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Abstract. In this paper, we review INMA time series of integer-valued model class, and discuss its
further development. These models have been developed for analyzing high frequency financial count
data. A vivid description of high frequency data in the context of market micro structure is given. The
most distinguishing feature that makes the INMA model class different from its continuous variable MA
counterpart is that multiplication of variables with real valued parameters no longer remains a viable
operation when the result is to be integer-valued. In the estimation of these models, no underlying
distributions are assumed. Hence, the discussion of estimations is limited to CLS, FGLS and GMM. A
further development of estimation procedures for these models have also been reviewed. We suggest that
the models could be estimated with Quasi Maximum Likelihood and propose in addition a Generalized
Method of Moment of Quasi Maximum Likelihood. We have also discussed how INMA model class can
be extended with different underlying distributions for innovations.

1. Introduction

A time series of count data is an integer-valued non-negative sequence of count observations observed
at equidistant instants of time. There is a growing literature on various aspect of how to model, estimate and
use such data. Jacobs and Lewis [1, 2, and 3] develop discrete ARMA (DARMA) models that introduce time
dependence through a mixture process. McKenzie [4] and Al-Osh and Alzaid [5] introduce independently
the integer-valued autoregressive moving average (INARMA) model for pure time series data, while
Brännäs [6] extends the INAR model to incorporate explanatory variables. Zheng et al. [7, 8] propose
an first-order respective pth-order random coefficient integer-valued autoregressive RCINAR(1) respective
RCINAR(p) model while Nastić et al. [9] introduces a mixed thinning Based Geometric INAR(1) model.
The regression analysis of count data is relatively new, though the statistical analysis of count data has a long
and rich history. The increased availability of count data in recent years has stimulated the development
of models for both panel and time series count data. For reviews of these and other models, see, e.g.,
Cameron and Trivedi [10] and McKenzie [11]. In INARMA, the parameters are interpreted as probabilities
and hence restricted to unit intervals. Some empirical applications of INAR are due to Blundell, Griffith
and Windmeijer [12], who studied the number of patents in firms, while Rudholm [13] studied competition
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in the generic pharmaceuticals market, and Brännäs, Hellström and Nordström [14] estimated a nonlinear
INMA(1) model for tourism demand.

In this paper, we review INMA integer-valued model class and discuss its application and further devel-
opment. The integer-valued moving average model of order q [INMA(q)], i.e. a special case of the INARMA
model class, is developed for analyzing high frequency financial data in the form of stock transactions data
aggregated over one, two or five minute intervals of time Brännäs, and Quoreshi [15]. Quoreshi [16, 17,
and 18] proposes a bivariate integer-valued moving average (BINMA) model, a vector integer-valued mov-
ing average (VINMA) model and an integer-valued autoregressive fractionally integrated moving average
(INARFIMA) model. The BINMA model is developed to capture the covariance between stock transactions
data due to macroeconomic news or rumors, while the VINMA Model is more general than the BINMA
model and enables the study of the spillover effects of news from one stock to other. The INARFIMA model
is developed to study the long memory property of high frequency count data. The models can also be used
to measure the reaction times to shocks or news. The INMA, BINMA, VINMA and INARFIMA models
have been described below together with ‘long memory’ and ‘high frequency data’.

2. Models

2.1. The INMA, BINMA and VINMA Models
The INMA model is a special case of the INARMA model. The INMA model of order 1, INMA (1),

is introduced by Al-Osh and Alzaid [19] and in a slightly different form by McKenzie [4]. These studies
assumed Poisson distribution for the time series. For a time series

{
yt
}
, the INMA (1) of Al-Osh and Alzaid

is

yt = ut + α ◦ ut−1

where α ∈ [0, 1] which is a binomial thinning operator Steutel and van Harn [20]. The single thinning
operator makes the INMA model visibly different from its continuous variable MA counterpart. The
multiplication of variables with real valued parameters is no longer a viable operation, when the result is
to be integer-valued. Multiplication is therefore replaced by the binomial thinning operator

α ◦ u =

u∑
j

z j (1)

with
{
z j

}u

j=1
an iid sequence of 0-1 random variables, such that Pr

(
z j = 1

)
=α = 1-Pr(z j = 0). Conditionally

on the integer-valued u, α ◦ u is binomially distributed with

1. E (α ◦ u | u) = αu and
2. V (α ◦ u | u) = α (1 − α) u.

Unconditionally it holds that

1. E(α ◦ u) = αλ and
2. V (λ ◦ u) = α2σ2 + α (1 − α)λ,

where E (u) = λ and V (u) = σ2. Obviously, α ◦ u ∈ {0, 1, . . . ,u}[5, 9, 20, 21].
Employing this binomial thinning operator, an INARMA(p, q) model can be written

yt − α1 ◦ yt−1 − · · · − αp ◦ yt−p = ut + β11 ◦ ut−1 + · · · + βq ◦ ut−q (2a)

with α j , βi∈ [0, 1], j = 1, . . . , p − 1 and i = 1, . . . , q − 1, andαp , βq∈ (0, 1]. Setting all α j= 0 we obtain
the INAR(q) model

yt = α1 ◦ yt−1 − · · · − αp ◦ yt−p + ut (2b)

and setting all βi= 0 we obtain the INMA(q) model
yt = ut + β1 ◦ ut−1 + · · · + βq ◦ ut−q (2c).
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Brännäs and Hall [22] discuss model generalizations and interpretations resulting from different thinning
operator structures, and an empirical study and approaches to estimation are reported by Brännäs et al.
[14]. McKenzie [4], Joe [23], Jørgensen and Song [24] and others stress exact distributional results for yt,
while Brännäs & Quoreshi [15] emphasize only the first two conditional and unconditional moments of
the model. Moreover, they discuss and introduce more flexible conditional mean and heteroskedasticity
specifications for yt than implied by the above equation. There is an obvious connection between the
introduced count data model and the conditional duration model of, e.g., Engle and Russell [25] in the
sense that long durations in a time interval correspond to a small count and vice versa. Hence, one main
use of the count data models discussed here is also one of measuring reaction times to shocks or news.

Quoreshi [16] focuses on the modelling of bivariate time series of count data that are generated from
stock transactions. The data are aggregates over five minute intervals and computed from tick-by-tick
data. One obvious advantage of the BINMA model over the conditional duration model is that there is no
synchronization problem between the time series. Hence, the spread of shocks and news is more easily
studied in the present framework. Moreover, the bivariate count data models can easily be extended to
multivariate models without much complication. The bivariate time series count data model also allows for
negative correlation between the counts and the integer-value property of counts is taken into account. The
model is employed to capture covariance between stock transactions time series and to measure the reaction
time for news or rumors. Moreover, this model is capable of capturing the conditional heteroskedasticity.

Quoreshi [17] extends the INMA model to a vector INMA (VINMA) model. The VINMA enables
the study of the spillover effects of transactions from one stock to the other. A large number of studies
have considered the modelling of bivariate or multivariate count data assuming an underlying Poisson
distribution (e.g., Gourieroux, Monfort and Trognon [26]). Heinen and Rengifo [27] introduce multivariate
time series count data models based on the Poisson and the double Poisson distribution. Other extensions
to traditional count data regression models are considered by, e.g., Brännäs and Brännäs [28] and Rydberg
and Shephard [29].

Sunecher et al. [30] recently introduce a first-order bivariate integer-valued moving average process
(BINMA(1)) where the respective innovation series are marginally COM-Poisson distributed under non-
stationary moments. The purpose of this process is to model inter-related INMA (1) time series that are
known to exhibit different levels and types of dispersion. Ristic et al.[31] introduces a new bivariate integer-
valued moving average of the first order (BINMA(1)) process with independent Negative Binomial (NB)
innovations under non-stationary moment conditions.

2.2. Long Memory and the INARFIMA Model

Hurst [32, 33] considered first the long memory phenomenon in time series. He explained the long term
storage requirements of the Nile River. He showed that the cumulated water flows in a year had a persistent
impact on the water flows in the later years. By employing fractional Brownian motion, Mandelbrot and van
Ness [34] explain and advance the Hurst’s studies. In analogy with Mandelbrot and van Ness [34], Granger
[35], Granger and Joyeux [36] and Hosking [37] develop Autoregressive Fractionally Integrated Moving
Average (ARFIMA) models to account for the long memory in time series data. According to Ding and
Granger [38], a number of other processes can also have the long memory property. In a recent empirical
study, Bhardwaj and Swanson [39] found strong evidence in favor of ARFIMA in absolute, squared and
log-squared stock index returns. Granger and Joyeux [36] and Hosking [37] introduce the ARFIMA(p, d,
q) class of models of the discrete time real-valued series xt

α (L) (1 − L)dxt = β (L) ut. (3)

where L is a lag operator and d is any real number. The {ut} is a white noise process of random variables
with mean E(ut) = 0 and variance V (ut) = σ2

a . Employing binomial series expansion, we can write

(1 − L)d = ∆d = 1 −
∞∑

i=1

(i − 1 − d)!
i! (−d − 1)!

Li = 1 −
∞∑

i=1

Γ (i − d)
Γ (i − d) Γ (d − 1)

Li (4)

and correspondingly
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∆−d = 1 + dL +
1
2

d (1 + d) L2 +
1
6

d (1 + d) (2 + d) L3 + . . .

= 1 +

∞∑
i=1

(i + d − 1)!
i! (d − 1)!

Li = 1 −
∞∑

i=1

Γ (i + d)
Γ (i + d) Γ (d)

Li (5)

The moving average representation of ARFIMA (0,d,0) of the series xt is
xt = ut + d1ut−1 + d2ut−2 + d3ut−3 . . .

or

xt = (1 + L)−dut. (6)

Note that xthas long memory in a sense that the variable has a slow decaying autocorrelation function and
the parameters d j = Γ( j + d)/

[
Γ
(
j + 1

)
Γ (d)

]
, j = 0, 1, 2, . . . where d0 = 1 and where ut is zero-mean serially

uncorrelated process. Approximating d j w Aj−d, for j ≥ 1, Granger and Joyeux [36] propose the following
representation of fractionally integrated MA(∞) model

yt = A
∞∑
j=1

j−dut− j + ut. (7a)

According to Granger and Jouex [36], the series has the following variance

V(y) = Aσ2
u

∞∑
j=1

(
1 + j2(d−1)

)
. (7b)

From the theory of infinite series it is known that
∑
∞

i=1 j−d converges for d > 1, otherwise it diverges. They
conclude that the variance of xtandytdiffer only in finite quantity. Hence the variance for xt is finite provided
d < 1

2 , but infinite if d ≥ 1
2 . Geweke and Porter-Hudak [40] show that

∑
∞

i=1 di < ∞ if and only if d < 0.
Quoreshi [18] concentrates on modeling the long memory property of time series of count data and its

application in financial analysis. However, combining the ideas of the INARMA model (2a) with fractional
integration is complicated. Direct use of (4) or (5) will not provide integer-values since multiplying an
integer-valued variable with a real-valued d can not produce an integer-valued result and this alternative is
hence ruled out. Instead, he departs from the binomial expansion expression and proposes in analogy with
Granger and Joyeux [36] and Hosking [37] INARFIMA models that accounts for integer-valued counts and
long memory. Quoreshi [18] considers the following representation of the INARFIMA (p, d, q)

α (L◦) xt = β (L◦) (1 − L◦)−dut. (8)

In (8), α (L◦) = 1− α1 ◦ L− α2 ◦ L2
· · · −αp ◦ Lp and β (L◦) = 1 + β1 ◦ L + β2 ◦ L2

· · ·+ βq ◦ Lq are lag polynomials
of orders p and q, respectively. Note that we require αi, β j, d ∈ [0, 1] , for i > 0 and j ≥ 0 for an INARFIMA
(p, d, q) model.

Quoreshi [18] applies the INARFIMA (0, d, 0) models to stock transactions data for AstraZeneca and
Ericsson B. The paper presents evidence for long memory for the AstraZeneca series while the series for
Ericsson B indicates a process that has a mean reversion property.

Like INARFIMA (0,d,0), Quoreshi [41] introduces BINFIMA (d1, d2) in its simplest form which can be
defined as follows

y1t = u1t + d11 ◦ u1t−1 + d12 ◦ u1t−2 + d13 ◦ u1t−3 . . .

y2t = u2t + d21 ◦ u2t−1 + d22 ◦ u2t−2 + d23 ◦ u1t−3 . . .

or
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y1t =
(
1 + d11 ◦ L + d12 ◦ L2 + d13 ◦ L3 . . .

)
u1t

y2t =
(
1 + d21 ◦ L + d22 ◦ L2 + d23 ◦ L3 . . .

)
u2t

or

yit = (1 + L◦)−di uit. (9)

where L is a lag operator and the notation L◦ = (◦L)i for i > 0. It’s assumed that here is no cross-
lag dependence among uit. Note that y1t and y2t have long memory in a sense that the variables have
slow decaying autocorrelation functions and the parametersdi j = Γ( j + di)/

[
Γ
(
j + 1

)
Γ (di)

]
, i = 1, 2 and j =

0, 1, 2, . . . whered0 = 1. Note that di j are considered thinning probabilities and hencedi j ∈ [0, 1]. The
macro-economic news are assumed to be captured by {uit}, i = 1, 2andfiltered by {di j} through the system.

2.3. Further Development of Model
The INMA model class may be developed in a fashion similar to MA model class. In general, the mul-

tiplication shall be replaced with thinning operators. Further restriction is needed so that the innovations
ut are integer-valued observation that are generated from some underlying distribution. The estimation
procedure needs to be developed based on known and unknown underlying distribution. In the context
of high frequency data and data generated from social media, different applications and other sources of
computed communications may not have known underlying distribution. In our knowledge, there are no
corresponding integer-valued models for, e.g., AR representation of ARFIMA, seasonal ARMA, Markov-
Switching Model and Threshold Autoregressive (TAR) models. Another aspect of developing INMA model
class is within the framework of long memory. In equation (9), it is shown that the long memory parameters
are not independent and follow a gamma function. It would be of interest to study long memory prop-
erties for the parameters under other functional forms, e.g., sines, cosines and wavelet functions. These
functions have cyclical behavior. Employing these functions may encounter the problem of stationarity
and predictability of the models. These are open questions to study which may have of academic interest.

Consider the following data set (Figure 1). As we see that there is sudden change at observation number
6000. We may consider this as regime shift and hence a suitable integer-valued model is required.

Employing the thinning operator in Threshold Autoregressive (TAR) model, we may introduce Integer-
valued TAR (INTAR) model. For two regime,p1, p2 , case and the threshold k, the INTAR(P) model can be
written

yt =

{
θ0,1 + θ1,1 ◦ yt−1 + · · · + θp1,1 ◦ yt−1 + ut i f yt−1 ≤ k
θ1,0 + θ1,2 ◦ yt−1 + · · · + θp2,2 ◦ yt−1 + ut i f yt−1 ≥ k.



A.M.M.S. Quoreshi et al. / Filomat 34:1 (2020), 143–152 148

Similarly, the INTMA(q) can be written

yt =

{
ut + θ1,1 ◦ ut−1 + · · · + θq1,1 ◦ ut−1 i f yt−1 ≤ k
ut + θ1,2 ◦ ut−1 + · · · + θq2,2 ◦ ut−1 i f yt−1 ≥ k.

The possible application of these models are discussed in section 3.2

3. Application

3.1. Application of INMA Model Class on High Frequency Data

The INMA, BINAM, VINMA, INARFIMA and BINFIMA models are applied on financial market tick-
by-tick data. Each tick represents a change in, e.g., a quote or corresponds to a transaction. For a liquid
stock or a currency, these tick-by-tick data generate high frequency data. Such financial data are also
characterized by lack of synchronization, in the sense that only rarely there is more than one transaction
at a given instant of time. For reviews of high frequency data and their characteristics, see, e.g., Tsay [42],
Dacorogna et al. [43] and Gourieroux and Jasiak [45]. Accessibility to and affordability of high frequency
data by individual researchers are fueling studies on many issues related to the trading process and the
market microstructure. Transactions data are collected from an electronic limited order book for each stock.
Incoming orders are ranked according to price and time of entry and are continuously updated. Hence,
new incoming buy and sell orders and the automatic match of the buy and sell orders are recorded. The
automatic match of a buy and a sell order generates a transaction. In Figure 2, we see that the transactions
in the two stocks are not synchronized, i.e. the transactions appear at different points of time. The counts in
the intervals are the number of transactions for corresponding intervals. Brännäs and Quoreshi [15] employ
one minute time scale while Quoreshi [16, 17] uses a five minute scale. The collection of the number of
transactions over a time period makes up a time series of count data. The time series of transactions or
count data are synchronized between stocks in the sense that all the numbers of transactions are aggregated
transactions over the same time interval. An example of real transactions data over a 30 minute period
for the stock AstraZeneca is exhibited in Figure 3. Each observation number corresponds to one minute of
time. This type of data series comprises frequent zero frequencies and motivates a count data model. The
time series of transactions or count data may have a long memory property.

The long memory implies the long range dependence in the time series of counts, i.e. the present
information has a persistent impact on future counts. Note that the long memory property is related
to the sampling frequency of a time series. A manifest long memory may be shorter than one hour if
observations are recorded every minute, while stretching over decades for annual data. The time series
containing long memory has a very slowly decaying autocorrelation function. The autocorrelation function
for stock transactions data aggregated over one minute interval of time for AstraZeneca is illustrated in
Figure 4. The autocorrelation function decays sharply in the first few lags but thereafter decay is very
slow. Hence, we may expect long memory in stock transactions data for AstraZeneca. Models for long
memory and continuous variable time series are not appropriate for integer-valued counts. Therefore, long
memory models developed for continuous variables are not automatically of relevance neither with respect
to interpretation nor to efficient estimation.

3.2. Further Application

The INMA models class discussed in section 2 has been used on stock transaction data. The possible
area of use of these models and the other models proposed in section 2 may also be in stock transaction
data in connection with unexpected arrival of news or downloading of Apps or activities in social media.
Due to unexpected news on a company, the trading behavior of the stock may be switched. Similarly,
downloading a particular apps or a particular activities in a social media may be changed due to breaking
out of unexpected news on the Apps or on the issue related to the particular activities in social medias.
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4. Estimation

4.1. The INMA, BINMA and VINMA Models Estimation

Brännäs and Quoreshi [15] provide conditional mean and variance properties and applied the properties
in estimations of conditional least squares (CLS), the feasible generalized least square (FGLS), and the
generalized method of moments (GMM) estimators. In a limited Monte Carlo experiment they study the
bias and MSE properties of the CLS, FGLS and GMM estimators for finite-lag specifications, when data is
generated according to an infinite-lag INMA model. In addition, they study the serial correlation properties
of estimated models by the Ljung-Box statistic as well as the properties of forecasts one and two steps ahead.
In this Monte Carlo study, the feasible least squares estimator comes out as the best choice. However, the
CLS estimator which is the simplest to use of the three considered estimators is not far behind. The GMM
performance is weaker than that of the CLS estimator. It also shows that the lag length should be large and
both under and over-parameterization give rise to detectable serial correlation. Quoreshi [16] discusses the
conditional least squares CLS, FGLS and GMM estimator for BINMA model. Quoreshi [17, 18] consider
CLS and FGLS estimators for VINMA and long memory model. The authors did not consider the maximum
likelihood due to unknown underlying distributions of the innovations. The above literatures dealt with
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the inferential part mainly by the Conditional Least squares approach (CLS) which provides consistent
estimators. However, it cannot be ignored that estimating function in the CLS approach in INMA modeling
depends on the knowledge of the error term which is latent. Notably, to compensate for this in the CLS, the
random error component in the estimating function was approximated by the condition on the previous
observation. Recently, some other research in INMA or bivariate INMA modelling has illustrated that an
alternative and robust estimation approach termed as Generalized Quasi-likelihood (GQL) may be used to
estimate the unknown parameters. The GQL estimating equation is sourced from the likelihood estimating
equation based on the exponential dispersion family [45], consisting of three components: The score vector
and its corresponding mean, the auto-covariance function and the derivative component. Under the
correct specification of the expected score and auto-covariance function, the GQL approach is shown to
yield asymptotically equally efficient estimates as the maximum-likelihood based approach which is as
expected [46]. Besides, in Mamode Khan et al. [46] and Sunecher et al. [47], it is proved that GQL yields
more efficient estimates than CLS.

4.2. Further Development

An important issue in the proposed MA-based models is the estimation of the parameters or the
contributory effects. Since the distribution of the counting series in these sophisticated set-ups is generally
unknown, the application of likelihood-based approach becomes restricted. Brännäs and Quoreshi [16] and
Quoreshi [17] have developed the inferential procedures for the INMA, BINMA and VINMA models via the
CLS, FGLS and GMM approaches while Zheng et al. [7] also discussed Maximum likelihood estimation for
RCINAR(p)]. Mamode Khan et al.[46], Sunecher et al. [47], Ristic et al. [31] have proposed a Generalized
Quasi-likelihood (GQL) estimation technique based on the correct score specification for the BINMA(1)
model only. Under these techniques, Sunecher et al. [47] demonstrated through the Monte Carlo simulation
BINMA(1) experiments that both CLS, GMM and GQL yield consistent parameter estimates but with GQL
yielding estimates with lower bias and superior standard errors. However, at this stage, the performance
of the GQL approach has not yet been investigated on the VINMA, long memory and INARFIMA models.
Thus, the plan of this paper is to re-propose the BINMA, VINMA, INARFIMA and long memory models
under some prominent generalized-type Poisson distributions and focus on developing and comparing
the GQL and approach with the other estimation techniques for these models. Further, we may develop
Maximum likelihood and Quasi-Maximum likelihood for these models in a similar fashion like Zheng et al.
[7]. These techniques should then be applied to simulation experiments and real-life application to assess
their performance.
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5. Summary and Conclusion

Brännäs and Quoreshi [15] discuss and introduce more flexible conditional mean and heteroskedasticity
specifications for INMA model and applied the model on financial market data tick-by-tick data. These
tick-by-tick data generate high frequency data. Such financial data are also characterized by lack of
synchronization, in the sense that only rarely is there more than one transaction at a given instant of time.
Later, Quoreshi [16, 17, and 18] develops BINMA and VINMA models to deal with the synchronization
problem and INARFIMA model to capture the long memory phenomenon. Brännäs and Quoreshi discussed
CLS, FGLS and GMM estimators, while they did not consider Maximum-Likelihood estimator since the
underlying distributions of the counts were unknown. Similar argument was discussed by Mamode Khan et
al. [46] and Sunecher et al. [47] and recommended a GQL approach to estimate the parameters. Besides, the
innovation terms are unobserved and therefore likelihood computations become unfeasible. To summarize,
in INMA-related processes, there are different classes of models that can be referred and developed further
but the inferential part has to be based on robust non-likelihood methods such as GQL. Further, we may
develop Maximum likelihood and Quasi-Maximum likelihood for these models as done by Zheng et al.
[7]. These techniques should then be applied to simulation experiments and real-life application to assess
their performance.
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[28] Brännäs, K. and Brännäs, E. (2004). Conditional Variance in Count Data Regression. Communication in Statistics; Theory and
Methods 33, 2745-2758.

[29] Rydberg, T.H. and Shephard, N. (1999). BIN Models for Trade-by-trade Data. Modelling the Number of Trades in a Fixed Interval
of Time. Working Paper Series W23. Nuffield College, Oxford.

[30] Sunecher,Y., Mamode Khan, N. and Jowaheer, V. (2018). BINMA(1) Model with COM Poisson Innovations: Estimation and
Application, Communication in Statistics: Simulation and Computation, https://doi.org/10.1080/03610918.2018.1502780.

[31] Ristic, M.M., Sunecher, Y., Mamode Khan, N and Jowaheer, V. (2018). A GQL-based Inference in non-stationary BINMA(1) Time
Series, TEST, https://doi.org/10.1007/s11749-018-0615-1.

[32] Hurst, H.E. (1951). Long-Term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engineers 116,
770-808.

[33] Hurst, H.E. (1956). Methods of Using Long-Term Storage in Reservoirs. Proceedings of the Institute of Civil Engineers 1, 519-543.
[34] Mandelbrot, B.B. and Van Ness, J.W. (1968). Fractional Brownian Motions, Fractional Noises and Applications. SIAM Review 10,

422-437.
[35] Granger, C.W.J., 1980. Long Memory Relationships and the Aggregation of Dynamic Models. Journal of Econometrics 14, 227-238.
[36] Granger, C.W.G., Joyeux, R., 1980.An introduction to long memory time series models and fractional differencing. Journal of

Time Series Analysis 1, 15-29.
[37] Hosking, J., 198l. Fractional differencing, Biometrika 68 (l), 165-176.
[38] Ding, Z. and Granger, C.W.J. (1996). Varieties of Long Memory Models. Journal of Econometrics 73, 61-77.
[39] Bhardwaj, G., and Swanson, N.R., 2006. An Empirical Investigation of the usefulness of ARFIMA models for predicting macroe-

conomic and financial time series. Journal of Econometrics 131(1,2),539-578.
[40] Geweke, J. and Porter-Hudak, S., 1983. The Estimation and Application of Long Memory Time Series Models. Journal of Time

Series Analysis Vol 4, No. 4.
[41] Quoreshi, A.M.M.S., 2017. A bivariate integer-valued long-memory model for high-frequency financial count data. Communi-

cations in Statistics - Theory and Methods Volume 46, - Issue 3.
[42] Tsay, R.S. (2002). Analysis of Financial Time Series. New York: John Wiley and Sons, Inc.
[43] Dacorogna, M.M., Gencay, R., Muller, U., Olsen, R.B. and Pictet, O.V. (2001). An Introduction to High-Frequency Finance. San

Diego: Elsevier.
[44] Gourieroux, C and Jasiak, J. (2001). Financial Econometrics. Princeton: Princeton University Press.
[45] McCullagh, P. and Nelder, J.A, (1989). Generalized Linear Models.2nd Edition. Chapman and Hall.
[46] Mamode Khan, N. Sunecher, Y.,Jowaheer, V., Ristic, M. and Heenaye-Mamode Khan, M. (2018), Investigating GQL-based inferen-

tial approaches for non-stationary BINAR(1)model under different quantum of over- dispersion with application, Computational
Statistics, 10.1007/s00180-018-0836-5

[47] Sunecher, Y., Mamode Khan, N. and Jowaheer, V. (2017). Estimating the parameters of a BINMA Poisson model for a non-
stationary bivariate time series, Communication in Statistics: Simulation and Computation, 47:9,6803-6827.


