
Filomat 33:9 (2019), 2627–2633
https://doi.org/10.2298/FIL1909627C

Published by Faculty of Sciences and Mathematics,
University of Ni|s,Serbia
Availableat :http : //www.pmf.ni.ac.rs/filomat

On the Rapidly Convergence in Capacity of the Sequence of
Holomorphic Functions

Kieu Phuong Chia

aDepartment of Mathematics, Vinh University, 182 Le Duan, Vinh City, Vietnam
and Department of Mathematics and Applications, Saigon University, 273 An Duong Vuong, Ho Chi Minh City, Vietnam

Abstract. In this paper, we are interested in finding sufficient conditions on a Borel set X lying either inside
a bounded domain D ⊂ Cn or in the boundary ∂D so that if {rm}m≥1 is a sequence of rational functions and
{ fm}m≥1 is a sequence of bounded holomorphic functions on D with { fm − rm}m≥1 is convergent fast enough
to 0 in some sense on X then the convergence occurs on the whole domain D. The main result is strongly
inspired by Theorem 3.6 in [3] whether the { fm} is a constant sequence.

1. Introduction

Let D be a bounded domain in Cn, { fm}m≥1 be a sequence of holomorphic functions defined on D
and {rm}m≥1 be a sequence of rational functions on Cn. Throughout this paper, we always assume that
1 ≤ deg rm ≤ m i.e., the numerator and the denominator of rm are non-constant polynomials of degree at
most m. Let X be a Borel subset which lies either in D or ∂D. In this paper, we will refine the techniques in
[3] concerning with sufficient conditions that guarantees convergence in some sense of { fm − rm}m≥1 to 0 on
D as soon as the convergence occurs pointwise on X. By a classical theorem of Vitali, under the additional
conditions that {rm}m≥1 and { fm}m≥1 are uniformly bounded on compact sets of D and X is not contained
in any proper analytic subset of D, the sequence { fm − rm}m≥1 converges uniformly to 0 on compact sets of
D provided that the convergence holds pointwise only on X. Motivated by the problem of finding local
conditions for single-valuedness of holomorphic continuation, Gonchar proved in Theorem 2 of [4] the
following remarkable result which deals with the special case where fm = f for every m ≥ 1.

Theorem 1.1. Let {rm}m≥1 be a sequence of rational functions converges rapidly in measure on an open set X to a
holomorphic function f defined on a domain D(X ⊂ D) i.e., for every ε > 0

lim
m→∞

λ2n(z ∈ X : |rm(z) − f (z)|1/m > ε) = 0.

Here λ2n is the Lebesgue measure in R2n. Then {rm}m≥1 must converge rapidly in measure to f on the whole domain
D.

2010 Mathematics Subject Classification. Primary 41A05; Secondary 41A63, 46A32
Keywords. convergence in capacity, pluripolar set, rational functions
Received: 31 august 2018; Accepted: 22 July 2019
Communicated by Miodrag Spalević
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We should also mention a related theorem of Siciak in [8], where it is proved that fast polynomial approx-
imation yields extension of the holomorphic function to a larger domain dependent on the approximation
speed. Much later, by using techniques of pluripotential theory, Bloom was able to prove an analogous
result in which rapidly convergence in measure is replaced by rapidly convergence in capacity and the set
X is only required to be Borel and non-pluripolar (see Theorem 2.1 in [1]). More precisely, we have

Theorem 1.2. Let f be a holomorphic function defined on a domain D ⊂ Cn. Let {rm}m≥ be a sequence of rational
functions with degree rm ≤ m converging rapidly in capacity to f on a non-pluripolar Borel subset X of D . Then
{rm}m≥1 converges to f rapidly in capacity on D.

Using a standard result which relates convergence in capacity and pointwise convergence (cf. Lemma 2.2),
it is not hard to check that Theorem 1.1 follows from Theorem 1.2 (see Theorem 2.2 in [1]). Our first result
is an analogue of Theorem 1.2, in which rapid convergence occurs in some sense on a subset lying in the
boundary of the domain and the function f is replaced by a sequence of bounded holomorphic functions.
Namely, we have

Theorem 1.3. Let {rm}m≥1 be a sequence of rational functions onCn. Let { fm}m≥1 be a sequence of bounded holomorphic
functions defined on a bounded domain D ⊂ Cn such that

(a) supm≥1
1
m log ‖ fm‖D < ∞.

Assume that there exists a Borel non-pluripolar set X ⊂ ∂D satisfying the following properties:
(b) The pluriharmonic measure of X relative to D

ω(z,X,D) := sup{ϕ(z) : ϕ ∈ PSH(D), ϕ < 0, lim sup
ξ→x,ξ∈D

ϕ(ξ) ≤ −1 ∀x ∈ X}

is negative on D.
(c) For every z ∈ X and every sequence {zm}m≥1 ⊂ D with zm → z we have

lim
m→∞

| fm(zm) − rm(zm)|1/m = 0.

Then the following assertions hold:
(i) The sequence | fm − rm|

1/m is convergent in capacity to 0 on D.
(ii) There exists a pluripolar subset E of Cn with the following property: For every z0 ∈ D \ E and every affine

complex subspace L of Cn passing through z0, there exists a subsequence {rm j } j≥1 (dependent only on z0) such that
| fm j − rm j |

1/m j
∣∣∣
Dz0

is convergent in capacity (with respect to Dz0 ) to 0, where Dz0 is the connected component of D∩ L
that contains z0.

We observe that the non-pluripolarity of X is not sufficient to guarantee the assumption (a). Indeed, let
D ⊂ C be the unit disk and X be the circular Cantor middle-third set. Then X is non-polar, but of harmonic
measure zero. See Exercise 5.3.7 in [7]. On the other hand, if D is the unit ball in Cn and X is an open subset
of ∂D then by the maximum principle we can see that X satisfies the assumption (a).

The proof of Theorem 1.3 runs roughly as follows. First by adding suitable plurisubharmonic function
to 1

m log | fm − rm| and using Bernstein-Markov’s inequality together with the assumption (a), we obtain a
sequence {um}m≥1 of plurisubharmonic functions on D which is uniformly bounded from above. Next, using
the assumptions (b), (c) and the compactness in topology L1

loc of the cone of plurisubharmonic functions, we
infer that the {um}m≥1 converges uniformly to −∞ on compact sets of D. The last step consists in invoking
an inequality of Chern-Levine-Nirenberg type to derive the desired convergence in capacity. It should be
remarked that the original proof of Theorem 1.2 relies heavily on a comparison theorem of Alexander and
Taylor on comparing the relative capacity of a Borel subset of a domain and its global (or Siciak) capacity.
Thus this method does not seem tractable in the case where the set under consideration sits in the boundary
of the domain. Our note ends up with a version of Theorem 1.3 in which the set X is only supposed to be
non-pluripolar but lies inside the domain D and the assumption (a) of Theorem 3.3 is required to hold on
compact subsets of D. We will leave the details of the proof to the interested reader.
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2. Preliminaries

For the reader convenience, first we briefly recall standard elements of pluripotential theory that will
be needed later on. Let D be a domain in Cn. An upper semicontinuous function u : D→ [−∞,∞) is said to
be plurisubharmonic if for every complex line l, the restriction of u on each connected component of D∩ l is
either subharmonic or identically −∞. The cone of plurisubharmonic function on D is denoted by PSH(D).
A subset E of D is said to be pluripolar if for every z0 ∈ E there exists an open connected neighbourhood U
of z0 and u ∈ PSH(U),u . −∞ such that u ≡ −∞ on E∩U. According to a classical theorem of Josefson, if E
is pluripolar then there exists a plurisubharmonic function u which defined globally on D such that u ≡ −∞
on E. Clearly a proper complex subvariety of D is pluripolar. On the other hand, it is not hard to show that
any subset of Rn with positive Lebesgue measure is not pluripolar (in Cn).

For a Borel subset E in a bounded domain D ⊂ Cn, following Bedford and Taylor (see [6] p.120) we let
cap(E,D) be the relative capacity of a Borel subset E in D which is defined as

cap(E,D) = sup
{ ∫

E
(ddcu)n : u ∈ PSH(D),−1 < u < 0

}
.

It is well known that relative capacity enjoys some important properties such as sub-additivity and mono-
tonicity under increasing sequences. Moreover, a deep result in Bedford-Taylor’s theory states that pluripo-
lar subsets of D are exactly those with vanishing relative capacity. We will frequently appeal to the following
estimate (Bernstein-Walsh’s inequality) which bounds the sup norm of a polynomial on an arbitrary com-
pact set in terms of its sup norm on a given non-pluripolar set: For every compact K,X ⊂ Cn with X is
non-pluripolar and every polynomial p we have

1
deg p

log ‖p‖K ≤
1

deg p
log ‖p‖X + CK,X (1)

Here CK,X > 0 is a constant dependent only on K,X. We recall below several types of convergence of
measurable functions.

Definition 2.1. ([3]) Let { fm}m≥1, f be Borel, complex valued measurable functions defined on a domain
D ⊂ Cn and X be a Borel subset of D. We say that the sequence { fm}m≥1

(i) is rapidly pointwise convergent to f on X if

lim
m→∞

| fm(x) − f (x)|1/m = 0 ∀x ∈ X;

(ii) is rapidly convergent in capacity to f on X if for every ε > 0 we have

lim
m→∞

cap(Xm,ε,D) = 0,

where Xm,ε := {x ∈ X : | fm(x) − f (x)|1/m > ε};
(iii) is called rapidly convergent in capacity to f on D if the property (ii) holds true for every Borel subset X
of D;
(iv) is rapidly uniformly convergent to f on X if

lim
m→∞

sup
x∈X
| fm(x) − f (x)|1/m = 0.

The following relation between convergence in capacity and pointwise convergence is somewhat standard.

Lemma 2.2. ([3]) Let { fm}m≥1 and f be Borel measurable functions defined on a bounded domain D ⊂ Cn. If { fm}m≥1
converges in capacity to f on a Borel subset X of D, then there exists a subsequence { fm j } j≥1 and a pluripolar subset
E ⊂ X such that { fm j } j≥1 converges pointwise to f on X \ E.
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We should remark that there exist pointwise convergent sequences that contains no subsequence that
converges in capacity. Indeed, let {Am}m≥1 be a sequence of pairwise disjoint subsets of the unit disk ∆ ⊂ C
such that infm≥1 cap (Am,∆) > 0. Then the sequence {χAm }m≥1 provides the desired example.

Finally, we have the following sort of compactness in PSH(D).

Lemma 2.3. ([3]) Let {um}m≥1 be a sequence of plurisubharmonic functions defined on a domain D in Cn. Suppose
that the sequence is uniformly bounded from above on compact subsets of D and does not converge to −∞ uniformly
on some compact subset of D. Then the following assertions hold:

(a) There exists a subsequence {um j } j≥1 converging in L1
loc(D) to a function u ∈ PSH(D),u . −∞.

(b) lim sup j→∞ um j ≤ u on D.
(c) lim sup j→∞ um j = u outside a pluripolar subset of D.
(d) The set {z ∈ D : lim

j→∞
um j (z) = −∞} is pluripolar.

3. Proof of the main theorem

We need the following auxiliary fact giving a sufficient condition for a sequence of measurable
functions converging in capacity to 0. We would like to repeat a reasoning due to [3] for the reader
convenience.

Lemma 3.1. ([3]) Let {um}m≥1 be a sequence of plurisubharmonic functions and {vm}m≥1 be a sequence of measurable
functions defined on a bounded domain D ⊂ Cn. Assume that the following conditions are satisfied:
(a) {um}m≥1 is uniformly bounded from above;
(b) There exists a compact subset X of D such that

inf
m≥1

sup
z∈X

um(z) > −∞;

(c) um + vm converges to −∞ uniformly on compact subsets of D.
Then the sequence {evm }m≥1 converges to 0 in capacity.

Proof of Theorem 1.3. (i) First, after removing from X a pluripolar subset (possibly empty), we may assume
that rm(z) ∈ C for every z ∈ X and m ≥ 1. In view of the assumptions (a) and (c) we deduce that

sup
m≥1

1
m

log |rm(z)| < ∞ ∀z ∈ X.

For N ≥ 1 we let

XN := {z ∈ X : sup
m≥1

1
m

log |rm(z)| ≤ N}.

It follows that X = ∪N≥1XN. Since X is non-pluripolar, we deduce that there exists N0 ≥ 1 such that X′ := XN0

is non-pluripolar. Now we write rm = pm/qm with ‖qm‖X′ = 1. By the choice of X′ we also have

1
m

log ‖pm‖X′ ≤ N0.

Therefore, by Bernstein-Markov’s inequality (1), we obtain the following estimates for every compact set
K ⊂ Cn

sup
m≥1

max
{ 1
m

log ‖pm‖K,
1
m

log ‖qm‖K

}
< ∞. (2)

By combining (2) and the assumption (a) we get

sup
m≥1

1
m

log ‖qm fm − pm‖D < ∞ (3)
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Now we set

um :=
1
m

log | fm − rm| +
1
m

log |qm| ∀m ≥ 1. (4)

Clearly um is plurisubharmonic on D for every m ≥ 1. Moreover, using (3), (4) we see that the sequences
{um}m≥1 and {vm}m≥1, where vm := 1

m log |qm|, are uniformly bounded from above on D and on compact
sets of Cn, respectively. Next, we show that the sequence {um}m≥1 converges to −∞ uniformly on compact
subset of D. Suppose otherwise, then by Lemma 2.3, there exists a subsequence {um j } j≥1 and a function
u ∈ PSH(D),u . −∞ such that the set

Y := {z ∈ D : lim sup
j→∞

um j (z) , u(z)}

is pluripolar. Fix z ∈ X and a sequence {z j} j≥1 ⊂ D that converges to z, we claim that

lim
m→∞

u(z j) = −∞. (5)

Assume the claim is false, then u is bounded from below on a subsequence of {z j} j≥1. For simplicity of
exposition, we can suppose that u is bounded from below on the whole sequence {z j} j≥1. Thus there exists
a constant A such that

u(z j) > A ∀ j ≥ 1.

Fix j ≥ 1. Since Y is pluripolar, we can find a complex line l passing through z j such that l ∩ Y is polar (in
l). Then by Theorem 5.4.2 in [7], the set l \ (Y ∪ {z j}) is non-thin at the point z j. Thus we can choose z′j ∈ D
such that

|z j − z′j| < 1/ j,u(z′j) > A and z′j < Y.

By the definition of Y, we can find a sequence {l( j)} j≥1 ↑ ∞ such that

uml( j) (z
′

j) > A ∀ j ≥ 1.

On the other hand, since {vm}m≥1 is uniformly bounded from above on compact sets of Cn we have

sup
m≥1, j≥1

vm(z′j) < ∞.

So there exists a constant δ > 0 so that

| fml( j) (z
′

j) − rml( j) (z
′

j)|
1/ml( j) > δ ∀ j ≥ 1.

This contradicts the assumption (c). Thus the claim (5) follows. On the other hand, since {um}m≥1 is uniformly
bounded from above on D, we have supD u = c < ∞. Thus, for every N > 0 we get the following estimate

u(z) ≤ c + Nω(z,X,D) ∀z ∈ D. (6)

By letting N→∞ in (6) and using the assumption (b) we obtain u(z) = −∞ for every z ∈ D, which is absurd.
Thus we have proved that {um}m≥1 converges to −∞ uniformly on some compact subset of D.

Finally, note that by the normalization ‖qm‖X′ = 1 we get

sup
X′

vm = 0, ∀m ≥ 1.

Thus vm does not tend to −∞ uniformly on X′. In view of the relation (4), we may invoke Lemma 3.1 to
conclude that | fm − rm|

1/m converges to 0 in capacity on D.
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(ii) By what we have proved in (i), the sequence {vm}m≥1 is uniformly bounded from above on compact
sets of Cn. Moreover, {vm}m≥1 does not tend to −∞ uniformly on some compact set of Cn. Thus, by Lemma
2.3 (c), there exists a pluripolar subset E of Cn such that

lim sup
j→∞

vm > −∞ on D \ E.

We will show that E has the desired property. For this, fix a point z0 ∈ D \E and an affine complex subspace
L that contains z0. Choose a subsequence {vm j } j≥1 such that

lim
j→∞

vm j (z0) > −∞.

Let v′j and v′′j be the restrictions to D ∩ L of the two sequences vm j and 1
m j

log | fm j − rm j |. According to the
results provided in (i), we have v′j + v′′j converges uniformly to −∞ on compact sets of Dz0 . Now in view

of the choice of vm j , we may apply Lemma 3.1 to reach the conclusion that the sequence ev′′j = | fm j − rm j |
1/m j

converges in capacity to 0 in Dz0 . We are done.

Remarks. (a) The assumption (a) in Theorem 1.3 is essential for the proof. We do not know if the theorem
is still valid without this hypothesis.
(b) The main difficulty that leads to the passage into subsequence in (ii) lies in the fact that the complex
subspace L may be disjoint from the non-pluripolar set X, thus a direct application of (a) is not possible
then.

The above proof actually gives the following variant of Theorem 1.3 in the special case where {rm}m≥1 is a
sequence of polynomials.

Proposition 3.2. Let {pm}m≥1 be a sequence of polynomials on Cn(1 ≤ degpm ≤ m) and { fm}m≥1 be a sequence of
bounded holomorphic functions defined on a bounded domain D ⊂ Cn that satisfies the condition (a) of Theorem 1.3.
Assume that there exists a Borel non-pluripolar set X ⊂ ∂D satisfying the properties (b) and (c) given in Theorem 1.3
with rm is replaced by pm. Then { fm − pm}m≥1 is rapidly uniformly convergent to 0 on compact sets of D.

Proof. First, we define the following sequence of plurisubharmonic functions on D

um :=
1
m
| fm − pm|, ∀m ≥ 1.

Then by the same reasoning as the proof of Theorem 1.3 we see that {um}m≥1 converges to −∞ uniformly on
compact sets of D. The desired conclusion follows.

By the same reasoning as in the proof of Theorem 1.3, we also have the following result which is truly a
version of Bloom’s theorem for sequence of holomorphic functions. The details of the proof are therefore
omitted.

Theorem 3.3. Let {rm}m≥1 be a sequence of rational functions on Cn. Let { fm}m≥1 be a sequence of holomorphic
functions defined on a bounded domain D ⊂ Cn such that

sup
m≥1

1
m

log ‖ fm‖K < ∞,

for every compact subsets K of D. Assume that there exists a Borel non-pluripolar set X ⊂ D satisfying the following
condition: For every z ∈ X we have

lim
m→∞

| fm(z) − rm(z)|1/m = 0.

Then the following assertions hold:
(i) The sequence | fm − rm|

1/m is convergent in capacity to 0 on D.
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(ii) There exists a pluripolar subset E of Cn with the following property: For every z0 ∈ D \ E and every affine
complex subspace L of Cn passing through z0, there exists a subsequence {rm j } j≥1 (dependent only on z0) such that
| fm j − rm j |

1/m j
∣∣∣
Dz0

is convergent in capacity (with respect to Dz0 ) to 0, where Dz0 is the connected component of D∩ L
that contains z0.
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