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Abstract. In this paper, the criteria of the saddle point type for a general form of complex multi-objective
programming problems are derived where the objective function of the problem is considered full complex.
The criteria with/without differentiability assumptions imposed in the involved functions are developed.
It is shown that the efficient solutions can be characterized in terms of saddle points whether the functions
are differentiable or not. The obtained theoretical results are generalizations of their real correspondents in
literature and complete the results in complex space.

1. Introduction

By a nonlinear muli-objective programming problem in complex space, we understand two or more
objective complex functions to be minimized with respect to a complex domination cone over a complex
feasible region. The concepts of efficient solutions and saddle points play the crucial roles in solving such
problems. In the last decades, a number of papers has extended different aspects of the optimization theory
from real to complex space being its important in variant applied fields of the electrical engineering and
networks.

In [1], Abrams had given Kuhn-Tucker type saddle point optimality criteria for a scalar complex pro-
gramming problem, having a real part objective function, under analyticity hypotheses for the objective and
constraints functions. In [4], some saddle points optimality criteria were given for that problem without
differentiability.

The multi-objective programming problem in complex space had been formulated in [5] by Duca where
the definitions of efficient and properly efficient solutions were introduced and characterized in terms of
optimal solutions of a related scalar optimization problem. Necessary and sufficient efficiency criteria
were established with/without differentiable hypotheses about the functions and many of the criteria were
characterized in terms of saddle points.

However, the entries of the objective function in literatures were expressed as real. In [15], we ex-
tended the complex problem to contain a full complex objective function, and the optimality conditions
were derived. In [7], we introduced the concept of efficient solutions, for a generalized complex vector
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optimization problem in which the objective function was considered complex. The solutions were char-
acterized by optimal solutions of a related scalar problem and the efficiency conditions were investigated.
Recently, some concepts of proper efficiency were extended for vector optimization problems in [16]. For
more details concerning this type of optimization problems, the attentive reader can refer additional works
like [2, 3, 6, 10, 12–14] in real space, and [8, 9, 11] in complex space.

In this work, we introduce the Lagrangian function and saddle point concepts for the extended form
of multi-objective programming problems in complex space, taking also into account both the real and the
imaginary parts of the objective functions, and investigate saddle point theorems due to Kuhn-Tucker and
Fritz John in the cases of differentiability and non-differentiability. The analysis carried out here is based
on a complex domination cone.

2. Notations and preliminaries

This section is concerned with gathering basic definitions that will be used throughout the paper. Let
AT, A and AH denote the transpose, conjugate and conjugate transpose for a matrix A ∈ Cm×n, respectively.
A vector z ∈ Cn is considered as a column matrix.

Definition 2.1. A non-empty set S ⊂ Cm is said to be

(1) convex iff λS + (1 − λ)S ⊆ S, for 0 5 λ 5 1,
(2) cone iff λS ⊆ S, for λ = 0,

(3) polyhedral cone iff S :=
p⋂

k=1

Huk , where Huk :=
{
z ∈ Cm : Re uH

k z = 0
}
, for some vectors u1, ..., up ∈ Cm and

integer p > 0.

Definition 2.2. The dual S∗ of a non-empty set S ⊂ Cm is defined as

S∗ :=
{
z ∈ Cm : w ∈ S =⇒ Re 〈z, w〉 = Re zHw = 0

}
.

Lemma 2.3. The set S ⊂ Cm is closed iff S = (S∗)∗.

Definition 2.4. A convex cone S ⊂ Cm is pointed iff S ∩ (−S) = {0}, and it is solid iff int S , ∅.

If S ⊂ Cm is a pointed closed convex cone, S generates a partial order in Cm by z 5 w iff w − z ∈ S.

Definition 2.5. For a closed convex cone S ∈ Cm and z0 ∈ S, S(z0), cone S at z0, is defined as

S(z0) :=
{
z ∈ Cm : Re wHz0 = 0, w ∈ S∗ =⇒ Re wHz = 0

}
.

In the case that S is polyhedral, S(z0) is then the intersection of closed halfspaces containing z0 on their
boundaries. Note that z0 ∈ S(z0), −z0 ∈ S(z0) and S ⊆ S(z0).

Definition 2.6. For a closed convex cone S in Cm, the function 1 : Cn
→ Cm is said to be convex with respect to S iff

(1 − λ)1(z0) + λ1(z) − 1((1 − λ)z0 + λz) ∈ S,

for all z0, z ∈ Cn and 0 5 λ 5 1.

As 1 is differentiable, the above condition is equivalent to

1(z) − 1(z0) − ∇z 1(z0)(z − z0) − ∇z 1(z0)(z − z0) ∈ S,

where ( j, k)th elements of the matrices ∇z 1(z0) and ∇z 1(z0) are ∂1 j(z0)
∂wk

and ∂1 j(z0)
∂wk

, respectively.

The function 1 is said to be concave with respect to S iff −1 is convex with respect to S.
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3. Vector optimization problems in complex space

We consider the generalized vector optimization problem:

min f (z) = ( f1(z), ..., fp(z))
subject to z ∈M :=

{
z ∈ X : 1(z) ∈ S

}
,

(TP)

where X is a non-empty subset of Cn, f : X→ Cp and 1 : X→ Cm are two vector-valued functions, and S is
a cone in Cm.

The following definitions of complex constraint qualifications due to Kuhn-Tucker and Slater are given
in [5].

Definition 3.1. Let S be a polyhedral cone in Cm. The function 1 ia said to satisfy complex Kuhn-Tucker constraint
qualification at a point z0 ∈ X with respect to M (briefly, z0 is a qualified point) iff for all z ∈ Cn

\ {0} satisfying

∇z 1(z0)z + ∇z 1(z0)z ∈ S(1(z0)),

there exist ε > 0 and a differentiable arc β : [0, ε[→ Cn such that β(0) = z0, ∇θβ(0) = kz for some k > 0, β(θ) ∈ X
and 1(β(θ)) ∈ S for all θ ∈ [0, ε[.

Definition 3.2. Let S be a subset of Cm. The function 1 ia said to satisfy complex Slater constraint qualification with
respect to M iff int S , ∅ and there exists a point z ∈ X satisfying 1(z) ∈ int S.

3.1. Efficient solutions criteria
The concept of efficiency of problem (TP), relying on the decision maker’s preferences, is introduced in

[7] as the following.

Definition 3.3. Let T ⊂ Cp be a pointed closed convex cone and z0 be feasible. The point z0 is called an efficient
solution of (TP) with respect to the cone T iff there is no other feasible z , z0 such that

f (z0) − f (z) ∈ T\ {0} .

In other words, z0 is an efficient solution of (TP) with respect to T iff

[ f (M) − f (z0)] ∩ (−T) = {0} .

Remark 3.4. If T = R
p
+ + iRp, where Rp

+ is the non-negative orthant of Rp, Definition 3.3 descends definition of
Duca [5] which recaptures the definition of Pareto point in real space.

Extensions to Kuhn-Tucker and Fritz John conditions in complex space may be stated as follows.

Definition 3.5. A vector (z, τ, v) ∈ X × T∗ × S∗ is said to satisfy

(i) complex Fritz John efficiency conditions for problem (TP) iff

τH
∇z f (z) + τT

∇z f (z) − vH
∇z 1(z) − vT

∇z 1(z) = 0, (1)

and

Re vH1(z) = 0, (2)

with (τ, v) , (0, 0).
(ii) complex Kuhn-Tucker efficiency conditions for problem (TP) iff (1) and (2) are satisfied with τ , 0.

A complex versions of a Fritz John necessary conditions theorem for efficiency can be provided as
follows.
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Theorem 3.6. Let T be a pointed closed convex cone in Cp, S be a polyhedral cone in Cm, f and 1 be differentiable
functions at a point z0 ∈M. If z0 is an efficient solution of problem (TP) with respect to T, then there are τ0 ∈ T∗ and
v0 ∈ S∗ such that (z0, τ0, v0) satisfies complex Fritz John efficiency conditions for problem (TP).

Proof. Equation (2) can be written as

vT1(z) + vH1(z) = 0,

or

[1(z)]Hv + [1(z)]Tv = 0.

Assume that there is no τ ∈ T∗ and v ∈ S∗ satisfying complex Fritz John efficiency conditions. It follows
that the system

∇z f (z0) 0
∇z f (z0) 0
−∇z 1(z0) 1(z0)
−∇z 1(z0) 1(z0)


H 

τ
τ
v
v

 = 0 ; 0 ,


τ
τ
v
v

 ∈ T∗ × T∗ × S∗ × S∗,

has no nonzero solution.
By complex Gordan’s alternative theorem, and closedness of both S and T, there exist p ∈ Cn and q ∈ C such
that

−


∇z f (z0) 0
∇z f (z0) 0
−∇z 1(z0) 1(z0)
−∇z 1(z0) 1(z0)


[

p
q

]
∈ int (T × T × S × S),

i.e.,

−∇z f (z0) p ∈ int T, (3)

−∇z f (z0) p ∈ int T, (4)

∇z 1(z0) p − 1(z0) q ∈ int S, (5)

and

∇z 1(z0) p − 1(z0) q ∈ int S. (6)

Conjugating (6) and adding to (5) yields

∇z 1(z0) p + ∇z 1(z0) p − 1(z0)[q + q] ∈ int S.

Now, since 1 is differentiable at z0, then we can choose t > 0 sufficiently small, such that z0 + tp ∈ X and

1(z0 + tp) = 1(z0) + t∇z 1(z0) p + t∇z 1(z0) p + o(t),

where o(t)
t −→ 0, as t −→ 0.

Then

1(z0 + tp) = [1 + t(q + q)]1(z0) + t[∇z 1(z0) p + ∇z 1(z0) p − 1(z0)(q + q)] + o(t)
∈ S + int S ⊂ S,
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thus z0 + tp is feasible to problem (TP).
Similarly, conjugating (4) and adding to (3) gives

−[∇z f (z0) p + ∇z f (z0) p] ∈ int T.

The differentiability of f at z0 implies, for sufficiently small t > 0,

f (z0 + tp) = f (z0) + t∇z f (z0) p + t∇z f (z0) p + o(t),

and so

f (z0 + tp) − f (z0) = t[∇z f (z0) p + ∇z f (z0) p] + o(t) ∈ −int T,

which means

f (z0) − f (z0 + tp) ∈ int T ⊂ T\{0}.

This contradicts the assumption that z0 is an efficient solution of (TP) with respect to T, and whence the
proof is completed.

The following is a generalization of a Kuhn-Tucker necessary conditions theorem for efficiency in
complex space which illustrates that the cases at which τ0 = 0, are excluded from the above theorem.

Theorem 3.7. Let T be a pointed closed convex cone inCp, S be a solid polyhedral cone inCm, f and 1 be differentiable
functions at a feasible qualified point z0. If z0 is an efficient solution of (TP) with respect to T, then there are τ0 ∈ T∗

and v0 ∈ (S(1(z0)))∗ ⊂ S∗ such that (z0, τ0, v0) satisfies complex Kuhn-Tucker efficiency conditions for problem (TP).

Proof. Since 1(z0) ∈ S(1(z0)) and−1(z0) ∈ S(1(z0)), then v0 ∈
(
S(1(z0))

)∗ implies Re vH
0 1(z0) = 0 and Re vH

0 1(z0) 5
0, and thus (2) holds.
In order to prove (1), assume inversely that there is no 0 , τ ∈ T∗ and v ∈ (S(1(z0)))∗ satisfying (1), it follows
that there is no a solution for the system[

∇z f (z0)
∇z f (z0)

]H [
τ
τ

]
−

[
∇z 1(z0)
∇z 1(z0)

]H [
v
v

]
= 0,

0 ,
[
τ
τ

]
∈ T∗ × T∗,

[
v
v

]
∈ (S(1(z0)))∗ × (S(1(z0)))∗.

By using complex Motzkin’s alternative theorem, it follows that there exists a solution p ∈ Cn to the system

−

[
∇z f (z0)
∇z f (z0)

]
p ∈ int (T × T),

[
∇z 1(z0)
∇z 1(z0)

]
p ∈ S(1(z0)) × S(1(z0)),

hence

−∇z f (z0) p − ∇z f (z0) p ∈ int T. (7)

Similarly,

∇z 1(z0) p + ∇z 1(z0) p ∈ S(1(z0)). (8)

Since z0 is qualified, then (8) leads to the existence of a differentiable vector function β(θ) defined on [0, ε[
such that β(0) = z0, ∇θβ(0) = kp, β(θ) ∈ X and 1(β(θ)) ∈ S for θ ∈ [0, ε[, ε, k > 0. From feasibility of β(θ) for
θ ∈ [0, ε[ and efficiency of z0 to (TP), we have for θ ∈ [0, ε[,

f (β(0)) − f (β(θ)) < T\{0}.
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The differentiability of f at z0 = β(0) yields

−∇z f (β(0))(β(θ) − β(0)) − ∇z f (β(0))(β(θ) − β(0)) − o(θ) < T\{0},

where o(θ)
θ −→ 0, as θ −→ 0.

Also the differentiability of β at θ = 0 implies

−∇z f (β(0))(∇θ β(0)θ) − ∇z f (β(0))(∇θ β(0)θ) − o(θ) < T\{0}.

Thus

−∇z f (β(0))(∇θ β(0)) − ∇z f (β(0))(∇θ β(0)) < T\{0}.

Since β(0) = z0 and ∇θ β(0) = kp for some k > 0, we get

−∇z f (z0) p − ∇z f (z0) p < T\{0}.

This contradiction with (7) ensures that there exist 0 , τ0 ∈ T∗ and v0 ∈ (S(1(z0)))∗ such that (1) is satisfied.

3.2. Saddle point criteria

The saddle point concept gives an alternative way to characterize the efficient solutions and to establish
efficiency conditions. In this subsection we give the saddle point criteria for nonlinear complex multi-
objective programming problem (TP) with and without differentiability hypothesis of both f and 1. We
start off by defining the Lagrangian function L(z, τ, v) corresponding to problem (TP):

L(z, τ, v) = Re τH f (z) − Re vH1(z)

for z ∈ X, τ ∈ Cp and v ∈ Cm.

Definition 3.8. A vector (z0, τ0, v0) ∈ X × T∗ × S∗ is said to be a

(i) complex Fritz John saddle point for the Lagrangian function L(z, τ, v) of problem (TP) iff

L(z0, τ0, v) 5 L(z0, τ0, v0) 5 L(z, τ0, v0), (9)

for all z ∈ X and v ∈ S∗ with (τ0, v0) , (0, 0),
(ii) complex Kuhn-Tucker saddle point for the Lagrangian function L(z, τ, v) of problem (TP) iff (9) is satisfied for

all z ∈ X and v ∈ S∗ with τ0 , 0.

3.2.1. Saddle point conditions without differentiability
We establish the basic saddle point theorems for non-differentiable multi-objective programming prob-

lem (TP). A complex version of a Fritz John saddle point necessary conditions theorem for efficiency can be
stated as follows.

Theorem 3.9. Let X be a non-empty convex subset of Cn, T be a pointed closed convex cone in Cp and S be a solid
polyhedral cone in Cm. Assume f is convex with respect to T and 1 is concave with respect to S. If z0 is an efficient
solution of problem (TP) with respect to T, then there exist τ0 ∈ T∗ and v0 ∈ S∗ such that (z0, τ0, v0) is a complex
Fritz John saddle point for the Lagrangian function L(z, τ, v) of problem (TP).

Proof. If z0 is an efficient solution of (TP) with respect to T, it follows that the system
f (z0) − f (z) ∈ int T,
1(z) ∈ S,
z ∈ X
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is inconsistent.
In view of Theorem 5.1 of [8], there exist τ0 ∈ T∗ and v0 ∈ S∗ with (τ0, v0) , (0, 0) such that

Re τH
0 [ f (z0) − f (z)] + Re vH

0 1(z) 5 0, (10)

for all z ∈ X.
By letting z = z0, the above inequality yields Re vH

0 1(z0) 5 0.
But since v0 ∈ S∗ and 1(z0) ∈ S, we have Re vH

0 1(z0) = 0.
It follows that

Re vH
0 1(z0) = 0. (11)

From (10) and (11),

L(z0, τ0, v0) − L(z, τ0, v0) = Re τH
0 [ f (z0) − f (z)] − Re vH

0 [1(z0) − 1(z)]
= Re τH

0 [ f (z0) − f (z)] − Re vH
0 1(z) 5 0.

This proves the second inequality of (9).
On the other hand, using (11), we have for all v ∈ S∗,

L(z0, τ0, v) − L(z0, τ0, v0) = Re (vH
0 − vH)1(z0) = −Re vH1(z0) 5 0.

This proves the first inequality of (9).

In the cases where τ0 = 0, it is naturally obvious that the objective function f has moved out from the
conditions. Consequently, we state complex versions of Kuhn-Tucker saddle point necessary and sufficient
conditions theorems for efficiency.

Theorem 3.10. Let X,T,S, f , 1 be as in Theorem 3.9 above, and further 1 satisfy Slater constraint qualification with
respect to M. If z0 is an efficient solution of (TP) with respect to T, then there exist τ0 ∈ T∗ and v0 ∈ S∗ such that
(z0, τ0, v0) is a complex Kuhn-Tucker saddle point for the Lagrangian function L(z, τ, v) of problem (TP).

Proof. If z0 is an efficient solution of (TP) with respect to T, it follows from Theorem 3.9 above that there
exist τ0 ∈ T∗ and v0 ∈ S∗ with (τ0, v0) , (0, 0) such that (9) is satisfied and moreover, Re vH

0 1(z0) = 0.
If τ0 = 0, then v0 , 0. The second inequality of (9) implies

Re vH
0 1(z) 5 0, (12)

for all z ∈ X.
Since 1 satisfies Slater constraint qualification with respect to M, there exists a point z1 ∈ X such that
1(z1) ∈ int S and so Re vH

0 1(z1) > 0 which contradicts (12). Therefore τ0 , 0.

The following theorem provides us that if we find a saddle point (z0, τ0, v0) of the Lagrangian function
L(z, τ, v) of problem (TP), then z0 is an efficient solution of the problem. The theorem does not require the
convexity assumptions on the complex problem.

Theorem 3.11. Let S be a closed convex cone inCm and T be a pointed closed convex cone inCp. If a vector (z0, τ0, v0)
is a complex Kuhn- Tucker saddle point for the Lagrangian function L(z, τ, v) of problem (TP) with τ0 ∈ int T∗, then
z0 is an efficient solution of (TP) with respect to T.

Proof. Since (z0, τ0, v0) is a complex Kuhn- Tucker saddle point for the Lagrangian function L(z, τ, v) of
problem (TP), then for all v0 ∈ S∗, the first inequality of (9) implies

Re (vH
0 − vH)1(z0) 5 0. (13)

By letting v = w + v0, the above inequality yields Re wH1(z0) = 0 for all w ∈ S∗.
Therefore, 1(z0) ∈ (S∗)∗, which means, from (S∗)∗ = S, that z0 is a feasible point to problem (TP).
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On the second hand, putting v = 0 in (13) gives Re vH
0 1(z0) 5 0.

Because v0 ∈ S∗ and 1(z0) ∈ S, we get Re vH
0 1(z0) = 0.

Thus Re vH
0 1(z0) = 0.

Consequently, for any feasible point z, the second inequality of (9) leads to

Re τH
0 [ f (z0) − f (z)] 5 −Re vH

0 1(z) 5 0. (14)

If we suppose that z0 is not an efficient solution, then there exists ẑ ∈M such that f (z0) − f (ẑ) ∈ T\{0}.
Since τ0 ∈ int T∗, we get

Re τH
0 [ f (z0) − f (ẑ)] > 0,

which contradicts the inequality (14). Hence, z0 is an efficient solution of (TP) with respect to T.

3.2.2. Saddle point conditions with differentiability
In this subsection, necessary and sufficient conditions for a saddle point for the Lagrangian function

L(z, τ, v) of problem (TP) are established in the presence of convexity and differentiability.
The following is a generalization of a Fritz John sufficient conditions theorem for a saddle point.

Theorem 3.12. Let T be a pointed closed convex cone inCp, S be a solid polyhedral cone inCm, f and 1 be differentiable
functions at a feasible point z0 at which f is convex with respect to T and 1 is concave with respect to S. If (z0, τ0, v0)
satisfies complex Fritz John efficiency conditions for problem (TP), then (z0, τ0, v0) is a complex Fritz John saddle
point for the Lagrangian function L(z, τ, v) of problem (TP).

Proof. If (z0, τ0, v0) satisfies complex Fritz John efficiency conditions for problem (TP), then equation (2)
leads, directly for all v ∈ S∗, to

L(z0, τ0, v) − L(z0, τ0, v0) = Re (vH
0 − vH)1(z0) = −Re vH1(z0) 5 0.

This proves the first inequality of (10).
In order to prove the second inequality, we find, for any z ∈M, that

L(z0, τ0, v0) − L(z, τ0, v0) = −Re τH
0 [ f (z) − f (z0)] + Re vH

0 [1(z) − 1(z0)].

By using the definition of differentiability and convexity of both f and 1, we obtain

L(z, τ0, v0) − L(z0, τ0, v0) 5 −Re [τH
0 ∇z f (z0) − τT

0∇z f (z0)](z − z0)
+Re [vH

0 ∇z 1(z0) − vT
0∇z 1(z0)](z − z0),

for any z.
Thus by equation (1), we have

L(z0, τ0, v0) 5 L(z, τ0, v0).

Of course Theorem 3.9 still true in the case that f and 1 are differentiable.

Corollary 3.13. Let T,S, f and 1 be as in Theorem 3.12 above. If z0 is an efficient solution of (TP) with respect to T,
then there exist τ0 ∈ T∗ and v0 ∈ (S(1(z0)))∗ ⊂ S∗ such that (z0, τ0, v0) is a complex Fritz John saddle point for the
Lagrangian function L(z, τ, v) of problem (TP).

Proof. The proof follows directly from Theorems 3.6 and 3.12 above.

Now the theorem of Kuhn-Tucker sufficient conditions is introduced.
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Theorem 3.14. Let T,S, f and 1 be as in Theorem 3.12 above. If (z0, τ0, v0) satisfies complex Kuhn-Tucker efficiency
conditions for problem (TP), then (z0, τ0, v0) is a complex Kuhn-Tucker saddle point for the Lagrangian function
L(z, τ, v) of problem (TP).

Proof. The proof is analogous as of Theorem 3.12 above.

Corollary 3.15. Let T,S, f , 1 be as in Theorem 3.12 above, and moreover z0 be qualified. If z0 is an efficient solution
of (TP) with respect to T, then there exist τ0 ∈ T∗ and v0 ∈ (S(1(z0)))∗ ⊂ S∗ such that (z0, τ0, v0) is a complex
Kuhn-Tucker saddle point for the Lagrangian function L(z, τ, v) of problem (TP).

Proof. The proof follows from Theorems 3.7 and 3.14 above.

Theorem 3.16. Let T and S be as in Theorem 3.12 above. If (z0, τ0, v0) is a complex Kuhn-Tucker saddle point for the
Lagrangian function L(z, τ, v) of problem (TP), then (z0, τ0, v0) satisfies complex Kuhn-Tucker efficiency conditions
for problem (TP).

Proof. If (z0, τ0, v0) is a complex Kuhn-Tucker saddle point for the Lagrangian function L(z, τ, v) of problem
(TP), it follows, as in the proof of Theorem 3.11 above, that z0 is feasible to (TP) and for any feasible point z,

Re τH
0 [ f (z) − f (z0)] = 0.

This means that z0 solves the scalar problem

min Re τH
0 f (z)

subject to z ∈M,

with 0 , τ0 ∈ T∗.
This implies, by using of Theorem 2.4.11 in [5] the existence of v0 ∈ (S(1(z0)))∗ such that

∇z τ
H
0 f (z0) + ∇z τ

H
0 f (z0) − vH

0 ∇z 1(z0) − vT
0∇z 1(z0) = 0,

and

Re vH
0 1(z0) = 0.

Since τ0 is a constant vector, then equations (1) and (2) follow. Hence (z0, τ0, v0) satisfies complex Kuhn-
Tucker efficiency conditions for problem (TP).

4. Conclusion

In this paper, the notions of Fritz John and Kuhn-Tucker saddle point have been introduced, and the
criteria of the saddle point have been established for a generalized form of the multi-objective programming
problem in complex space taking into consideration the two parts of the objective vector. The efficient
solutions of the problem has been characterized in terms of saddle points whether the functions are
differentiable or not. The results generalize the parallel ones in real and complex spaces.
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