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Abstract. In this paper, we introduce a new family of distributions which extends several new half-
distributions. Also, the family can be viewed as a general weighted family of distributions. Some general
mathematical properties of the family are obtained, involving the quantile function, (conditional) moments,
moment generating function, entropies, order statistics, record values and a bivariate extension of the family.
Different estimation procedures for the family parameters are discussed. Some sub-models of the family
that can accommodate various shapes for the hazard rate and density functions are given. Using two
reliability data sets, the potentiality of proposed sub-models of the family is shown under the estimation
procedures.

1. Introduction

During the last two decades or more, various approaches of generating new families of distributions are
introduced for increasing chances of modeling practical data that come from a wide variety of disciplines.
Among such families we can mention: The Marshal-Olkin-G (MO-G) by [11], the Exponential-G by [10],
the beta generator (beta-G) family by [8], the gamma-G (type 1) by [15], the gamma-G (type 2) by [14], the
Transformed-Transformer (T-X) by [2], the odd-Burr G by [1] and the Kumaraswamy odd Burr G by [13].
[3] introduced a new extended odd family of probability distributions with a study to a sub-model of the
family. [5] proposed a new class of trigonometric distributions based on a cosine-sine transformation. Very
recently, [6] introduced a new generator of distributions based on a polynomial-exponential transformation
of an existing cumulative distribution function.

In this paper, we introduce a new family of distributions which extends several new families of half-
distributions. Also, the family can be viewed as a general weighted family of distributions. Interpretations
and motivations of the introduced family will be shown in the next lines of this section.

Let α > 0 and G(x) be a base cumulative distribution function (cdf) and 1(x) be the associated probability
density function (pdf). We consider the new cdf

F(x) =
α

α + 1 − G(x)
G(x), x ∈ R, α > 0, (1)

and its corresponding pdf is given by

f (x) =
α(α + 1)

(α + 1 − G(x))2 1(x). (2)
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Denoting SF(x) = 1 − F(x) to be the survival function (sf) associated to F(x) and SG(x) is the one associated
to G(x), then we have

SF(x) =
α + 1

α + 1 − G(x)
SG(x). (3)

Let hF(x) =
f (x)
S(x) denote the hazard rate function (hrf) associated to F(x) and hG(x) be the one associated to

G(x), we have

hF(x) =
α

α + 1 − G(x)
hG(x). (4)

Let us now present some special examples for α = 1.

Example 1. Let G(x) be the cdf associated to the exponential distribution of parameter λ > 0, then the cdf
F(x) given by (1), with α = 1, is

F(x) =
1 − e−λx

1 + e−λx , x > 0,

and its corresponding pdf is

f (x) =
2λe−λx

(1 + e−λx)2 , x > 0.

In literature, it corresponds to a pdf of the so-called half-logistic distribution that having a major
role in reliability and survival analysis. The half-logistic distribution can be viewed as a weighted
exponential distribution with the weight function W(x) = 1

(1+e−λx)2 with expectation E [W(X)] = 1
2 .

Example 2. Let G(x) be the cdf associated to the Lomax distribution given by

G(x) = 1 − (1 + λx)−α , x > 0,

then the cdf F(x) corresponding to (1), with α = 1, is

F(x) =
1 − (1 + λx)−α

1 + (1 + λx)−α
=

(1 + λx)α − 1
(1 + λx)α + 1

, x > 0.

A corresponding pdf is given by

f (x) =
2λα (1 + λx)−(α+1)(

1 + (1 + λx)−α
)2 , x > 0. (5)

Note that it is a weighted Lomax distribution with weight function W(x) = 1

(1+(1+λx)−α)2 and E [W(X)] =

1
2 , therefore, it may be a half of any literature distribution which is not known to us.

Remark 1. Based on the two examples above and equation (2), we can get new family of half-distributions
to any common 1(x) and G(x) using the weight function W(x) = 1

(2−G(x))2 and E [W(X)] = 1
2 . Concept of

weighted distribution is of a major importance in practical situations as it is not usual that the data
are not equally represented.

From the earlier discussions, we shall denote the proposed family given by (2) as family of extended
half-distributions. Other important motivations of this family are as follows.
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• The family defined by (2) can be viewed as a general weighted family of distributions to a
common base 1(x) with weight W(x) = α

(α+1−G(x))2 and E [W(X)] = 1
α+1 .

• In reliability, a parallel system fails when all components fail and the lifetime of this system is
determined by ZM = max(X1, . . . ,XM), where X1, . . . ,XM are stochastically independent lifetime
components. Assume that X1, . . . ,XM follow a common base cdf G(x) and the number of compo-
nents M is random and following a modified geometric distribution, with parameter α

α+1 , defined
by

P(M = n) =
α

(α + 1)n , n = 1, 2, . . . , α > 0,

hence, the cdf of ZM is the cdf of the proposed family given by (2).

• Let α
1+α = p ∈ (0, 1), hence equation (1) is reduced to the restricted complementary G-geometric

(CGG) family proposed by [4] as the parameter p belongs to a unit interval.

• Sub-models of the family can accommodate various shapes for the hazard rate and density
functions ( see Section 4 of this paper) which reflect potentiality of the family for modeling
many practical data. Also, a new bounded support distribution (which is rare in literature)
is introduced as a sub-model of the family beside many of unbounded ones. Moreover, it is
shown that the applied estimation procedures of those sub-models do not involve complexity in
computations and working well under two reliability data sets.

The rest of the paper is structured as follows. In Section 2 we obtain some general mathematical
properties of the family, such as quantile function, moments, conditional moments, moment generat-
ing function, entropies, order statistics, record values and a bivariate extension of the family. Some
estimation procedures for the family parameters are discussed in Section 3, namely the maximum
likelihood estimation, ordinary and weighted least square estimations, and Cramér-von Mises esti-
mation. Section 4 mentions some sub-models of the family that can accommodate various shapes for
the hazard rate and density functions. Section 5 shows the potentiality of proposed sub-models of the
family for the earlier estimation procedures under two reliability data sets. Some concluding remarks
and future work are summarized in Section 6.

2. Some mathematical properties of the family

In this section we get some general mathematical properties of the family, such as quantile function, (con-
ditional) moments, moment generating function, entropies, order statistics, record values and a bivariate
extension of the family.

2.1. Quantile function
Let QF(x) be the quantile function associated to F(x) defined by (1) and QG(x) be the quantile function

associated to G(x). Then we have F(QF(x)) = x, which implies

α
α + 1 − G(QF(x))

G(QF(x)) = x,

G(QF(x)) =
α + 1
x + α

x,

hence

QF(x) = QG

(
α + 1
x + α

x
)
.

The considered distribution can be simulated by using X = QF(U), where U is a random variable having
the uniform distribution on [0, 1].
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2.2. Some useful expansions
Here, we provide some useful expansions of F(x) and f (x) in terms of the exponentiated sf SG(x). For

any x such that G(x) < 1, using the geometric and binomial series, we have

F(x) =
α

α + 1
G(x)

1
1 − 1

α+1 G(x)
=

α
α + 1

G(x)
+∞∑
k=0

( 1
α + 1

)k

[G(x)]k

=

+∞∑
k=0

α
( 1
α + 1

)k+1

[G(x)]k+1 =

+∞∑
k=0

k+1∑
`=0

Ak,`[SG(x)]`,

where

Ak,` = α

(
k + 1
`

)
(−1)`

( 1
α + 1

)k+1

.

Similarly, we have

f (x) =
α

α + 1
1(x)

1(
1 − 1

α+1 G(x)
)2 =

α
α + 1

1(x)
+∞∑
k=1

k
( 1
α + 1

)k−1

[G(x)]k−1

=

+∞∑
k=1

α
( 1
α + 1

)k

k[G(x)]k−11(x) =

+∞∑
k=1

k−1∑
`=0

Bk,`[SG(x)]`1(x), (6)

where

Bk,` = α

(
k − 1
`

)
(−1)`

( 1
α + 1

)k

k.

2.3. (Conditional) Moments and moment generating function
Here and after, we consider a random variable X following a distribution characterized by the cdf F(x)

given by (1).
Many of the interesting features of a family of distributions can be determined by its (conditional)

moments. Using the expansion (6), the r-th moment of X is attained as

E(Xr) =

∫ +∞

−∞

xr f (x)dx =

+∞∑
k=1

k−1∑
`=0

Bk,`

∫ +∞

−∞

xr[SG(x)]`1(x)dx.

The moment generating function of X is given as

M(t) = E(etX) =

∫ +∞

−∞

etx f (x)dx =

+∞∑
k=1

k−1∑
`=0

Bk,`

∫ +∞

−∞

etx[SG(x)]`1(x)dx,

for t such that the integral exists.
Now, we get some conditional moments of X as follows.
First of all, thanks to (6), set

Jr(t) =

∫ t

0
xr f (x)dx =

+∞∑
k=1

k−1∑
`=0

Bk,`

∫ t

−∞

xr[SG(x)]`1(x)dx.

Hence, the r-th conditional moments of X is given by, for any t ∈ R,

E(Xr
| X > t) =

1
SF(t)

∫ +∞

t
xr f (x)dx =

1
SF(t)

[E(Xr) − Jr(t)] .

Further, the r-th reversed moments of X having the expression

E(Xr
| X ≤ t) =

1
F(t)

Jr(t).
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2.4. Some entropy functions
The entropy of a random variable X with pdf f (x) is a measure of variation of the uncertainty of physical

systems. In this section we obtain two popular entropies, namely Shannon entropy and Rényi entropy.
For Shannon entropy, we have

H( f ) = −E(log[ f (X)]) = −

∫ +∞

−∞

f (x) log[ f (x)]dx = − log
[
α

α + 1

]
− E(log[1(X)])

+
2α
α + 1

∫ +∞

−∞

1(x)
1(

1 − 1
α+1 G(x)

)2 log
[
1 −

1
α + 1

G(x)
]

dx.

The second term can be calculated according to the definition of 1(x) and the inversion formula. Denoting
I to be the third and last term, using a direct primitive computation, we have

I = 2α

1 + log
[
1 − 1

α+1 G(x)
]

1 − 1
α+1 G(x)


+∞

−∞

= 2 + 2(α + 1) log
[
1 −

1
α + 1

]
.

Let us now focus our attention to the Rényi entropy defined by JR(β) = 1
1−β log

(∫ +∞

−∞
[ f (x)]βdx

)
, where

β , 1 and β > 0. For any x such that G(x) < 1, using the binomial series, we have

[ f (x)]β =
(
α

α + 1

)β
[1(x)]β

1(
1 − 1

α+1 G(x)
)2β =

(
α

α + 1

)β
[1(x)]β

+∞∑
k=0

(
−2β

k

) (
−

1
α + 1

)k

[G(x)]k.

Assuming that
∫ +∞

−∞
[1(x)]β[G(x)]kdx exists, we have∫ +∞

−∞

[ f (x)]βdx =

∞∑
k=0

Ck

∫ +∞

−∞

[1(x)]β[G(x)]kdx,

where

Ck =
(
α

α + 1

)β (−2β
k

) (
−

1
α + 1

)k

.

Therefore, we get

JR(β) =
1

1 − β
log

(∫ +∞

−∞

[ f (x)]βdx
)

=
1

1 − β
log

 ∞∑
k=0

Ck

∫ +∞

−∞

[1(x)]β[G(x)]kdx

 .
2.5. Order statistics and record values

Order statistics and record values have a major role in statistics, in general, and in reliability and life
testing, in particular. Let X1,X2, . . . ,Xn be n i.i.d. random variables having the pdf f (x) defined by (2). Let
us consider its order statistics to be X1:n, X2:n, . . . ,Xn:n, then the pdf of the i-th order statistic Xi:n is given by

fi:n(x) =
n!

(i − 1)! (n − i)!

[
α

α + 1 − G(x)
G(x)

]i−1 [
α + 1

α + 1 − G(x)
SG(x)

]n−i
α(α + 1)

(α + 1 − G(x))2 1(x)

=

[
αi(α + 1)n−i+1

(α + 1 − G(x))n+1

]
n!

(i − 1)! (n − i)!
[G(x)]i−1[SG(x)]n−i1(x).

For n i.i.d. random variables Y1,Y2, . . . ,Yn having the pdf 1(x) and the pdf of the i-th order statistic Yi:n,
denoted by 1i:n(x), we can write

fi:n(x) =

[
αi(α + 1)n−i+1

(α + 1 − G(x))n+1

]
1i:n(x).
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From this expression, for any r > 0, the r-th moment of Xi:n is given by

E(Xr
i:n) = E

(
Yr

i:n

(
αi(α + 1)n−i+1

(α + 1 − G(Yi:n))n+1

))
.

Now, move to the record values of the proposed family. Let X1,X2, . . . , be a sequence of i.i.d. random
variables having the cdf F(x) given by (1). We define a sequence of record times U(n) as follows: U(1) = 1,
U(n) = min{ j; j > U(n− 1), X j > XU(n−1)} for n ≥ 2. We define the i-th upper record value by Ri = XU(i), with
R1 = X1. Using the pdf f (x) defined by (2) and the sf SF(x) having (3), the pdf of Ri is given by

fRi (x) =
[− log(SF(x))]i−1

(i − 1)!
f (x) =

1
(i − 1)!

[
− log

(
α + 1

α + 1 − G(x)
SG(x)

)]i−1
α(α + 1)

(α + 1 − G(x))2 1(x).

Using the pdf f (x) defined by (2) and the hrf hF(x) having (4), the joint pdf of (R1, . . . ,Rn) is given as

f(R1,...,Rn)(x1, . . . , xn) = f (xn)
n−1∏
k=1

hF(xk) =
α(α + 1)

(α + 1 − G(xn))2 1(xn)
n−1∏
k=1

α
α + 1 − G(xk)

hG(xk),

for x1 < . . . < xn.

2.6. Bivariate extension of the family
We now propose a bivariate version of the proposed family. Let (X,Y) be a bivariate random variable

with the joint cdf

FX,Y(x, y) =
α

α + 1 − G(x, y)
G(x, y), (x, y) ∈ R2,

where G(x, y) is denoted as a bivariate base cdf. Let G1(x) and G2(y) be the corresponding marginal base
cdfs, 11(x) and 12(y) be the corresponding marginal pdfs and 1(x, y) be the corresponding bivariate pdf.
Then the marginal cdfs of X and Y are given by

FX(x) =
α

α + 1 − G1(x)
G1(x)

and

FY(y) =
α

α + 1 − G2(y)
G2(y).

Whereas, the marginal pdfs of (X,Y) are given by

fX(x) =
α(α + 1)

(α + 1 − G1(x))2 11(x)

and

fY(y) =
α(α + 1)

(α + 1 − G2(y))2 12(y).

Moreover, the pdf of (X,Y) is given by

f (x, y) =
α(α + 1)

(α + 1 − G(x, y))2θ(x, y),

where

θ(x, y) = 1(x, y) +
2

α + 1 − G(x, y)
∂G(x, y)
∂x

∂G(x, y)
∂y

.
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3. Estimation procedures for the family parameters

In this section we give some estimation procedures for the family parameters, as many of the family
features depend on the parameters, namely the maximum likelihood estimation, ordinary and weighted
least square estimations, and Cramér-von Mises estimation. Those procedures are compared numerically
by using some goodness of fit statistics for two practical data sets.

3.1. Maximum likelihood estimators

Let X1,X2, . . . ,Xn be a random sample from the family characterized by (2) with parameter vector Θ
and x1, x2, . . . , xn are the corresponding observed values, then the likelihood function is given by

L(Θ) =

n∏
i=1

f (xi) =
αn(α + 1)n∏n

i=1(α + 1 − G(xi))2

n∏
i=1

1(xi).

The log-likelihood function can be expressed as

`(Θ) = log(L(θ)) = n log(α) + n log(α + 1) − 2
n∑

i=1

log[α + 1 − G(xi)] +

n∑
i=1

log(1(xi)).

The nonlinear log-likelihood equations given by ∂`(Θ)
∂Θ = 0 can be solved numerically for obtaining the

maximum likelihood estimators (MLEs). Issue of unimodalness of the log-likelihood function (unique
solution in the parameters) of some sub-models of the family is discussed visually under two practical data
sets in Section 5.

3.2. Ordinary least-square estimators

Let x1, x2, . . . , xn be an ordered sample of the random sample of size n from the family characterized by

the cdf F(x) defined by (1). Then, we have E(F(Xi:n)) =
i

n + 1
and the least square estimators (LSE) can be

obtained by minimizing

M(Θ) =

n∑
i=1

{F(xi) − E(F(Xi:n))}2 =

n∑
i=1

{
α

α + 1 − G(xi)
G(xi) −

i
n + 1

}2

,

with respect to the unknown parameters of the family, and hence the LSEs are solutions of the nonlinear
equations ∂M(Θ)

∂Θ = 0.

3.3. Weighted least-square estimators

Based on the LSEs, the weighted least square estimators (WLSE) can be obtained by minimizing the
expression

W(Θ) =

n∑
i=1

wi

{
α

α + 1 − G(xi)
G(xi) −

i
n + 1

}2

,

with respect to the unknown parameters of the proposed family, where

wi =
1

Var(F(Xi:n))
=

(n + 1)2(n + 2)
i(n − i + 1)

.

Hence, solving the nonlinear equations ∂W(Θ)
∂Θ = 0 gives the WLSEs of the family parameters.



H. S. Bakouch / Filomat 34:1 (2020), 257–272 264

3.4. Cramér-von Mises estimators

As a type of minimum distance estimators, let us consider the Cramér-von Mises (CVM) estimation
method. Assume that x1, x2, . . . , xn are the observed values from the proposed family, in increasing order.
Hence, the CVM estimators can be obtained by minimizing

C(Θ) =
1

12n
+

n∑
i=1

{
α

α + 1 − G(xi)
G(xi) −

2i − 1
2n

}2

with respect to the unknown parameters of the proposed family.

4. Some sub-models of the family

In this section, we mention some sub-models of the family that reflect the potentiality of the family for
modeling practical data, as such models can accommodate various shapes for the hazard rate and density
functions, see the displayed plots in this section. Moreover, the estimation procedures are compared under
those models.

4.1. Extended half-Burr XII Distribution

The Burr XII (BXII) distribution has, respectively, the pdf and cdf : 1(x) = ckxc−1

(xc+1)k+1 and G(x) = 1 − (1 +

xc)−k, k, c, x, > 0, hence the cdf and pdf of the extended half-Burr XII (EHBXII) distribution are given by

F(x) =
α
(
1 − (xc + 1)−k

)
α + (xc + 1)−k

, x, α, c, k > 0

and

f (x) =
α(α + 1)ckxc−1

(xc + 1)k+1
(
α + (xc + 1)−k

)2 ,

respectively. Using these functions, we immediately obtain the expression of the hrf. Figure 1 shows some
plots of pdfs and hrfs for the EHBXII distribution with arbitrary choices for the parameters (c, k, α).

Figure 1: Plots of the pdf and hrf of the EHBXII distribution for arbitrary parameter choices.
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4.2. Extended half-Weibull Distribution

Since, the Weibull distribution having the pdf and cdf given, respectively, by 1(x) =
k( x

λ )k−1
e−( x

λ )k

λ and

G(x) = 1 − e−(
x
λ )k

, k, λ, x, > 0, then the cdf and pdf of extended half-Weibull (EHW) distribution are given
by

F(x) =
α
(
1 − e−(

x
λ )k

)
α + e−(

x
λ )k , x, α, λ, k > 0

and

f (x) =
α(α + 1)k

(
x
λ

)k−1
e−(

x
λ )k

λ
(
α + e−(

x
λ )k

)2 ,

respectively. Making use of the functions above, the expression of the hrf follows immediately. Figure
2 shows some plots of pdfs and hrfs for the EHW distribution with different choices for the parameters
(λ, k, α).

Figure 2: Plots of the pdf and hrf of the extended half-Weibull distribution for arbitrary parameter choices.

4.3. Extended half-Power Lindley Distribution
Since, the power Lindley (PL) distribution ([9]) having the pdf and cdf given, respectively, by 1(x) =

β2λ(xλ+1)xλ−1e−βxλ

β+1 and G(x) = 1 −
(
βxλ

β+1 + 1
)

e−βxλ , β, λ, x, > 0, hence the cdf and pdf of the extended half-power

Lindley (EHPL) distribution are given by

F(x) =
α
(
1 −

(
βxλ

β+1 + 1
)

e−βxλ
)

α + e−βxλ
(
βxλ

β+1 + 1
) , x, α, λ, β > 0

and

f (x) =
α(α + 1)β2λ

(
xλ + 1

)
xλ−1e−βxλ

(β + 1)
(
α + e−βxλ

(
βxλ

β+1 + 1
))2 ,

respectively. Using the two preceding functions, the hrf can be easily found. Figure 3 shows some plots of
pdfs and hrfs for the EHPL distribution with different choices for the parameters (λ, β, α).
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Figure 3: Plots of the pdf and hrf of the extended half-power Lindley distribution for arbitrary parameter choices.

4.4. Extended half-Kumaraswamy Distribution
In this subsection, we exhibit a new distribution defined on the unit-interval (0, 1), which is useful for

modeling proportional practical data.
The Kumaraswamy (Kw) distribution has the pdf and cdf given, respectively, as 1(x) = abxa−1 (1 − xa)b−1

and G(x) = 1 − (1 − xa)b , x ∈ (0, 1), a, b > 0, then the cdf and pdf of extended half-Kumaraswamy (EHKw)
distribution are given by

F(x) =
α
(
1 − (1 − xa)b

)
(1 − xa)b + α

, x ∈ (0, 1), α, a, b > 0

and

f (x) =
α(α + 1)abxa−1 (1 − xa)b−1(

(1 − xa)b + α
)2 ,

respectively. The hrf of the EHKw distribution follows using the two equations above. Some plots of
the pdfs and hrfs for the EHKw distribution are displayed by Figure 4 for some arbitrary choices of the
parameters (a, b, α).

Figure 4: Plots of the pdf and hrf of the extended half-Kumaraswamy distribution for arbitrary parameter choices.
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Table 1: Descriptive statistics of the data sets

Data set 1
n Mean Median SD Skewness Kurtosis M1 M2
50 0.1632 0.16 0.0811 0.0723 2.2166 0.0653 0.07

Data set 2
20 10.65 11.5 4.2831 -0.3588 2.4969 3.385 2.5

SD = Standard Deviation , M1 = Mean deviation about the mean,
M2 = Mean deviation about the median

5. Illustrative practical data with analysis

In this section, the potentiality of the proposed family is highlighted by comparing four sub-models of
this family, namely EHBXII, EHW, EHPL and EHKw to the corresponding base distributions (BXII, W, PL
and Kw) under all the preceding estimation procedures: MLE, LSE, WLSE and CVME, for two reliability
data sets. Descriptive statistics of both data sets are summarized in Table 1 which indicates that the first
one is under-dispersed with positive skewness while the second data set is over-dispersed with negative
skewness. Moreover, the mean deviation about the mean and median is small for the first data set, and it
is large for the second data set.
The description of the considered data sets is as follows.

Data set 1. The first data set refers to the 50 observations on Burr (in the millimeter unit) with hole
diameter 12 mm and sheet thickness 3.15 mm reported by [7]. The data values are: 0.04, 0.02, 0.06, 0.12,
0.14, 0.08, 0.22, 0.12, 0.08, 0.26, 0.24, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32, 0.28, 0.14, 0.16, 0.24, 0.22, 0.12, 0.18, 0.24,
0.32, 0.16, 0.14, 0.08, 0.16, 0.24, 0.16, 0.32, 0.18, 0.24, 0.22, 0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.06, 0.04,
0.14, 0.26, 0.18, 0.16.

Data set 2. The second data set represents the failure times of 20 components. The data set can be found
in [12, Page 245] and its values are: 2 , 3 , 6 , 6 , 7 , 9 , 9 , 10 , 10 , 11, 12 , 12, 12, 13, 13, 13, 15, 16, 16, 18.

We check the adequacy of the fitted models, under all the estimation procedures, via the statistics of
Anderson-Darling (A∗) and the Cramér-von Mises (W∗). They allow to determine how closely a specific
distribution fits the associated empirical distribution for a given data set. The smaller statistics give the
better fit. The obtained results are presented in Tables 2 and 3 for both data sets. Based on values of
A∗ and W∗ in the preceding tables, we conclude that the considered sub-models of the family are highly
competitor to the compared distributions under all the estimation procedures discussed in Section 3. Also,
it can be noted that the EHKw distribution has a superior performance for the first data set, while the EHW
distribution represents the best fit for the second data set, among the compared distributions. Moreover,
all the estimation procedures do not involve complexity in computations and working well for both data
sets, although the WLSE procedure is recommended more for the first data set. The results on estimation
procedures are displayed visually by Figure 5 where the estimated densities of the superior distribution are
superimposed on the histogram for both data sets based on the MLE, LSE, WLSE and CVME methods.

Now, we get the confidence intervals for parameters of the EHKw and EHW distributions under the
MLEs for both data sets. The variance-covariance matrix of the MLEs of the EHKw distribution for data
set 1 is given as

 0.291921 6.197111 0.370904
6.197112 156.535541 6.588642
0.370904 6.588641 0.562065

 ,
The variance-covariance matrix of the MLEs of the EHW distribution for data set 2 is

 18.875512 3.832981 1.745377
3.832986 0.832217 0.341986
1.745364 0.341986 0.172114

 .
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Table 2: Comparison of fit of distributions (SE in parentheses) for Data set 1

MLEs
Distributions Estimates A∗ W∗

BXII(c, k) 2.154673 39.124621 0.747401 0.109825
(0.240272) (15.014217)

Weibull(λ, k) 0.183743 2.119518 0.719622 0.107633
(0.012843) (0.246304)

PL(λ, α) 2.118267 37.147585 0.718659 0.107563
(0.246809) (14.489925)

Kw(a, b) 2.077396 33.137430 0.688407 0.105252
(0.254849) (13.921596)

EHBXII(c, k, α) 1.708924 33.154991 0.468754 0.592883 0.086292
(0.478488) (12.186667) (0.790817)

EHW(λ, k, α) 0.129401 1.655082 0.460299 0.562626 0.083877
(0.053890) (0.499366) (0.779068)

EHPL(λ, β, α) 1.652886 30.340066 0.459622 0.561481 0.083780
(0.500476) (12.231523) (0.777884)

EHkw(a, b, α) 1.577041 25.179850 0.438597 0.525271 0.080833
(0.540297) (12.511403) (0.749710)

LSEs
Distributions Estimates A∗ W∗

BXII(c, k) 2.042318 29.929841 0.678865 0.089502
Weibull(λ, k) 0.191141 2.008349 0.654853 0.088067
PL(λ, β) 2.007059 28.639681 0.654077 0.088026
Kw(a, b) 1.968748 25.410345 0.628029 0.086481
EHBXII(c, k, α) 1.268607 22.259999 0.165237 0.529712 0.077199
EHW(λ, k, α) 0.081518 1.160859 0.142028 0.507214 0.075377
EHPL(λ, β, α) 1.155251 19.123569 0.140864 0.506426 0.075309
EHkw(a, b, α) 0.925545 12.597580 0.089717 0.482292 0.073169

WLSEs
Distributions Estimates A∗ W∗

BXII(c, k) 2.088417 33.397569 0.663788 0.091168
Weibull(λ, k) 0.188039 2.050470 0.638934 0.089622
PL(λ, β) 2.049122 31.651971 0.638152 0.089579
Kw(a, b) 2.005663 27.929922 0.611548 0.087934
EHBXII(c, k, α) 1.371475 24.763653 0.207161 0.507336 0.077168
EHW(λ, k, α) 0.092639 1.274044 0.184110 0.483469 0.074996
EHPL(λ, β, α) 1.269374 21.497754 0.182989 0.482619 0.074914
EHkw(a, b, α) 1.092496 15.243087 0.137888 0.455857 0.072300

CVMEs
Distributions Estimates A∗ W∗

BXII(c, k) 2.103836 33.349682 0.686005 0.088146
Weibull(λ, k) 0.190390 2.072067 0.661431 0.086699
PL(λ, β) 2.070984 31.986544 0.660673 0.086656
Kw(a, b) 2.035469 28.674555 0.634133 0.085095
EHBXII(c, k, α) 1.323646 23.865052 0.176938 0.513039 0.075880
EHW(λ, k, α) 0.086384 1.220344 0.153920 0.488488 0.074048
EHPL(λ, β, α) 1.215197 20.629453 0.152774 0.487609 0.073979
EHkw(a, b, α) 1.009006 14.115457 0.104985 0.460062 0.071810
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Table 3: Comparison of fit of distributions for Data set 2

MLEs
Distributions Estimates A∗ W∗

BXII(c, k) 24.657543 0.018019 5.797948 1.188298
(2692.603) (1.967765)

Weibull(λ, k) 11.925657 2.812939 0.418682 0.058246
(0.989351) (0.524042)

PL(λ, β) 1.796760 0.025325 0.541847 0.080353
(0.302042) (0.019590)

Kw(a, b) – – – – –
(–) (–)

EHBXII(c, k, α) 4.213412 0.839190 0.000258 0.785025 0.090819
(5.355854) (1.071301) (0.000438)

EHW(λ, k, α) 7.620245 1.905639 0.189626 0.267251 0.033943
(4.344589) (0.912259) (0.414867)

EHPL(λ, β, α) 1.293935 0.176706 0.108617 0.290068 0.036230
(0.465332) (0.269802) (0.216541)

EHkw(a, b, α) – – – – –
(–) (–) (–)

LSEs
Distributions Estimates A∗ W∗

BXII(c, k) 28.309519 0.011539 4.772040 0.934443
Weibull(λ, k) 12.417532 2.754084 0.395595 0.043343
PL(λ, β) 1.839046 0.020804 0.513021 0.050059
Kw(a, b) – – – – –
EHBXII(c, k, α) 48.921365 0.081435 0.000079 0.873770 0.072056
EHW(λ, k, α) 6.113052 1.502687 0.110673 0.260659 0.035696
EHPL(λ, β, α) 1.101113 0.297046 0.077560 0.284118 0.037649
EHkw(a, b, α) – – – – –

WLSEs
Distributions Estimates A∗ W∗

BXII(c, k) 16.678209 0.022004 4.91151 0.968509
Weibull(λ, k) 12.310095 2.721369 0.380541 0.044386
PL(λ, β) 1.840101 0.021202 0.491824 0.050620
Kw(a, b) – – – – –
EHBXII(c, k, α) 28.556451 0.146676 0.000051 0.893632 0.071966
EHW(λ, k, α) 5.827897 1.454284 0.101438 0.257153 0.036465
EHPL(λ, β, α) 1.076496 0.323793 0.071072 0.276577 0.038212
EHkw(a, b, α) – – – – –

CVMEs
Distributions Estimates A∗ W∗

BXII(c, k) 28.535507 0.011487 4.772192 0.934414
Weibull(λ, k) 12.331378 2.984354 0.421755 0.040064
PL(λ, β) 1.988436 0.014534 0.568295 0.046762
Kw(a, b) – – – – –
EHBXII(c, k, α) 441.063161 0.009860 0.000032 0.983033 0.068889
EHW(λ, k, α) 6.674764 1.678951 0.124111 0.250348 0.032392
EHPL(λ, β, α) 1.205356 0.228599 0.084270 0.277204 0.034343
EHkw(a, b, α) – – – – –
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Figure 5: Plots of the pdf superimposed on the histogram for both data sets

Table 4: 95% Confidence intervals

Data set 1 EHKw
a b α
[0.518059 2.636023] [0.651568 49.708132] [0 1.908028]

Data set 2 EHW
λ k α
[0 16.135639] [0.117612 3.693666] [0 1.002765]

Note that the diagonal entries of the variance-covariance matrices for both the data sets are the variances
of the MLEs of the parameters and other entries represent the covariances between each two estimates. The

two-sided (1−δ)100% confidence interval (CI) for the vector parameterθ of a distribution is θ̂±zδ/2
√

Var(θ̂),

where Var(θ̂) is a variance of the estimator θ̂which given by the diagonal entries and zδ is the 100δ percentile
of a standard normal distribution.

Using those matrices and the CI, the 95% confidence intervals for the parameters of the EHKw and
EHW distributions are summarized in Table 4 for both data sets.

For the MLE, issue of unique solution for the log-likelihood equations of parameters of the EHKw and
EHW distributions are justified using the profile log-likelihood functions in Figures 6 and 7 under both
data sets.

6. Concluding remarks

In this paper, we proposed a new general family of distributions which extends various half-distributions.
A reliability consideration of the family is outlined. Some general mathematical and statistical properties of
the family are obtained, such as the moment generating function, entropies, order statistics, record values,
a bivariate extension, different estimation procedures. Some sub-models of the family (unbounded and
bounded unit-interval continuous distributions) are considered and it is shown that they can accommodate
many shapes for the hazard rate and density functions which reflect potentiality of the family for modeling
several practical data. Potentiality of the mentioned sub-models for the considered estimation procedures
under two reliability data sets is investigated. Finally, sub-models of the family are recommended to
analyze the reliability data and hope this can be extended to other applied areas.

A future research will focus on an extensive study to one sub-model of the family on different estimation
methods, including the ones discussed in this paper, moments and Bayesian estimation. Hence, we can
easily evaluate the performance of the estimation methods using a simulation study as suggested by the
referee.
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Figure 6: The log-likelihood as a function of different parameters of the extended half-Kumaraswamy distribution for Data set 1.

Figure 7: The log-likelihood as a function of different parameters of the extended half-Weibull distribution for Data set 2.
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