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Abstract. In this paper, we introduce a new type of curvature tensor named H-curvature tensor of type
(1, 3) which is a linear combination of conformal and projective curvature tensors. First we deduce some
basic geometric properties of H-curvature tensor. It is shown that a H-flat Lorentzian manifold is an
almost product manifold. Then we study pseudo H-symmetric manifolds (PHS)n (n > 3) which recovers
some known structures on Lorentzian manifolds. Also, we provide several interesting results. Among
others, we prove that if an Einstein (PHS)n is a pseudosymmetric (PS)n, then the scalar curvature of the
manifold vanishes and conversely. Moreover, we deal with pseudoH-symmetric perfect fluid spacetimes
and obtain several interesting results. Also, we present some results of the spacetime satisfying divergence
freeH-curvature tensor. Finally, we construct a non-trivial Lorentzian metric of (PHS)4.

1. Introduction

Curvature plays a crucial role in the development of differential geometry and Physics. According
to Chern [17] ”a fundamental notion is curvature in its different forms”. Therefore, finding of curvature
tensors are very interesting topics for the researchers. In this sense, we introduce a new curvature tensor to
find applications in the theory of relativity and cosmology.
Investigating conformally flat Riemannian manifolds of dimension n of class one, R. N. Sen and M. C. Chaki
[42] found that the curvature tensor R of type (0, 4) satisfies

Rhijk,l = 2alRhijk + ahRli jk + aiRhljk + a jRhilk + akRhijl,

where “comma” denotes covariant derivative with respect to the metric and Rhijk are components of the
curvature tensor R of type (0, 4). Hereafter, M. C. Chaki [8] and M. C. Chaki and U. C. De [10] examined the
Riemannian manifolds with the above condition. The first author called such manifolds pseudosymmetric,
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since locally symmetric manifold satisfies the above condition with al = 0.
The above expression in index free notation can be written as

(∇UR)(V,Z,W,X) = 2A(U)R(V,Z,W,X) + A(V)R(U,Z,W,X)
+A(Z)R(V,U,W,X) + A(W)R(V,Z,U,X) + A(X)R(V,Z,W,U)

for all vector fields X, U, V, Z, W, where A is a non-zero 1-form, ρ is a vector field defined by 1(U, ρ) = A(U)
for all U. Here ∇ represents the covariant derivative operator with respect to the metric tensor 1, A is
an associated 1-form, and R(V,Z,W,X) = 1(R(V,Z)W,X), where R is a curvature tensor of type (1, 3). If
A = 0, then the manifold becomes locally symmetric manifold in the sense of Cartan. An n-dimensional
pseudosymmetric manifold is denoted by (PS)n. Pseudosymmetric manifolds have been studied by several
authors such as ([9]-[11], [29], [30], [51], [52]) and many others.
The notion of pseudosymmetric manifolds was generalized by Tamássy and Binh [47] in 1989 and called
weakly symmetric manifolds.

The idea of the generalized Robertson-Walker (GRW) spacetime was introduced by Alı́as et al. [1] in
1995. A GRW spacetime is an n-dimensional Lorentzian manifold M, that is, M = −I × f 2M∗, where I is an
open interval of the real line R, M∗, a Riemannian submanifold of dimension (n − 1) and f (> 0), a smooth
warping function (or scale factor). In [41], it is observed that the GRW spacetimes have applications in
inhomogeneous spacetimes admitting an isotropic radiation. An n-dimensional Lorentzian manifold M
with the metric (in local shape)

ds2 = 1αβdxαdxβ = −(dt)2 + f (t)21∗αβdxαdxβ,

where 1∗αβ = 1∗αβ(x
γ) are functions of xγ only (α, β, γ = 2, 3, . . ., n) and f , the warping function of t only, is

known as GRW spacetime. In particular, if 1∗αβ has dimension 3 and constant curvature, then the spacetime
converts into the RW spacetime. For instance, we refer ([2], [16], [19], [32], [33] and [41]).

Lorentzian manifolds with a non-vanishing Ricci tensor S are known as the perfect fluid spacetimes if

S = a1 + bA ⊗ A, (1)

where a and b are scalar fields and 1(ρ, ρ) = −1. O’Neill [40] in his book listed that a Robertson-Walker
spacetime is a perfect fluid spacetime. It is also noticed that a GRW spacetime (for n = 4) is a perfect fluid if
and only if it is RW spacetime. If the energy-matter content of spacetime is a perfect fluid with fluid velocity
ρ, then the Einstein’s field equations reflect that the Ricci tensor assumes the form (1) and the scalars a and
b are linearly related to the pressure p and the energy density µ measured in the locally comoving inertial
frame [33].

It is well known that the conformal curvature tensor is invariant under conformal transformation and
projective curvature tensor is invariant under projective transformation. In a Riemannian or Lorentzian
manifold of dimension n, the conformal curvature tensorC and the projective curvature tensorP are defined
as follows:

C(U,V)Z = R(U,V)Z −
1

n − 2
[S(V,Z)U − S(U,Z)V + 1(V,Z)QU

−1(U,Z)QV] +
r

(n − 1)(n − 2)
[1(V,Z)U − 1(U,Z)V] (2)

and P(U,V)Z = R(U,V)Z −
1

n − 1
[S(V,Z)U − S(U,Z)V], (3)

where R is the Riemannian curvature tensor of type (1, 3), the Ricci operator Q is defined by 1(QU,V) =
S(U,V), and r denotes the scalar curvature.
Conformal curvature tensor and projective curvature tensor play an important role in the differential
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geometry as well as in the theory of relativity. In this paper, we introduce a new tensor namedH-tensor of
type (1, 3) which is a linear combination of conformal and projective curvature tensors and defined by

H(U,V)Z = aC(U,V)Z + [a + (n − 2)b]P(U,V)Z, (4)

where a and b are real numbers (not simultaneously zero). If a = 1 and b = − 1
n−2 , then H ≡ C, also if

a = 0 and b = 1
n−2 , then H ≡ P. Since the conformal curvature tensor vanishes for n = 3, we consider the

dimension of the manifold n > 3.
A non-flat Lorentzian manifold (Mn, 1) (n > 3) is said to be pseudo H-symmetric if the H-tensor of type
(0, 4) satisfies the condition

(∇UH)(V,Z,W,X) = 2A(U)H(V,Z,W,X) + A(V)H(U,Z,W,X)
+A(Z)H(V,U,W,X) + A(W)H(V,Z,U,X) + A(X)H(V,Z,W,U), (5)

where A is a non-zero 1-form, ρ is a vector field defined by 1(U, ρ) = A(U) for all U, and H(V,Z,W,X) =
1(H(V,Z)W,X). The 1-form A is called the associated 1-form of the manifold. Such a manifold is denoted
by (PHS)n. This manifold includes pseudo-conformally symmetric manifolds [20] or conformally quasi-
recurrent manifolds ([34], [43]) and pseudo projective symmetric manifolds [13].

The notion of Codazzi type of Ricci tensor S was introduced by Gray [26]. A Lorentzian manifold is
said to satisfy Codazzi type of Ricci tensor if S satisfies the condition

(∇US)(V,Z) = (∇VS)(U,Z),

which implies that divR = 0, that is, the manifold possesses the harmonic curvature, where ‘div’ denotes
divergence. A Riemannian connection is a solution of the Yang-Mills equations on the tangent bundle if and
only if the Riemannian manifold possesses a harmonic curvature [6]. The another reason for this study on
the metric with harmonic curvature, that is, div R = 0 is the fact that a Riemannian manifold has harmonic
curvature if and only if the Riemannian connection is a solution of the Yang-Mills equations on the tangent
bundle [6]. Let M be an n-dimensional differentiable manifold and TpM is the tangent space at each point
p of M. If there exists an endomorphism F at each point of the tangent space TpM such that

F2 = I,

then we say that the tensor F of type (1, 1) gives an almost product structure to the manifold M and we call
the manifold an almost product manifold [49].
General relativity governs by the Einstein equations and the energy-momentum tensor T is of vanishing
divergence. This shows that the energy-momentum tensor to be covariantly constant, that is, ∇T = 0.
To find the nature of spacetimes, the energy-momentum tensor plays an important role. In the general
theory of relativity, the energy-momentum tensor plays an important role and the condition on energy-
momentum tensor for a perfect fluid spacetime changes the nature of spacetime [46]. In [12], Chaki and
Ray studied general relativistic spacetime with covariant constant energy-momentum tensor. Recently, De
and Velimirović [22] studied spacetimes with semisymmetric energy momentum tensor.

The spacetime of general relativity and cosmology is regarded as a connected 4-dimensional semi-
Riemannian manifold (M4, 1) equipped with a Lorentzian metric 1 of signature (−,+,+,+). The geometry of
Lorentzian manifold starts with the study of causal character of vectors of the manifold. For this causality,
the Lorentzian manifold becomes a convenient choice for the study of general theory of relativity. Indeed,
by basing its study on Lorentzian manifold the general theory of relativity opens the way to the study of
global questions about it ([5], [14], [15], [18], [25], [27], [28]). Also, several authors studied spacetimes in
different way such as ([21]-[24], [38], [50]) and many others.

Einstein’s field equation without cosmological constant is given by

S(U,V) −
r
2
1(U,V) = κT(U,V), (6)
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where κ is the gravitational constant. From (6), we can say that the geometry of spacetimes is determined
by matter and conversely, and the motion of the matter is evaluated by the metric tensor of non-flat space.
In general relativity, the matter content of the spacetime is described by the energy momentum tensor.
The matter content is assumed to be fluid having density and pressure and possessing dynamical and
kinematical quantities like velocity, acceleration, vorticity, shear and expansion.
The energy momentum tensor T of type (0, 2), in a perfect fluid spacetime, takes the form [40]:

T(U,V) = p1(U,V) + (σ + p)A(U)A(V), (7)

where p and σ are the isotropic pressure and the energy density, respectively. Here ρ denotes the velocity
vector field, which is metrically equivalent to the non-zero 1-form A such that 1(ρ, ρ) = −1, that is, ρ is a
unit time-like vector field. The fluid is called perfect because of the absence of heat conduction terms and
stress terms corresponding to viscosity [27]. A perfect fluid spacetime is called isentropic if p = σ [27].

Recently, De et al. [22] studied spacetimes with semisymmetric energy momentum tensor. Also in
[30], Mallick, Suh and De studied spacetimes with pseudo-projective curvature tensor. Moreover in [35],
Mantica and Molinari studied weakly Z-symmetric manifolds. Also, several authors studied spacetimes in
different way such as ([21], [22], [36]-[38], [50]) and many others. In [12], Chaki and Ray studied spacetimes
with covariant constant energy momentum tensor. Motivated by the above studies in the present paper we
study pseudoH-symmetric manifolds and its applications to spacetimes.
The present paper is organized as follows:
After introduction, in Section 2 we study some basic geometric properties ofH-curvature tensor. Section 3
is devoted to studyH-flat Lorentzian manifolds. We prove that aH-flat Lorentzian manifold is an almost
product manifold. In Section 4, we study Lorentzian manifolds satisfying divH = 0. Next, we obtain a
necessary and sufficient condition for the vanishing scalar curvature in a (PHS)n. Section 5 deals with the
study of scalar curvature. In section 6, we study Einstein (PHS)n and prove that if an Einstein (PHS)n
is a (PS)n, then the scalar curvature of the manifold vanishes and conversely. Moreover in Section 7, we
characterize pseudo H-symmetric spacetimes and spacetimes with divergence free H-tensor and obtain
several interesting results. Finally, we construct an example of (PHS)4.

2. Preliminaries

We derive some basic formulas of (PHS)n, which will be useful to find our results. Let {ei} be an
orthonormal basis of the tangent space at each point of the manifold, where 1 ≤ i ≤ n. We define the Ricci
tensor and scalar curvature in a Lorentzian manifold as S(U,V) =

∑n
i=1 εi1(QU,V) and r =

∑n
i=1 εiS(ei, ei),

where εi = 1(ei, ei) = ±1.
Then from (2) and (3) we have the following:

n∑
i=1

εiC(U, ei, ei,V) = 0 =

n∑
i=1

εiC(U,V, ei, ei). (8)

n∑
i=1

εiC(ei,U,V, ei) =

n∑
i=1

εiC(ei, ei,U,V) = 0, (9)

n∑
i=1

εiP(ei,U,V, ei) = 0, (10)

and

n∑
i=1

εiP(U, ei, ei,V) =
n

n − 1
[S(U,V) −

r
n
1(U,V)] = P̄(U,V)(say). (11)
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Using the curvature properties of the conformal curvature tensor and projective curvature tensor from (4)
we can easily verify that the tensorH satisfies the following properties:

i) H(U,V)W = −H(V,U)W,
ii) H(U,V)W +H(V,W)U +H(W,U)V = 0. (12)

Also using (8)-(11) from (4) we have

n∑
i=1

εiH(U,V, ei, ei) = 0 =

n∑
i=1

εiH(ei, ei,U,V),

n∑
i=1

εiH(ei,V,W, ei) = 0,

n∑
i=1

εiH(U, ei, ei,X) =
n

n − 1
{a + (n − 2)b}[S(U,X) −

r
n
1(U,X)]

= {a + (n − 2)b}P̄(U,X).

From (4) and (12) it follows that
(i) H(U,V,W,X) = −H(V,U,W,X),

(ii) H(U,V,W,X) , H(U,V,X,W),

(iii) H(U,V,W,X) , H(W,X,U,V),

(iv) H(U,V,W,X) + H(V,W,U,X) + H(W,U,V,X) = 0

for any vector fields U, V, W and X.

3. H -flat Lorentzian manifolds

A Riemannian or a Lorentzian manifold of dimension n(> 2) is said to be an Einstein manifold if

S(U,V) = λ1(U,V),

where λ is a constant, from which it follows that QU = λU. We first suppose that the manifold is an Einstein
manifold. Then

Q(QU) = λQ(U) = λ2U. (13)

Now, let us consider an endomorphism F at each point of the tangent space TpM such that

F(U) =
1
λ

Q(U). (14)

So, we have

F(F(U)) = F(
1
λ

Q(U)). (15)

Using (14) in (15) we have

F(F(U)) =
1
λ2 Q2U.

Now using (13) we get F2(U) = U, which is an almost product structure. So we conclude that an Einstein
manifold is an almost product manifold. Thus we can state the following:
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Proposition 3.1. Every Einstein manifold of dimension n(> 2) is an almost product manifold.

Let us consider aH-flat Lorentzian manifold. Then from (4) we have

aC(U,V)Z + [a + (n − 2)b]P(U,V)Z = 0,

which implies that the conformal curvature tensor C and projective curvature tensorP are equivalent. This
forces P to have the algebraic symmetries of the tensor C. However, in general it does not, but if it does
then the manifold must be an Einstein. This result was mentioned (without proof) by Barnes [4]. Thus with
the help of Proposition 3.1, we can state the following:

Theorem 3.2. AH-flat Lorentzian manifold (Mn, 1) (n > 3) is an almost product manifold.

4. Lorentzian manifolds with divergence freeH -tensor

We know that

H(U,V)Z = aC(U,V)Z + [a + (n − 2)b]P(U,V)Z,

where a, b ∈ R (set of real numbers). Therefore

(divH)(U,V)Z = a(divC)(U,V)Z + [a + (n − 2)b](divP)(U,V)Z. (16)

Also it is known that [48]

(divC)(U,V)Z =
n − 3
n − 2

[{(∇US)(V,Z) − (∇VS)(U,Z)} −
1

2(n − 1)
{dr(U)1(V,Z) − dr(V)1(U,Z)}], (17)

and

(divP)(U,V)Z =
n − 2
n − 1

{(∇US)(V,Z) − (∇VS)(U,Z)}. (18)

Using (17) and (18) in (16) we have

(divH)(U,V)Z = a
n − 3
n − 2

[{(∇US)(V,Z) − (∇VS)(U,Z)} −
1

2(n − 1)
{dr(U)1(V,Z) − dr(V)1(U,Z)}]

+[a + (n − 2)b]
n − 2
n − 1

{(∇US)(V,Z) − (∇VS)(U,Z)}.

It follows that

(divH)(U,V)Z = {a
n − 3
n − 2

+ [a + (n − 2)b]
n − 2
n − 1

}{(∇US)(V,Z) − (∇VS)(U,Z)}

−
a

2(n − 1)
n − 3
n − 2

{dr(U)1(V,Z) − dr(V)1(U,Z)}. (19)

Suppose that (divH)(U,V)Z = 0. Then from the above equation we infer that

{a
n − 3
n − 2

+ [a + (n − 2)b]
n − 2
n − 1

}{(∇US)(V,Z) − (∇VS)(U,Z)}

−
a

2(n − 1)
n − 3
n − 2

{dr(U)1(V,Z) − dr(V)1(U,Z)} = 0. (20)

Taking a frame field and contracting V and Z in (20) we get n−2
n−1 [a + (n − 2)b]dr(U) = 0. Therefore dr(U) = 0

for all vector field U provided a + (n − 2)b , 0. Thus we can conclude the following:

Theorem 4.1. In a Lorentzian manifold (Mn, 1) (n > 3) with divergence freeH-curvature tensor, the scalar curvature
r is constant, provided a + (n − 2)b , 0.
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Using r = constant and (divH)(U,V)Z = 0 in (19) yields [a(2n2
−8n+7)+b(n−2)3]{(∇US)(V,Z)−(∇VS)(U,Z)} =

0, that is, either

a(2n2
− 8n + 7) + b(n − 2)3 = 0 (21)

or the Ricci tensor is of Codazzi type. Thus we are in position to state the following:

Corollary 4.2. If a Lorentzian manifold (Mn, 1) (n > 3) possesses the divergence freeH-curvature tensor, then either
the Ricci tensor S of Mn is of Codazzi type or a and b are linearly dependent.

Now, let us suppose that a Lorentzian manifold (Mn, 1) (n > 3) possesses the constant scalar curvature and
a, b satisfy the equation (21). Thus we have b = −

a(2n2
−8n+7)

(n−2)2 . Substituting this value in (19), we conclude that
divH = 0. Thus we can state the following:

Corollary 4.3. If the scalar curvature of a Lorentzian manifold (Mn, 1) (n > 3) is constant and a(2n2
− 8n + 7) +

b(n − 2)3 = 0, then Mn possesses the divergence freeH-curvature tensor.

Since a Lorentzian manifold with divergence freeH-curvature tensor and a(2n2
− 8n + 7) + b(n− 2)3 , 0

possesses the Codazzi type of Ricci tensor, therefore from (17) we infer divC = 0. Hence we can state:

Corollary 4.4. If an n-dimensional Lorentzian manifold with n > 3 possesses a divergence freeH-curvature tensor,
then divC = 0 provided a(2n2

− 8n + 7) + b(n − 2)3 , 0.

5. Nature of the scalar curvature of a (PHS)n (n > 3)

In this section we consider pseudo H-symmetric manifolds (PHS)n. Then the H-tensor satisfies the
equation (5). Taking a frame field and contracting W and Z in (5) we yield

[a + (n − 2)b](∇UP̄)(V,X) = 2[a + (n − 2)b]A(U)P̄(V,X)
+[a + (n − 2)b]A(V)P̄(U,X) + H(V,U, ρ,X)
+[a + (n − 2)b]A(X)P̄(V,U) + H(V, ρ,U,X). (22)

Again contracting V and X in (22) we get [a + (n − 2)b]P̄(U, ρ) = 0. It follows that

P̄(U, ρ) = 0, (23)

provided [a + (n − 2)b] , 0. Using (11) in (23) we get nS(U, ρ) − r1(U, ρ) = 0. Therefore

S(U, ρ) =
r
n
1(U, ρ). (24)

Thus we can state the following:

Theorem 5.1. In a (PHS)n(n > 3) with a + (n − 2)b , 0, r
n is an eigenvalue of the Ricci tensor S corresponding to

the eigenvector ρ.

6. Einstein (PHS)n (n > 3)

This section deals with an Einstein (PHS)n. Then the Ricci tensor satisfies

S(U,V) =
r
n
1(U,V), (25)

from which it follows that

dr(U) = 0 and (∇ZS)(U,V) = 0 (26)
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for all vector fields U, V, Z. Again from (4) we have

(∇UH)(V,Z,W,X) = a(∇UC)(V,Z,W,X) + [a + (n − 2)b](∇UP)(V,Z,W,X). (27)

Making use of (2) and (3) in (27) and in view of (26) and (27) we have

(∇UH)(V,Z,W,X) = [2a + (n − 2)b](∇UR)(V,Z,W,X). (28)

Again from (25) we get

C(V,Z,W,X) = P(V,Z,W,X) (29)

for all V, Z, W and X. Thus using (28) and (29) in (5) we obtain

[2a + (n − 2)b](∇UR)(V,Z,W,X) = [2a + (n − 2)b][2A(U)P(V,Z,W,X) + A(V)P(U,Z,W,X)
+A(Z)P(V,U,W,X) + A(W)P(V,Z,U,X) + A(X)P(V,Z,W,U)].

This shows that either 2a + (n − 2)b = 0 or (∇UR)(V,Z,W,X) = 2A(U)P(V,Z,W,X) + A(V)P(U,Z,W,X) +
A(Z)P(V,U,W,X) + A(W)P(V,Z,U,X) + A(X)P(V,Z,W,U). If possible, we suppose that 2a + (n − 2)b = 0 =⇒
a + (n − 2)b = −a. Using this result and (29) in (4) , we obtainH = 0. Thus 2a + (n − 2)b , 0 and

(∇UR)(V,Z,W,X) = 2A(U)P(V,Z,W,X) + A(V)P(U,Z,W,X)
+A(Z)P(V,U,W,X) + A(W)P(V,Z,U,X) + A(X)P(V,Z,W,U). (30)

Using (3) in (30) we obtain

(∇UR)(V,Z,W,X) = 2A(U)[R(V,Z,W,X) −
r

n − 1
{1(Z,W)1(V,X) − 1(V,W)1(Z,X)}]

+A(V)[R(U,Z,W,X) −
r

n − 1
{1(Z,W)1(U,X) − 1(U,W)1(Z,X)}] + A(Z)[R(V,U,W,X)

−
r

n − 1
{1(U,W)1(V,X) − 1(V,W)1(U,X)}] + A(W)[R(V,Z,U,X) −

r
n − 1

{1(Z,U)1(V,X)

−1(V,U)1(Z,X)}] + A(X)[R(V,Z,W,U) −
r

n − 1
{1(Z,W)1(V,U) − 1(V,W)1(Z,U)}]. (31)

Now if the Einstein (PHS)n is a (PS)n with the same associated 1-form A, then from the above equation we
get either r = 0 or,

2A(U){1(Z,W)1(V,X) − 1(V,W)1(Z,X)} + A(V){1(Z,W)1(U,X) − 1(U,W)1(Z,X)}
+A(Z){1(U,W)1(V,X) − 1(V,W)1(U,X)} + A(W){1(Z,U)1(V,X) − 1(V,U)1(Z,X)}
+A(X){1(Z,W)1(V,U) − 1(V,W)1(Z,U)} = 0. (32)

Contracting V and X in (32) we get

2(n + 1)A(U)1(Z,W) + (n − 2)A(Z)1(U,W) + (n − 2)A(W)1(U,Z) = 0. (33)

Again contracting U and W in (33) we have n(n + 1)A(Z) = 0. Then it follows that A(Z) = 0 for all U, which
is a contradiction. Therefore the only possibility is r = 0. Thus we conclude the following:

Theorem 6.1. If an Einstein (PHS)n (n > 3) is a (PS)n, then the scalar curvature of the manifold vanishes.

Again in an Einstein (PHS)n if r = 0, then from (31) it follows that (∇UR)(V,Z,W,X) = 2A(U)R(V,Z,W,X) +
A(V)R(U,Z,W,X) + A(Z)R(V,U,W,X) + A(W)R(V,Z,U,X) + A(X)R(V,Z,W,U). Hence we can state the fol-
lowing:

Theorem 6.2. If in an Einstein (PHS)n(n > 3) with 2a + (n − 2)b , 0 the scalar curvature vanishes, then the
manifold is a (PS)n.
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7. PseudoH -symmetric perfect fluid spacetimes

Now we suppose that the matter distribution is a perfect fluid. Therefore, the energy momentum tensor
T of type (0, 2) satisfies the equation (7). Hence from the Einstein’s field equation and (7), we get

S(U,V) −
r
2
1(U,V) = κ[p1(U,V) + (σ + p)A(U)A(V)]. (34)

Contracting U and V in the above equation we have

(2 − n)r
2

= κ[(n − 1)p − σ]. (35)

Replacing V by ρ in (34) and using (24) we obtain

(2 − n)r
2

= −κσ. (36)

Equations (35) and (36) yield

σ + p = 0, (37)

which is of the form p = p(σ). In [45] Shepley and Taub studied a perfect fluid spacetime in dimension
n = 4, with equation of state p = p(σ) and the additional condition that the conformal curvature tensor has
null divergence. They proved that the metric is Robertson-Walker, the flow is irrotational, shear-free, and
geodesic. We assume that the pseudo H-symmetric spacetimes satisfies divH = 0. Then from Corollary
4.4 we get divC = 0. Thus from (37) and the above results of Shepley and Taub we can state the following:

Theorem 7.1. A 4-dimensional pseudo H-symmetric perfect fluid spacetime with divergence free H-curvature
tensor obeying Einstein’s field equations is a Robertson-Walker spacetime. Also the flow is irrotational, shear free,
and geodesic, provided a(2n2

− 8n + 7) + b(n − 2)3 , 0.

Remark 7.2. In a pseudoH-symmetric perfect fluid spacetime, we get σ = −p, that is, p = p(σ). Hence we conclude
that the fluid is isentropic [27].

Remark 7.3. From (37), it is noticed that a 4-dimensional pseudo H-symmetric perfect fluid spacetime satisfying
Einstein’s field equations represents dark matter.

Remark 7.4. The dark energy is usually described by an equation of state parameterω =
p
σ . In a pseudoH-symmetric

perfect fluid spacetime, the equation of state parameter ω =
p
σ = −1. Therefore the model describes the equation in

the Phantom barrier. In 2003, on the basis of the observation data, Caldwell et al. [7] noted that the equation of state
parameter ω has very narrow range around ω = −1 with more like hood to the side of ω < −1. So, he argued that this
possibility could not be ignored for the dark energy fluid.

Now we consider spacetimes with divH = 0 and the additional condition that a and b are linearly dependent.
Then from Corollary 4.2 it follows that the Ricci tensor is of Codazzi type. In [44] Ray proved the following:

Theorem 7.5. If the Ricci tensor of the perfect fluid spacetime is of Codazzi type, then the velocity vector field U of
the fluid is hypersurface orthogonal and energy density is constant over a hypersurface orthogonal to U. Further the
fluid has vanishing vorticity and vanishing shear.

It has been proved by Barnes [3], if a perfect fluid spacetime is vorticity free and shear-free and velocity
vector field U of the fluid is hypersurface orthogonal and energy density is constant over a hypersurface
orthogonal to U, then the possible local cosmological structure of the spacetime are of Petrov type I, D or
O (conformally flat). Thus we can state the following:

Theorem 7.6. If the H-curvature tensor is divergence free in a perfect fluid spacetime with a and b are linearly
dependent, then the possible local cosmological structures of the spacetime are of Petrov type I, D or O (conformally
flat).

Remark 7.7. Mantica et al. [39] proved that an n-dimensional GRW spacetime satisfying divC = 0 if and only if
the spacetime is a perfect fluid. This result with Corollary 4.4 tells us that a GRW spacetime with divH = 0 is a
perfect fluid spacetime, provided a(2n2

− 8n + 7) + b(n − 2)3 , 0.
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8. Example of a (PHS)4

We construct an example of a pseudo H-symmetric spacetime whose metric is taken from the paper
[31].
We consider a Lorentzian manifold (M4, 1) equipped with the Lorentzian metric 1 given by

ds2 = 1i jdxidx j = −(dx4)2 + (x2)2(dx3)2 + (x1)2(dx2)2 + (dx1)2, ∀ i, j = 1, 2, 3, 4.

With the help of above equation, we can easily find the non-zero components of the curvature tensor,
Christoffel symbols, and the Ricci tensor as

Γ1
22 = −x1, Γ2

33 = −
x2

(x1)2 , Γ2
12 =

1
x1 , Γ3

23 =
1
x2 , R1332 = −

x2

x1 , S12 = −
1

x1x2 .

The non-vanishing components ofH-curvature tensor and its covariant derivatives are given by

H1332 = −[2a + (n − 2)b]
x2

x1 , H1332,1 = [2a + (n − 2)b]
2x2

(x1)2 , H1332,2 = −[2a + (n − 2)b]
1
x1 .

Let

Ai(x) =


−

2
3x1 , for i=1

1
3x2 , for i=2

0, otherwise

at any point x ∈M4 denote the 1-form. From (5) we have

H1332,1 = 2A1H1332 + A1H1332 + A3H1132 + A3H1312 + A2H1331 (38)

and

P1332,2 = 2A2P1332 + A1P2332 + A3P1232 + A3P1322 + A2P1332 (39)

We can observed that the equations (38) and (39) are true on M4. Thus, (M4, 1) is a pseudo H-symmetric
spacetime, that is, (PHS)4.

Hence we have

Theorem 8.1. A 4-dimensional Lorentzian manifold (R4, 1) with a Lorentzian metric 1 defined by

ds2 = 1i jdxidx j = −(dx4)2 + (x2)2(dx3)2 + (x1)2(dx2)2 + (dx1)2,

is a pseudoH-symmetric spacetime.

Acknowledgement
The authors express their sincere thanks to the Editor and anonymous referees for their valuable com-

ments in the improvement of the paper. The second author is supported by Grant Project No. NRF-2018-
R1D1A1B-05040381 from National Research Foundation of Korea.

References

[1] L. Alı́as, A. Romero, M. Sánchez, Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized
Robertson-Walker spacetimes, Gen. Relativ. Gravit. 27 (1995) 71–84.

[2] K. Arslan, R. Deszcz, R. Ezentas, M. Hotloś, C. Murathan, On generalized Robertson–Walker spacetimes satisfying some curvature
condition, Turk J Math. 38 (2014) 353–373.

[3] A. Barnes, On shear-free normal flows of a perfect fluid, Gen Relativ Gravit. 4 (1973) 105–129.



U. C. De et al. / Filomat 34:10 (2020), 3287–3297 3297

[4] A. Barnes, Projective collineations in Einstein spaces, Class. Quantum Grav. 10 (1999) 1139–1145.
[5] J. K. Beem, P. E. Ehrlich, Global Lorentzian Geometry, Marcel Dekker, New York, 1981.
[6] J. P. Bourguignon, Harmonic curvature for gravitational and Yang-Mills fields, Lecture Notes in Mathematics 949, 35–47 Berlin:

Springer-Verlag, 1982.
[7] R. W. Caldwell, M. Kaminonkowski, N. N. Weinberg, Phantom energy and cosmic doomsday, arxiv:astro-ph/0302506v1, 2003.
[8] M. C. Chaki, On pseudosymmetric manifolds, Ann St Univ, Al I Cuza Iasi 33 (1987) 53–58.
[9] M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulg J Phys 15 (1988) 525–531.

[10] M. C. Chaki, U. C. De, On pseudosymmetric spaces, Acta Math Hung 53 (1989) 185–190.
[11] M. C. Chaki, T. Kawaguchi, On almost pseudo Ricci symmetric manifolds, Tensor N. S. 68 (2007) 10–14.
[12] M. C. Chaki, S. Ray, Spacetimes with covariant-constant energy-momentum tensor, Int J Theo Phys 35 (1996) 1027–1032.
[13] M. C. Chaki, S. K. Saha, On pseudo projective Ricci symmetric manifolds, Bulg J Phys 21 (1994) 1–7.
[14] S. K. Chaubey, U. C. De, Lorentzian para-Sasakian manifolds admitting a new type of quarter-symmetric non-metric ξ-connection,

International Electronic Journal of Geometry 12 (2) (2019) 266–275.
[15] S. K. Chaubey, U. C. De, Characterization of the Lorentzian para-Sasakian manifolds admitting a quarter-symmetric non-metric

connection, SUT Journal of Mathematics 55 (1) (2019) 53–67.
[16] S. K. Chaubey, Generalized Robertson-Walker space-times with W1-curvature tensor, J. Phys. Math. 10 (2) (2019) 1000303.
[17] S. S. Chern, What is geometry?, American Math Monthly 97 (1990) 679–686.
[18] C. J. S. Clarke, Singularities, Global and local aspects in Topological Properties and Global structure of spacetime, Edited by PG

Bergmann and V de Sabbata, Plenum Press, New York, 1986.
[19] C. D. Collinson, Proper affine collineation in Robertson–Walker spacetimes, J. Math. Phys. 29 (1988) 1972–1973.
[20] U. C. De, H. A. Biswas, On pseudo-conformally symmetric manifolds, Bull Cal Math Soc. 85 (1993) 479–486.
[21] U. C. De, S. Mallick, Spacetimes admitting W2-curvature tensor, Int J Geom Methods Mod Phys. 11 (2014) 1450030.
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