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Abstract. In this paper, we consider Moore-Penrose invertible, group invertible, and core invertible
elements in rings with involution to characterize EP, generalized normal, generalized Hermitian elements
and generalized partial isometries. As a consequence, we obtain new characterizations for elements in
rings with involution to be normal and Hermitian elements.

1. Introduction

Throughout this paper, R will be a unital ring with involution, that is, a ring with unity 1 and an
involution a 7→ a∗ satisfying (a∗)∗ = a, (ab)∗ = b∗a∗ and (a + b)∗ = a∗ + b∗. We will also use the following
notations: aR = {ax | x ∈ R}, Ra = {xa | x ∈ R}, ◦a = {x ∈ R | xa = 0}, a◦ = {x ∈ R | ax = 0} and [a, b] = ab − ba.

An element a ∈ R will be called generalized normal [13] if there exists n ∈ N such that ana∗ = a∗an. An
element a ∈ R will be called generalized Hermitian if there exists n ∈N such that an = (a∗)n. These notions are
generalizations of the notions of normal elements (aa∗ = a∗a) and Hermitian elements (a∗ = a), respectively.

Let a ∈ R (R is not necessary to be a ring with involution). Then a is group invertible if there exists b ∈ R
such that

aba = a, bab = b, ab = ba.

The element b is called a group inverse of a, it is unique (if exists) and denoted by a#. We will use R# to denote
the set of all group invertible elements of R.

Lemma 1.1. [7, Lemma 1.4.5] Let b ∈ R and a ∈ R#. If ab = ba, then a#b = ba#.

A Moore-Penrose inverse of a ∈ R is an element b ∈ R satisfying

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba.
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D. Mosić et al. / Filomat 34:10 (2020), 3381–3393 3382

If such an element b exists, it is uniquely determined by these equations and denoted by a† [18]. The set of
all Moore-Penrose invertible elements of R will be denoted by R†.

We now present the definitions of generalized partial isometry and generalized star-dagger element,
which are extensions of partial isometry (a∗ = a†) and star-dagger element (a†a∗ = a∗a†), respectively. Let
a ∈ R†. If there exists n ∈N such that (a∗)n = (a†)n, then a will be called a generalized partial isometry. If there
exists n ∈N such that (a†)na∗ = a∗(a†)n, then a will be called a generalized star-dagger element.

An element ã ∈ R is called a {1, 3}-inverse of a if aãa = a, (aã)∗ = aã. The set of all {1, 3}-invertible elements
of R will be denoted by R{1,3}. Similarly, an element â ∈ R is called a {1, 4}-inverse of a if aâa = a, (âa)∗ = âa.
The set of all {1, 4}-invertible elements of R will be denoted by R{1,4}.

The core inverse for matrices were recently introduced by Baksalary and Trenkler in [3]. Rakić et al.
[19] generalized the core inverse of a complex matrix to the case of an element in a ring with involution: let
a ∈ R, if there exists x ∈ R such that

axa = a, xR = aR and Rx = Ra∗,

then x is called a core inverse of a, and a is called core invertible. It can be proved that this element x is unique
[19] and it will be denoted by a #©. The set of all core invertible elements of R will be denoted by R #©. An
useful equality is that for a ∈ R #©, one has a #©aa #© = a #© ([19, Theorem 2.14]).

Furthermore, in [19], Rakić et al. introduced another generalized inverse (very related with the core
inverse): let a ∈ R, if there exists x ∈ R such that

axa = a, xR = a∗R and Rx = Ra,

then x is called a dual core inverse of a, and a is said to be dual core invertible. Also, this element x is unique
and it will denoted by a #©. The set of all dual core invertible elements of R will be denoted by R #©. The
following trivial relation between the core and dual core inverse permits to prove results of the dual core
inverse using analogous results of the core inverse: If a ∈ R, then a ∈ R #© if and only if a∗ ∈ R #©. In this case,
one has (a #©)∗ = (a∗) #©.

Lemma 1.2. [22, Theorem 2.6 and Theorem 3.1] Let a ∈ R. Then the following conditions are equivalent:

(1) a ∈ R #©.
(2) a ∈ R#

∩ R{1,3}.
(3) There exists x ∈ R such that (ax)∗ = ax, xa2 = a and ax2 = x.

In this case, x = a #© = a#aa(1,3), where a(1,3) is any {1, 3}-inverse of a.

An element a ∈ R is said to be an EP element if a ∈ R† ∩ R# and a† = a# [11]. The set of all EP elements of
R will be denoted by REP.

Lemma 1.3. [19, Theorem 3.1] Let a ∈ R. Then the following statements are equivalent:

(1) a ∈ REP.
(2) a ∈ R #© and [a, a #©] = 0.
(3) a ∈ R† ∩ R# and a† = a #©.
(4) a ∈ R† ∩ R# and a† = a #©.
(5) a ∈ R #© and a# = a #©.
(6) a ∈ R #© and a# = a #©.

EP, normal and Hermitian matrices, as well as EP, normal and Hermitian linear operators on Banach or
Hilbert spaces have been investigated by many authors [2, 5, 6, 8, 9]. In paper [1], Baksalary et al. used the
representation of complex matrices provided in [10] to explore various classes of matrices, such as partial
isometries, EP and star-dagger elements. Using the setting of rings with involution, EP, normal, Hermitian,
partial isometries and star-dagger elements, which are Moore-Penrose invertible and group invertible, were
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investigated in [12, 14–16, 20]. In [13], the authors introduced and characterized generalized normal and
generalized Hermitian elements in rings with involution.

The objective of the present article is to give new characterizations of EP, generalized normal, generalized
Hermitian elements and generalized partial isometries for elements which are Moore-Penrose invertible,
group invertible or core invertible in rings with involution. Applying these results, we get new equivalent
conditions for elements in rings with involution to be normal and Hermitian elements.

2. EP elements

In this section, we present new necessary and sufficient conditions for an element of a ring with
involution to be EP.

Recall that Patrı́cio and Puystjens [17, Proposition 2] showed, for a ∈ R, a ∈ REP if and only if a ∈ R# and
aR = a∗R if and only if a ∈ R# and Ra = Ra∗. Recently, in [20], the authors proved that the condition aR = a∗R
can be relaxed.

Lemma 2.1. [20, Theorem 3.6] Let a ∈ R. Then the following statements are equivalent:

(1) a ∈ REP.
(2) a ∈ R# and aR ⊆ a∗R.
(3) a ∈ R# and Ra ⊆ Ra∗.
(4) a ∈ R# and a∗R ⊆ aR.
(5) a ∈ R# and Ra∗ ⊆ Ra.

Lemma 2.2. [4, Proposition 8.22] Let a be an element of a ring R. Then a ∈ R# if and only if a2x = a and ya2 = a
both have solutions.

In the following theorem, which is motivated by [5, Theorem 4.2], we study equivalent conditions for a
Moore-Penrose invertible element to be EP.

Theorem 2.3. Let a ∈ R†. Then the following statements are equivalent:

(1) a ∈ REP.
(2) There exists an invertible element u ∈ R such that a∗a = uaa∗.
(3) There exists a left invertible element u ∈ R such that a∗a = uaa∗.
(4) There exist elements p, q ∈ R such that a∗a = paa∗ and qa∗a = aa∗.
(5) There exists an invertible element v ∈ R such that a∗a = aa∗v.
(6) There exists a right invertible element u ∈ R such that a∗a = aa∗v.
(7) There exist elements m,n ∈ R such that a∗a = aa∗m and a∗an = aa∗.

Proof. (1)⇒ (2). Assume that a ∈ REP. We define

r = a∗a(a†)∗a†, s = aa∗a†(a†)∗, p = 1 − aa† = 1 − a†a, u = r + p, v = s + p.

It is simple to prove rp = 0 and ps = 0, which leads to uv = rs + p. Now, use aa† = a†a, a†aa∗ = a∗ and
a∗aa† = a∗ to get

rs = a∗a(a†)∗a†aa∗a†(a†)∗ = a∗a(a†)∗a∗a†(a†)∗ = a∗a(aa†)∗a†(a†)∗ = a∗aa†(a†)∗

= a∗(a†)∗ = a†a = 1 − p.

This computation leads to uv = 1. In a similar way we have vu = 1. Now,

uaa∗ = (r + p)aa∗ = raa∗ = a∗a(a†)∗a†aa∗ = a∗a(a†)∗a∗ = a∗a(aa†)∗ = a∗a(aa†)

= a∗a(a†a) = a∗a.
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(2)⇒ (3) is trivial.
(3)⇒ (4). Let p = u and q = u−1

l , where u−1
l is a left inverse of u.

(4) ⇒ (1). Assume that there exist elements p, q ∈ R such that a∗a = paa∗ and qa∗a = aa∗. Then
a∗aaa† = paa∗aa† = paa∗ = a∗a. Multiplying the last equality by (a†)∗ from the left side, we deduce that
a = a2a†, therefore a ∈ a2R and Ra ⊆ Ra∗.

Since aa∗a†a = qa∗aa†a = qa∗a = aa∗, multiplying the last equality by (a†)∗a† from the left side and by a
from the right side, we deduce that a = (a†)∗a†aa∗a†a2, then a ∈ Ra2. Therefore, a ∈ R# by Lemma 2.2, and
thus a ∈ REP by Lemma 2.1.

The equivalence (1)⇔ (5)⇔ (6)⇔ (7) is similar to what has been proved.

Several equivalent conditions for a core invertible element to be EP are presented in the following result.

Theorem 2.4. Let a ∈ R #©. Then the following statements are equivalent:

(1) a ∈ REP.
(2) There exists an invertible element u ∈ R such that a∗a = uaa∗.
(3) There exists a left invertible element u ∈ R such that a∗a = uaa∗.
(4) There exists an element p ∈ R such that a∗a = paa∗.
(5) There exists an element b ∈ R such that a∗a = ba∗.
(6) There exists an element b1 ∈ R such that a∗a = b1a #©.

Proof. (1)⇒ (2)⇒ (3)⇒ (4) follows from Theorem 2.3.
(4)⇒ (5) is obvious.
(5)⇒ (6). In [19] it was proved aa #© = aa†, hence a∗aa #© = a∗aa† = a∗.
(6) ⇒ (1). Suppose that there exists an element b1 ∈ R such that a∗a = b1a #©. Recall that a #© is an outer

inverse of a, i.e., a #©aa #© = a #© (see [19, Theorem 2.14]). Then

a∗aaa #© = b1a #©aa #© = b1a #© = a∗a. (1)

Also we use (aa #©)∗ = aa #© (Lemma 1.2) and aa #©a = a [19, Theorem 2.14]. Multiplying (1) by (a #©)∗ from the
left side, we deduce that a = a2a #©. Therefore, Ra ⊆ Ra #© = Ra∗, that is, a ∈ REP, because any core invertible
element is group invertible (Lemma 1.2) and Lemma 2.1.

Observe that for a ∈ R one has a ∈ REP
⇔ a∗ ∈ REP (this can be deduced from [17, Proposition 2]).

By employing Theorem 2.4 and the aforementioned relation between the core inverse and the dual core
inverse, we give next result.

Theorem 2.5. Let a ∈ R #©. Then the following statements are equivalent:

(1) a ∈ REP.
(2) There exists an invertible element u ∈ R such that aa∗ = ua∗a.
(3) There exists a left invertible element u ∈ R such that aa∗ = ua∗a.
(4) There exists an element p ∈ R such that aa∗ = pa∗a.
(5) There exists an element b ∈ R such that aa∗ = ba.
(6) There exists an element b2 ∈ R such that aa∗ = a #©b2.

Now, we give characterizations of EP elements through factorizations of the form a = ucv.

Theorem 2.6. Let a ∈ R#. Then the following statements are equivalent:

(1) a ∈ REP.
(2) There exist elements c, d,u, v ∈ R such that a = ucv = v∗d∗u∗, R = Ru and Rc ⊆ Rd.
(3) a ∈ R{1,3} and there exist elements c, d,u, v ∈ R such that a = ucv, a #© = udv, R = Ru and Rc ⊆ Rd.
(4) a ∈ R{1,3} and there exist elements c, d,u, v ∈ R such that a∗a = ucv, aa∗ = udv, R = Ru and Rc ⊆ Rd.
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Proof. (1) ⇒ (2). If a is EP, then, by Lemma 2.1, Ra ⊆ Ra∗. For u = v = 1, c = a and d = a∗, we have that
R = Ru and Rc = Ra ⊆ Ra∗ = Rd.

(2)⇒ (1). Since a = ucv = v∗d∗u∗, for some c, d,u, v ∈ R satisfying R = Ru and Rc ⊆ Rd, we get a∗ = udv
and

a = ucv ∈ Rucv = Rcv ⊆ Rdv = Rudv = Ra∗.

Using Lemma 2.1, we deduce that a is EP.
(1)⇒ (3). It follows by choosing u = v = 1, c = a and d = a #©, by Rc = Ra = Ra2a#

⊆ Ra# = Ra #© = Rd.
(3)⇒ (1). As in the proof of (2)⇒ (1), we conclude that a ∈ Ra #© = Ra∗ and, by Lemma 2.1, (1) is satisfied.
(1)⇒ (4). Set u = v = 1, c = a∗a and d = aa∗.
(4)⇒ (1). By Lemma 1.2, a ∈ R #©. As in the proof of (2)⇒ (1), we get a∗a ∈ Raa∗. By Theorem 2.4, a is

EP.

3. Generalized normal elements

In this section, new characterizations for generalized normal elements in rings with involution are
presented.

First, we state some well-known results.

Lemma 3.1. [13, Lemma 3.1] Let a ∈ R† ∩ R# and n ∈ N. Then ana∗ = a∗an if and only if ana† = a†an and
(a∗)na† = a†(a∗)n.

Lemma 3.2. [13, Lemma 3.2] Let a ∈ R† ∩ R# and n ∈ N. Then ana∗ = a∗an if and only if a ∈ REP and
(a∗)na† = a†(a∗)n.

Definition 3.3. [20, Definition 4.2] Let n ∈N. The element a ∈ R is called n-EP if a ∈ R† and [a†an, ana†] = 0.

Lemma 3.4. [20, Theorem 4.3] Let a ∈ R and n ∈N. Then a ∈ REP if and only if a ∈ R† ∩ R# and a is n-EP.

By Lemma 3.1 and Lemma 3.4, we deduce the following proposition.

Proposition 3.5. Let a ∈ R† ∩ R# and n ∈N. Then ana∗ = a∗an if and only if [ana†, a†an] = 0 and (a∗)na† = a†(a∗)n.

In the following theorem, we give equivalent conditions for both Moore-Penrose invertible and group
invertible elements in rings with involution to be generalized normal elements.

Theorem 3.6. Let a ∈ R† ∩ R#, n ∈ N and p, q ∈ N with p + q = n + 1. Then ana∗ = a∗an if and only if one of the
following equivalent conditions holds:

(1) [(a#)n, a∗a†] = 0.
(2) [(a#)n, a†a∗] = 0.
(3) a†a∗(a#)n = a#(a†)na∗.
(4) a†(a#)na∗ = a#a∗(a†)n.
(5) a∗(a†)na# = (a#)na∗a†.
(6) a∗(a#)na† = (a†)na∗a#.
(7) a†a∗(a#)n = (a#)p(a†)qa∗.
(8) a†a∗(a#)n = (a†)p(a#)qa∗.
(9) a†a∗(a#)n = (a #©)p(a #©)qa∗.

(10) a†a∗(a#)n = (a #©)p(a #©)qa∗.
(11) a†a∗(a#)n = (a†)n+1a∗.
(12) a†a∗(a#)n = (a#)n+1a∗.
(13) a†a∗(a#)n = (a #©)n+1a∗.
(14) a†a∗(a#)n = (a #©)n+1a∗.
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Proof. If ana∗ = a∗an, by Lemma 3.2 and Lemma 1.3, we can easily verify that conditions (1)-(14) hold.
Conversely, we will show that the condition ana∗ = a∗an is satisfied.
(1). The hypothesis [(a#)n, a∗a†] = 0 yields[

(a#)na∗a†
]

an+1a∗(a#)∗ =
[
a∗a†(a#)n

]
an+1a∗(a#)∗ = a∗a†aa∗(a#)∗ = a∗a∗(a#)∗ = a∗.

Thus, a∗R ⊆ a#R = aR and, by Lemma 2.1, we deduce that a ∈ REP, i.e., aa† = a†a (or a† = a#). Therefore,
using [(a#)n, a∗a†] = 0, we get

(a#)na∗a† = a∗a†(a#)n = a∗a#(a#)n = a∗(a#)n+1.

Multiplying the last equality by a from the right side, we obtain

a∗(a#)n = (a#)na∗a†a = (a#)na∗aa† = (a#)na∗,

which implies a∗an = ana∗ by Lemma 1.1.
(3). Suppose that a†a∗(a#)n = a#(a†)na∗. Then

a = an+1(a#)n = an+1[aa†(a#)n] = an+1(a†)∗a∗(a#)n

= an+1(a†)∗(a2a#)∗(a#)n = an+1(a†)∗(a#)∗(aa†a)∗a∗(a#)n

= an+1(a†)∗(a#)∗a∗a[a†a∗(a#)n] = an+1(a†)∗(a#)∗a∗aa#(a†)na∗,

i.e., Ra ⊆ Ra∗, which gives that a ∈ REP, by Lemma 2.1. Hence, we can use a# = a† and aa† = a†a. Employing
the condition (3), we have

(a#)na∗ = a(a#)n+1a∗ = aa†a∗(a#)n = (a2a†)∗(a#)n = a∗(a#)n,

and, by Lemma 1.1, a∗an = ana∗.
(5). Using the assumption a∗(a†)na# = (a#)na∗a†, we get

a∗(a†)∗a†(a#)nan+2 = a†(a#)nan+2 = a†(a#)naan+1 = a†(a#)naa†aan+1

= a†a(a#)na†aan+1 = a†a(a#)na∗(a†)∗an+1

= a†a(a#)n(a#a2)∗(a†)∗an+1 = a†a(a#)na∗a∗(a#)∗(a†)∗an+1

= a†a(a#)na∗(aa†a)∗(a#)∗(a†)∗an+1

= a†a
[
(a#)na∗a†

]
aa∗(a#)∗(a†)∗an+1

= a†aa∗(a†)na#aa∗(a#)∗(a†)∗an+1

=
[
a∗(a†)na#

]
aa∗(a#)∗(a†)∗an+1

= (a#)na∗a†aa∗(a#)∗(a†)∗an+1 = (a#)na∗a∗(a#)∗(a†)∗an+1

= (a#)na∗(a†)∗an+1 = (a#)na†aan+1 = (a#)nan+1 = a.

So, aR ⊆ a∗R and a ∈ REP, by Lemma 2.1. The rest of the proof of (5) is analogous as the proof of (1).
The proofs of conditions (2), (4) and (6) are similar to the proofs of conditions (1), (3) and (5), respectively.

We can verify conditions (7)-(14) in the same way as condition (3).

Necessary and sufficient conditions for core invertible elements to be generalized normal elements are
investigated now.

Theorem 3.7. Let a ∈ R #© and n ∈N. Then the following statements are equivalent:

(1) ana∗ = a∗an.
(2) a is EP and (a∗)na #© = a #©(a∗)n.
(3) ana #© = a #©an and (a∗)na #© = a #©(a∗)n.
(4) ana #©a #©an = a #©anana #© and (a∗)na #© = a #©(a∗)n.
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Proof. Recall that by Lemma 1.2, the element a is group invertible.
(1)⇒ (2). Recall that the definition of the core inverse contains that the core inverse is an inner inverse.

From item (3) of Lemma 1.2 and the equality ana∗ = a∗an, we get

a = (a#)n−1an = (a#)n−1aan−1 = (a#)n−1aa #©aan−1 = (a#)n−1aa #©an

= (a#)n−1(a #©)∗a∗an = (a#)n−1(a #©)∗ana∗.

Hence, Ra ⊆ Ra∗. By Lemma 2.1, we get that a is EP. Applying involution to ana∗ = a∗an, we obtain
a(a∗)n = (a∗)na, which gives, by Lemma 1.1 and Lemma 1.3, (a∗)na #© = a #©(a∗)n.

(2)⇔ (3). It follows by [21, Theorem 3.1].
(3)⇒ (4). This is clear.
(4)⇒ (1). Recall that aa #©a = a. The condition ana #©a #©an = a #©anana #© implies

a2n−1a #© = a#a2na #© = a#aa #©a2na #© = a#aana #©a #©an = ana #©a #©an

= ana #©a #©anaa# = a #©anana #©aa# = a #©a2n−1.

By [21, Theorem 3.4], we conclude that a is EP. Using Lemma 1.3 and Proposition 3.5, we have that
ana∗ = a∗an.

Remark that we can get a similar result as Lemma 3.7 for dual core invertible elements.

Theorem 3.8. Let a ∈ R #©, n ∈ N, and p, q ∈ N with p + q = n + 1. Then ana∗ = a∗an if and only if one of the
following equivalent conditions holds:

(1)
[
(a#)n, a∗a #©

]
= 0.

(2)
[
(a#)n, a #©a∗

]
= 0.

(3) a #©a∗(a#)n = a#(a #©)na∗.
(4) a∗(a #©)na# = (a#)na∗a #©.
(5) a∗(a#)na #© = (a #©)na∗a#.
(6) a #©a∗(a#)n = (a#)p(a #©)qa∗.
(7) a #©a∗(a#)n = (a #©)p(a#)qa∗.
(8) a #©a∗(a#)n = (a #©)n+1a∗.
(9) a #©a∗(a#)n = (a#)n+1a∗.

Proof. The assumption ana∗ = a∗an, by Theorem 3.7, implies that conditions (1)-(9) are satisfied.
Assume that the condition (1) holds. By using a #©a2 = a, (aa #©)∗ = aa #©, and aa #©a = a, we have

aa#(a#)na∗an+1a #© =
[
(a#)na∗a #©

]
an+2a #© = a∗a #©(a#)nan+2a #©

= a∗a #©a2a #© = a∗aa #© = a∗,

hence a∗R ⊆ aR and, by Lemma 2.1, a ∈ REP. Using Lemma 1.3 and (1), a∗(a#)n+1 = (a#)na∗a#. By multiplying
the last equality by a from the right side, we get a∗(a#)n = (a#)na∗a#a. Recall that a† = a# since a is EP, which
leads to a∗a#a = a∗. Therefore, a∗(a#)n = (a#)na∗, which implies a∗an = ana∗ by Lemma 1.1.

The rest of the proof follows similarly as in the proof of Theorem 3.6.

For n = 1 in Theorem 3.8, we get new characterizations of normal elements in rings with involution.

Corollary 3.9. Let a ∈ R #©. Then aa∗ = a∗a if and only if one of the following equivalent conditions holds:

(1)
[
a#, a∗a #©

]
= 0.

(2)
[
a#, a #©a∗

]
= 0.

(5) a∗a#a #© = a #©a∗a#.
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(6) a #©a∗a# = a#a #©a∗.
(7) a #©a∗a# = a #©a#a∗.
(8) a #©a∗a# = (a #©)2a∗.
(9) a #©a∗a# = (a#)2a∗.

More characterizations for both Moore-Penrose invertible and group invertible element to be normal
element, can be obtained if we let n = 1 in Theorem 3.6.

4. Generalized Hermitian elements

This section will be consisted of several characterizations of generalized Hermitian elements in a ring
with involution.

In the first result of this section, we prove that a group invertible generalized Hermitian element is an
EP element.

Lemma 4.1. Let a ∈ R#. If a is a generalized Hermitian element, then a ∈ REP.

Proof. Since an = (a∗)n, for some n ∈ N, then a = (a#)n−1an = (a#)n−1(a∗)n = (a#)n−1(a∗)n−1a∗, which implies
Ra ⊆ Ra∗. Thus, a ∈ REP by Lemma 2.1.

In the following theorem, we will investigate some equivalent conditions for a group invertible element
to be a generalized Hermitian element.

Theorem 4.2. Let a ∈ R# and m,n ∈ N. Then an = (a∗)n if and only if one of the following equivalent conditions
holds:
(1) an+m = (a∗)nam.
(2) an(a#)m = (a∗)n(a#)m.
(3) an(a#)m = (a#)m(a∗)n.
(4) (a∗)n(a#)n+1 = a#.
(5) (a∗)n+1(a#)n = a∗.

Proof. If an = (a∗)n, then the conditions (1)–(4) are obviously true, and by Lemma 4.1, a# = a†. Hence
(a∗)n+1(a#)n = a∗(a∗)n(a#)n = a∗an(a#)n = a∗aa# = a∗aa† = a∗, thus the condition (5) holds.

On the other hand, we will show that the condition an = (a∗)n holds when a satisfies one of the conditions
(1)–(5).

(1). Multiplying the equality an+m = (a∗)nam by (a#)n+m−1 from the right side, we get a = (a∗)nam(a#)n+m−1
∈

a∗R. By Lemma 2.1, a ∈ REP and, by Lemma 1.3, a# = a #©. Therefore,

an = an+m(a#)m = (a∗)nam(a#)m = (a∗)naa# = (a∗)naa #© = (a∗)n.

(2). If we multiply an(a#)m = (a∗)n(a#)m by a2m from the right side, we observe that (1) is satisfied.
(3). The hypothesis an(a#)m = (a#)m(a∗)n gives

a = (a#)n−1an = (a#)n−1am(an(a#)m) = (a#)n−1am(a#)m(a∗)n
∈ Ra∗,

that is, a is EP. So, a† = a#, and

an = am(an(a#)m) = am(a#)m(a∗)n = a#a(a∗)n = a†aa∗(a∗)n−1 = (a∗)n.

(4). Multiplying (a∗)n(a#)n+1 = a# by an+m+1 from the right side, we obtain that (1) holds.
(5). Applying involution to (a∗)n+1(a#)n = a∗, we have that a =

[
(a#)n
]∗

an+1 = a∗[(a#)n+1]∗an+1
∈ a∗R. Hence,

a is EP and then a∗ ∈ Ra, which implies a∗aa# = a∗. Now, multiplying (a∗)n+1(a#)n = a∗ by an from the right
side, we get (a∗)n+1a#a = a∗an, therefore, (a∗)n+1 = a∗an. Now,

an = aa†an = (a†)∗a∗an = (a†)∗(a∗)n+1 = (an+1a†)∗ = (an+1a#)∗ = (an)∗ = (a∗)n.
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If we suppose that n = 1 in Theorem 4.2, we obtain next characterizations for a group invertible element to
be Hermitian.

Corollary 4.3. Let a ∈ R# and m ∈N. Then a = a∗ if and only if one of the following equivalent conditions holds:
(1) am+1 = a∗am.
(2) a(a#)m = a∗(a#)m.
(3) a(a#)m = (a#)ma∗.
(4) a∗(a#)2 = a#.
(5) (a∗)2a# = a∗.

Remark that characterizations (1), (2), (4) and (5) of Corollary 4.3 recover corresponding conditions in
[21, Theorem 4.2], where a ∈ R #©.

Further, necessary and sufficient conditions for a core invertible element to be a generalized Hermitian
element are given.

Proposition 4.4. Let a ∈ R #© and m,n ∈N. Then an = (a∗)n if and only if one of the following equivalent conditions
holds:
(1) anaa #© = (a∗)n.
(2) an(a #©)m = (a∗)n(a #©)m.
(3) an(a#)m = (a∗)n(a #©)m.
(4) an(a#)m = (a #©)m(a∗)n.
(5) an(a #©)m = (a #©)m(a∗)n.
(6) (a∗)na #©(a#)n = a#.
(7) (a∗)n(a #©)n+1 = a #©.
(8) (a∗)n(a #©)n+1 = a#.
(9) (a #©)n(a∗)n+1 = a∗.

(10) (a∗)na #©(a#)n = a #©.
(11) a #©(a∗)n(a#)n = a #©.
(12) a(a∗)na #© = an.

Proof. We will only prove that condition (1) implies an = (a∗)n. The rest follows similarly as in the proof of
Theorem 4.2.

(1). Applying the involution to anaa #© = (a∗)n, we have aa #©(a∗)n = an, implying an = aa #©(a∗)n = aa #©(anaa #©) =
anaa #© = (a∗)n.

As a consequence of Proposition 4.4, we get equivalent conditions for core invertible elements to be
Hermitian. Observe that conditions (1), (2), (6), (8), (10) and (12) of the next result appeared in [21, Theorem
4.2].

Corollary 4.5. Let a ∈ R #© and m ∈N. Then a is Hermitian if and only if one of the following equivalent conditions
holds:
(1) a2a #© = a∗.
(2) a(a #©)m = a∗(a #©)m.
(3) a(a#)m = a∗(a #©)m.
(4) a(a#)m = (a #©)ma∗.
(5) a(a #©)m = (a #©)ma∗.
(6) a∗a #©a# = a#.
(7) a∗(a #©)2 = a #©.
(8) a∗(a #©)2 = a#.
(9) a #©(a∗)2 = a∗.

(10) a∗a #©a# = a #©.
(11) a #©a∗a# = a #©.
(12) aa∗a #© = a.
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5. Generalized partial isometries and EP elements

We will study generalized partial isometries and EP elements in this section.

Proposition 5.1. Let a ∈ R† ∩ R#. If a is generalized partial isometry, then a ∈ REP if and only if a is generalized
normal element.

Proof. Suppose that a is generalized partial isometry and a ∈ REP, then a(a∗)n = a(a†)n = a(a#)n = (a#)na =
(a†)na = (a∗)na, for some n ∈ N. Applying involution to the above equality, we conclude that a is a
generalized normal element.

The converse follows by Lemma 3.2.

Motivated by [15, Theorem 2.4], more equivalent conditions such that a ∈ R†∩R# to be both generalized
partial isometry and EP element are presented in the following theorem. For n = 1 and/or m = 1, we recover
some conditions of [14, Theorem 2.3] and [15, Theorem 2.2].

Theorem 5.2. Let a ∈ R† ∩ R# and m,n ∈ N. Then (a∗)n = (a†)n and a ∈ REP if and only if one of the following
equivalent conditions holds:

(1) am(a∗)n = (a†)nam.
(2) (a∗)nam = am(a†)n.
(3) (a∗)na† = a†(a#)n (or (a∗)na† = (a#)na†).
(4) a†(a∗)n = (a#)na† (or a†(a∗)n = a†(a#)n).
(5) (a∗)nan+m = am.
(6) an+m(a∗)n = am.
(7) (a†)n = a(a∗)na†.
(8) (a†)n = aa†(a∗)n.

Proof. If (a∗)n = (a†)n and a ∈ REP, we easily show that conditions (1)–(8) are satisfied.
Conversely, we will verify that (a∗)n = (a†)n and a ∈ REP. In the foregoing, we shall use a† ∈ a∗R ∩ Ra∗.
(1). Using the assumption am(a∗)n = (a†)nam, we get

a = an(a#)n−1 = [(a∗)n]∗(a#)n−1 = [a†a(a∗)n]∗(a#)n−1

= [a†(a#)m−1am(a∗)n]∗(a#)n−1 = [a†(a#)m−1(a†)nam]∗(a#)n−1

= (a∗)m[a†(a#)m−1(a†)n]∗(a#)n−1
∈ a∗R,

which implies that a ∈ REP, by Lemma 2.1. Therefore,

(a∗)n = a†(a#)m−1am(a∗)n = a†(a#)m−1(a†)nam

= (a#)n(a#)mam = (a#)na#a = (a#)n = (a†)n.

(2) is similar to (1).
(3). Suppose that (a∗)na† = a†(a#)n. Then, by

aa† = ana(a#)na† = anaa†a(a#)na† = an+1a†(a#)naa†

= an+1(a∗)na†aa† = an+1(a∗)na† = an+1a†(a#)n

= anaa†(a#)n = an(a#)n = aa#,

we deduce that a = a2a# = a2a† ∈ Ra∗. Hence, a ∈ REP by Lemma 2.1. Now,

(a†)n = (a#)n = (a#)n+1a = a†(a#)na = (a∗)na†a = (a∗)naa† = (a∗)n.

(4) is similar to (3).
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(5). Multiplying (a∗)nan+m = am by (a#)m−1 from the right side, we obtain (a∗)nan+1 = a which yields
aR ⊆ a∗R and so a ∈ REP by Lemma 2.1. Thus,

(a∗)n = (a∗)n−1(aa†a)∗ = (a∗)naa† = (a∗)nan+m(a†)n+m = am(a†)n+m = (a†)n.

(6) is similar to (5).
(7). The hypothesis (a†)n = a(a∗)na† gives

a = aa∗(a†)∗ = a(a∗)n+1[(a#)n]∗(a†)∗ = [a(a∗)na†]aa∗[(a#)n]∗(a†)∗ = (a†)naa∗[(a#)n]∗(a†)∗,

which yields a ∈ a†R, hence aR ⊆ a∗R. So, a ∈ REP and

(a†)n = a†(a#)na = a†[a(a∗)na#]a = (a∗)na#a = (a∗)n.

(8) is similar to (7).

Sufficient conditions for a to be generalized star-dagger are given now. If n = 1, then we recover [14,
Theorem 3.1].

Proposition 5.3. Let a ∈ R† and n ∈N. Then each of the following conditions is sufficient for (a†)na∗ = a∗(a†)n:

(1) a∗ = a∗(a†)n.
(2) a∗ = (a†)na∗.
(3) a† = (a†)n+1.
(4) a∗ = (a†)n+1.
(5) (a†)n = a∗a∗.

Proof. First, we check that (3) implies that (a†)na∗ = a∗(a†)n:

(a†)na∗ = (a†)n+1aa∗ = a†aa∗ = a∗ = (aa†a)∗ = a∗aa† = a∗a(a†)n+1 = a∗(a†)n.

Further, notice that (1)⇒ (3), by a† = a†aa† = a†(a†)∗a∗ = a†(a†)∗a∗(a†)n = (a†)n+1.
(2)⇒ (3) is similar to (1)⇒ (3).
(4) and (5) are trivial.

Remark 5.4. In the proof of the Proposition 5.3 it is shown that (1)⇒ (3). We will prove that (1) is equivalent
to (3). In fact, assume that a† = (a†)n+1 and let b = a†. Now, by using b = bn+1 and b† = a, we have

a∗(a†)n = (b†)∗bn = (b†bb†)∗bn = (b†)∗b†bbn = (b†)∗b†b = (b†)∗ = a∗.

The following example shows that the conditions (1)–(5) of the Proposition 5.3 are not, in general,
equivalent for (a†)na∗ = a∗(a†)n.

Example 5.5. We consider C as a ring whose involution is the identity (notice that C is an Abelian ring).
The condition (z†)nz∗ = z∗(z†)n is satisfied for all z ∈ C.

The unique complex numbers satisfying the condition (1) are {0} ∪ {z ∈ C : zn = 1}, and the same holds
for conditions (2) and (3). We have that z ∈ C satisfies (4) if and only if z ∈ {0} ∪ {z ∈ C : zn+2 = 1}, and the
same holds for condition (5).
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6. Characterizations of (a∗)n = (a #©)n

In the beginning of this section, we observe that if a core invertible element a satisfies (a∗)n = (a #©)n, then
a is EP.

Lemma 6.1. Let a ∈ R #© and n ∈N. If (a∗)n = (a #©)n, then a ∈ REP.

Proof. Multiplying (a∗)n = (a #©)n by an+1 from the right side, we have that (a∗)nan+1 = (a #©)nan+1 = a. Thus,
aR ⊆ a∗R which gives a ∈ REP, by Lemma 2.1.

Next, some necessary and sufficient conditions for an element a in a ring with involution to satisfy
(a∗)n = (a #©)n are presented.

Theorem 6.2. Let a ∈ R #© and m,n ∈N. Then (a∗)n = (a #©)n if and only if one of the following equivalent conditions
holds:

(1) (a∗)nam = (a #©)nam.
(2) (a∗)nam = am(a #©)n.
(3) (a∗)n(a #©)m = (a #©)n+m.
(4) (a∗)nan = aa#.
(5) (a∗)nan+m = am.
(6) (a∗)n(a#)m = (a #©)n(a#)m.
(7) (a∗)nam = am(a#)n.
(8) (a∗)n(a #©)m = (a #©)n(a#)m.
(9) (a∗)n(a #©)m = (a#)m(a #©)n.

(10) (a∗)n(a#)m = (a#)m(a #©)n.
(11) (a∗)n(a#)m = (a #©)n+m.

Proof. In the case that (a∗)n = (a #©)n, by Lemma 6.1, it is easy to check that conditions (1)–(11) hold.
On the other hand, we will show that (a∗)n = (a #©)n holds when the element a satisfies one of the conditions

(1)–(11).
(1). Multiplying (a∗)nam = (a #©)nam by (a #©)m from the right side, we obtain (a∗)naa #© = (a #©)naa #©, that is

(a∗)n = (a #©)n.
(2). Since (a∗)nam = am(a #©)n, then (a∗)n = (a∗)nam(a #©)m = am(a #©)n+m = (a #©)n.
(3). Using (a∗)n(a #©)m = (a #©)n+m, we have that (1) holds:

(a∗)nam = (a∗)na #©am+1 = (a∗)n(a #©)ma2m = (a #©)n+ma2m = (a #©)nam.

(4). The element a is EP because a = aa#a = (a∗)nana#a ∈ a∗R and Lemma 2.1. Now, Multipliying
(a∗)nan = aa# by (a#)n from the right side we get (a∗)naa# = (a#)n. Recall that a is EP, and in particular,
a# = a† = a #©, hence

(a #©)n = (a#)n = (a∗)naa# = (a∗)naa† = (a∗)n−1a∗aa† = (a∗)n.

(5). Multiplying (a∗)nan+m = am by (a#)m from the right side, notice that the condition (4) is satisfied.
(6). If we multiply (a∗)n(a#)m = (a #©)n(a#)m by a2m from the right side, we get (1).
(7). The hypothesis (a∗)nam = am(a#)n implies

(a∗)n = [(a∗)nam](a #©)m = am(a#)n(a #©)m = am(a#)na(a #©)m+1

= am(a#)nan(a #©)m+n = ama#a(a #©)m+n = am(a #©)m+n = (a #©)n.

(8). Multiplying the equality (a∗)n(a #©)m = (a #©)n(a#)m by am+1a #© from the right side, we see that (a∗)n = (a #©)n.
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(9). Applying (a∗)n(a #©)m = (a#)m(a #©)n, we observe that

(a∗)n = [(a∗)n(a #©)m]am+1a #© = (a#)m(a #©)nam+1a #©

= (a#)m[(a #©)nan+1](a#)nama #© = (a#)ma(a#)nama #©

= (a#)m+nam+1a #© = a(a#)na #© = aa #©a(a#)na #©

= a(a #©)n+1[an+1(a#)na #©] = a(a #©)n+1aa #©

= a(a #©)n+1 = (a #©)n.

(10). Multiplying (a∗)n(a#)m = (a#)m(a #©)n by am+1a #© from the right side, we get (a∗)n = (a #©)n as in part (9).
(11) Notice that multiplying (a∗)n(a#)m = (a #©)n+m by am+1a #© from the right side, it follows that (a∗)n =

(a #©)n.

Remark that Theorem 6.2 recovers some conditions of [21, Theorem 4.3] for an element a satisfying
a∗ = a #©.
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[13] D. Mosić, D.S. Djordjević, New characterizations of EP, generalized normal and generalized Hermitian elements in rings, Applied

Math. Comput. 218(12) (2012) 6702–6710.
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