑
r=n+1

2s+1∑
i, j=1

1(h(êi, ê j), er)2 + 2
2m+1∑
r=n+1

q∑
i=1

2p∑
j=1

1(h(e∗i , e j), er)2

+2
2m+1∑
r=n+1

2s+1∑
i=1

2p∑
j=1

1(h(êi, e j), er)2 +

2m+1∑
r=n+1

2p∑
i, j=1

1(h(ei, e j), er)2.

Now, again decomposing (63) along the normal subbundles φD⊥, QDθ and ν, we get

‖h‖2 =

n+q∑
r=n+1

q∑
i, j=2p+1

1(h(e∗i , e
∗

j), er)2 (64)

+

n+2s∑
r=n+q+1

q∑
i, j=2p+1

1(h(e∗i , e
∗

j), er)2 +

2m+1∑
r=n+2s+1

q∑
i, j=2p+1

1(h(e∗i , e
∗

j), er)2

+2
n+q∑

r=n+1

q∑
i=2p+1

2s+1∑
j=1

1(h(e∗i , ê j), er)2 + 2
n+2s∑

r=n+q+1

q∑
i=2p+1

2s+1∑
j=1

1(h(e∗i , ê j), er)2

+2
2m+1∑

r=n+2s+1

q∑
i=2p+1

2s+1∑
j=1

1(h(e∗i , ê j), er)2 +

n+q∑
r=n+1

2s+1∑
i, j=1

1(h(êi, ê j), er)2

+

n+2s∑
r=n+q+1

2s+1∑
i, j=1

1(h(êi, ê j), er)2 +

2m+1∑
r=n+2s+1

2s+1∑
i, j=1

1(h(êi, ê j), er)2
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+2
n+q∑

r=n+1

q∑
i=1

2p∑
j=1

1(h(e∗i , e j), er)2 + 2
n+2s∑

r=n+q+1

q∑
i=1

2p∑
j=1

1(h(e∗i , e j), er)2

+2
2m+1∑

r=n+2s+1

q∑
i=1

2p∑
j=1

1(h(e∗i , e j), er)2 + 2
n+q∑

r=n+1

2s+1∑
i=1

2p∑
j=1

1(h(êi, e j), er)2

+2
n+2s∑

r=n+q+1

2s+1∑
i=1

2p∑
j=1

1(h(êi, e j), er)2 + 2
2m+1∑

r=n+2s+1

2s+1∑
i=1

2p∑
j=1

1(h(êi, e j), er)2

+

n+q∑
r=n+1

2p∑
i, j=1

1(h(ei, e j), er)2 +

n+2s∑
r=n+q+1

2p∑
i, j=1

1(h(ei, e j), er)2

+

2m+1∑
r=n+2s+1

2p∑
i, j=1

1(h(ei, e j), er)2.

Now, by Proposition 4.3, the tenth, eleventh, thirteenth and fourteenth terms of (64) are equal to zero. Also,
we can not find any relation for a warped product in the form 1(h(E,F), ν) for any E,F ∈ Γ(TM). So, leaving
the positive third, sixth, ninth, twelfth, fifteenth and eighteenth terms of (64) we get

‖h‖2 ≥

q∑
r=1

q∑
i, j=2p+1

1(h(e∗i , e
∗

j), φe∗r)
2 +

2s∑
r=1

q∑
i, j=2p+1

1(h(e∗i , e
∗

j), ẽr)2

+ 2
q∑

r=1

q∑
i=2p+1

2s+1∑
j=1

1(h(e∗i , ê j), φe∗r)
2 + 2

s∑
r=1

q∑
i=2p+1

2s+1∑
j=1

1(h(e∗i , ê j), ẽr)2 (65)

+

q∑
r=1

2s+1∑
i, j=1

1(h(êi, ê j), φe∗r)
2 +

s∑
r=1

2s+1∑
i, j=1

1(h(êi, ê j), ẽr)2

+

q∑
r=1

2p∑
i, j=1

1(h(ei, e j), φe∗r)
2 +

2s∑
r=1

2p∑
i, j=1

1(h(ei, e j), ẽr)2.

Also, we have no relation for a warped product of the forms1(h(Z,W), φD⊥), 1(h(Z,W),QDθ), 1(h(Z,U), φD⊥),
1(h(Z,U),QDθ), 1(h(U,V), φZ) and 1(h(U,V),QDθ) for any Z, W ∈ Γ(D⊥), U ∈ Γ(Dθ

⊕ {ξ}). So, we leave
these terms from (65) and obtain

‖h‖2 ≥
q∑

r=1

2p∑
i, j=1

1(h(ei, e j), φe∗r)
2 +

2s∑
r=1

2p∑
i, j=1

1(h(ei, e j), ẽr)2. (66)

Now,
q∑

r=1

2p∑
i, j=1

1(h(ei, e j), φe∗r)
2 =

q∑
r=1

p∑
i=1

1(h(ei, φe j), φe∗r)
2 +

q∑
r=1

p∑
i=1

1(h(φei, e j), φe∗r)
2

+

q∑
r=1

p∑
i=1

1(h(φei, φe j), φe∗r)
2.

Using Corollary 4.5
(
(i) and (ii)

)
, the above relation reduces to

q∑
r=1

2p∑
i, j=1

1(h(ei, e j), φe∗r)
2 = 2

q∑
r=1

p∑
i=1

1(h(φei, e j), φe∗r)
2 + 2

q∑
r=1

p∑
i=1

1(h(ei, e j), φe∗r)
2. (67)
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By virtue of (32), (67) yields

q∑
r=1

2p∑
i, j=1

1(h(ei, e j), φe∗r)
2 = 2

q∑
r=1

p∑
i, j=1

{η(e∗r) − e∗r ln f }21(ei, e j)2 + 2
q∑

r=1

p∑
i, j=1

{η(e∗r) − e∗r ln f }21(ei, φe j)2. (68)

Now, since η(e∗r) = 0 for every r = 1, 2, · · · , q and 1(ei, φe j) = 0 for every i, j = 1, 2, · · · , p so (68) turns into

q∑
r=1

2p∑
i, j=1

1(h(ei, e j), φe∗r)
2 = 2p

q∑
r=1

(e∗r ln f )2 = 2p‖∇⊥ ln f ‖2. (69)

On the other hand,

2s∑
r=1

2p∑
i. j=1

1(h(ei, e j), ẽr)2 = csc2 θ
s∑

r=1

2p∑
i, j=1

1(h(ei, e j),Qêr)2 + sec2 θ csc2 θ
s∑

r=1

2p∑
i, j=1

1(h(ei, e j),QPêr)2

= csc2 θ
s∑

r=1

p∑
i, j=1

1(h(ei, e j),Qêr)2 + csc2 θ
s∑

r=1

p∑
i, j=1

1(h(ei, φe j),Qêr)2

+ csc2 θ
s∑

r=1

p∑
i, j=1

1(h(φei, e j),Qêr)2 + csc2 θ
s∑

r=1

p∑
i, j=1

1(h(φei, φe j),Qêr)2

+ sec2 θ csc2 θ
s∑

r=1

p∑
i, j=1

1(h(ei, e j),QPêr)2 + sec2 θ csc2 θ
s∑

r=1

p∑
i, j=1

1(h(ei, φe j),QPêr)2

+ sec2 θ csc2 θ
s∑

r=1

p∑
i, j=1

1(h(φei, e j),QPêr)2 + sec2 θ csc2 θ
s∑

r=1

p∑
i, j=1

1(h(φei, φe j),QPêr)2.

Using Corollary 4.5,
(
(iii) and (iv)

)
, (33), (34) and the fact that 1(ei, φe j) = 0 for every i, j = 1, 2, · · · , p in the

above relation, we obtain

2s∑
r=1

2p∑
i, j=1

1(h(ei, e j), ẽr)2 = 2p csc2 θ
s∑

r=1

(Pêr ln f )2 + 2p csc2 θ
s∑

r=1

{η(êr) − (êr ln f )}2

+2p sec2 θ csc2 θ cos4 θ
s∑

r=1

{η(êr) − (êr ln f )}2 + 2p sec2 θ csc2 θ
s∑

r=1

(Pêr ln f )2

Since η(êr) = 0 for every r = 1, 2, · · · , s, the above equation reduces to

2s∑
r=1

2p∑
i, j=1

1(h(ei, e j), ẽr)2 = 2p cot2 θ
s∑

r=1

(secθPêr ln f )2 + 2p csc2 θ
s∑

r=1

(êr ln f )2

+ 2p cot2 θ
s∑

r=1

(êr ln f )2 + 2p csc2 θ
s∑

r=1

(secθPêr ln f )2

= 2p cot2 θ
2s∑

r=1

(êr ln f )2 + 2p csc2 θ
2s∑

r=1

(êr ln f )2

= 2p(csc2θ + cot2 θ)

2s+1∑
r=1

(êr ln f )2
− (ξ ln f )2

 .
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Using (10) and (25) in the above equation, we get

2s∑
r=1

2p∑
i, j=1

1(h(ei, e j), ẽr)2 = 2p(csc2 θ + cot2 θ){‖∇θ ln f ‖2 − 1}. (70)

Again using (69) and (70) in (66), we get the inequality (62).
If the inequality of (62) holds, then by leaving third term of (64), we get 1(h(D⊥,D⊥), ν) = 0, which implies
that

h(D⊥,D⊥) ⊥ ν. (71)

Also, by leaving the first and second term of (65), we get h(D⊥,D⊥) ⊥ φD⊥ and h(D⊥,D⊥) ⊥ QDθ

respectively. Therefore

h(D⊥,D⊥) ⊆ ν. (72)

From (71) and (72), we obtain

h(D⊥,D⊥) = 0. (73)

Similarly by leaving sixth term of (64), we get

h(D⊥,Dθ) ⊥ ν. (74)

Also, leaving the third and fourth term of (65), we get h(D⊥,Dθ) ⊥ φD⊥ and h(D⊥,Dθ) ⊥ QDθ respectively.
Therefore,

h(D⊥,Dθ) ⊆ ν. (75)

From (74) and (75), we obtain

h(D⊥,Dθ) = 0. (76)

Again, by leaving ninth term of (64), we get

h(Dθ,Dθ) ⊥ ν. (77)

Also, leaving fifth and sixth term of (65), we get h(Dθ,Dθ) ⊥ φD⊥ and
h(Dθ,Dθ) ⊥ QDθ respectively. Therefore,

h(Dθ,Dθ) ⊆ ν. (78)

From (77) and (78), we obtain

h(Dθ,Dθ) = 0. (79)

Next by leaving the twelfth term of (64), we get

h(D⊥,DT) ⊥ ν. (80)

From (80) and Proposition 4.3, we get

h(D⊥,DT) = 0. (81)

Also, leaving fifteenth term of (64), we get

h(Dθ,DT) ⊥ ν. (82)
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From (82) and Proposition 4.1, we get

h(Dθ,DT) = 0. (83)

Thus from (73), (76), (79), (81), (83) and the fact that M2 is totally geodesic in M ([6], [10]), we conclude that
M2 is totally geodesic in M̄. Next by leaving the eighteenth term of (64), we get

h(DT,DT) ⊥ ν. (84)

Then from (58), (60), (84) and the fact that MT is totally umbilical in M ([6], [10]), we conclude that MT is
totally umbilical in M̄. This completes the proof of the theorem.

Theorem 6.2. Let M = M2 × f MT be a warped product skew CR-submanifold of order 1 of a Kenmotsu manifold
M̄ such that ξ is tangential to M⊥, where M2 = M⊥ ×Mθ, then the squared norm of the second fundamental form
satisfies

‖h‖2 ≥ 2p[‖∇⊥ ln f ‖2 − 1 + (csc2 θ + cot2 θ)‖∇θ ln f ‖2]. (85)

If the equality of (85) holds, then M2 is totally geodesic and MT is totally umbilical in M̄.

Proof. For this theorem, we take dim M⊥ = q + 1 and dim Mθ = 2s. So, orthonormal frames ofD⊥ ⊕ {ξ} and
D
θ will be {e2p+1 = e∗1, · · · , e2p+q = e∗q, e2p+q+1 = ξ}

and {e2p+q+2 = ê1, · · · , e2p+q+s+1 = ês, e2p+q+s+2 = ês+1 = secθPê1,
· · · , e2p+q+2s+1 = ê2s = secθPês}, respectively. Then the proof of the theorem is similar as Theorem 6.1.

Remark: If we take dim Mθ = 0 in a warped product skew CR-submanifold M = M2 × f MT of a Kenmotsu
manifold M̄ such that M2 = M⊥ ×Mθ, then it turns into CR-warped product M = M⊥ × f MT which was
studied in [40]. Therefore, Theorem 5.1 and Theorem 6.2 are the generalizations of results of [40] as follows:

Corollary 6.3. (Theorem 3.1 of [40]) A proper contact CR-submanifold of a Kenmotsu manifold M̄ is locally a
contact CR-warped product of the form M⊥ × f MT if and only if

AφZX = {η(Z) − (Zµ)}φX,

for every X ∈ Γ(DT) and Z ∈ Γ(D⊥ ⊕ {ξ}), for some function µ on M satisfying (Yµ) = 0 for any Y ∈ Γ(DT).

Corollary 6.4. (Theorem 3.2 of [40]) Let M̄ be a (2m + 1)-dimensional Kenmotsu manifold and M = M⊥ × f MT
an n-dimensional contact CR-warped product submanifold, such that M⊥ is a (q + 1)-dimensional anti-invariant
submanifold tangent to ξ and MT is a 2p-dimensional invariant submanifold of M̄, then the squared norm of the
second fundamental form of M satisfies

‖h‖2 ≥ 2p[‖∇⊥ ln f ‖2 − 1] (86)

where ∇⊥ ln f is the gradient of ln f . If the equality of (86) holds, then M⊥ is totally geodesic and MT is totally
umbilical in M̄.
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