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Abstract. In this paper, we introduce a graph structure, called zero-set intersection graph Γ(C(X)), on
the ring of real valued continuous functions, C(X), on a Tychonoff space X. We show that the graph
is connected and triangulated. We also study the inter-relationship of cliques of Γ(C(X)) and ideals in
C(X) which helps to characterize the structure of maximal cliques of Γ(C(X)) by different kind of maximal
ideals of C(X). We show that there are at least 2c many different maximal cliques which are never graph
isomorphic to each other. Furthermore, we study the neighbourhood properties of a vertex and show its
connection with the topology of X and algebraic properties of C(X). Finally, it is shown that two graphs are
isomorphic if and only if the corresponding rings are isomorphic if and only if the corresponding topologies
are homeomorphic either for first countable topological spaces or for realcompact topological spaces.

1. Introduction

The study of graph theory, apart from its combinatorial implications, also lends to characterization of
various algebraic structures. The benefit of studying these graphs is that one may find some results about
the algebraic structures and vice versa. There are three major problems in this area: (1) characterization
of the resulting graphs, (2) characterization of the algebraic structures with isomorphic graphs, and (3)
realization of the connections between the structures and the corresponding graphs.

The first instance of such work is due to Beck [12] who introduced the idea of zero divisor graph of a
commutative ring with unity. Though his key goal was to address the issue of colouring, this initiated the
formal study of exposing the relationship between algebra and graph theory and at advancing applications
of one to the other. Later on, a different method of associating a zero-divisor graph to a commutative ring R
was proposed by Anderson and Livingston [6]. Till then, a lot of research, e.g., [1, 3–5, 7, 10, 11, 13–17, 21],
has been done in this area. Following those footsteps, Azarpanah et. al. [8] studied zero divisor graph of
C(X), the ring of real valued continuous functions on a topological space X. They studied the conditions on
X, when the associated graph will be triangulated, connected etc. However, as their work was a follow up
of zero divisor graph of a ring, the main topological flavor of characterizing the graph was missing. Apart
from that, Amini et al. [2] and Badie [22] also studied another graph structure on C(X) from a co-maximal
ideal point of view.
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In 1967 J.de Groot introduced a new graph structure on a topological space by using ‘linked system’ on
subbase of closed sets. His idea was as follows: A family of sets is ‘centered’ if every finite subcollection
has non-empty intersection and a family of sets is ‘linked’ if the intersection of every pair of its members
is non-empty. Alexander’s lemma states that a space X is compact when X possesses a closed subbase
such that every centered subcollection has non-empty intersection. Paralleling this lemma, De Groot
introduced the following definition in [18]. A space X is supercompact if X possesses a closed subbase
such that every linked subcollection has non-empty intersection. Such a subbase is called a binary subbase.
By Alexander’s lemma, every supercompact space is compact. Let X be a T1-space and S a closed T1
subbase for X. The superextension λ(X,S) of X relative to the subbase S is the set of all maximal linked
systems M ⊆ S (a subsystem of S is called linked if every two of its members intersect; a maximal
linked system is a linked system not properly contained in any other linked system) topologized by taking
{{M ∈ λ(X,S) | S ∈ M} | S ∈ S} as a closed subbase. Clearly this subbase is binary, hence λ(X,S) is
supercompact, while X can be embedded in λ(X,S) by the natural embedding i : X → λ(X,S) defined by
i(x) = {S ∈ S | x ∈ S}. Verbeek’s monograph [23] is a good reference for results on superextensions.

In this paper we initiate the study of a special type of graph structure on C(X), called ‘zero-set intersec-
tion graph’ Γ(C(X)), depending on the above notion of ‘linked system’, with a goal to characterize some
topological properties of X and ring properties of C(X). We have shown that the graph is connected and
triangulated and girth is 3. We have studied the cliques and maximal cliques of this graph and have shown
that all ideals are cliques and all maximal ideals are maximal cliques [Theorem 3.2]. Apart from that we
have investigated different types of maximal cliques in this graph which are not of the form of maximal
ideals [Example 3.3]. We have also characterized all maximal cliques through the maximal ideals which
explicitly shows the connection between algebraic structure of C(X) and graphical structure of Γ(C(X))
[Theorem 3.11]. We define prime clique in a graph to bring the concept of a clique to be contained in an
unique maximal clique. The definition [Definition 3.12] is like this: a clique I in a graph G is prime if any
two vertex outside of I are adjacent with all vertices of I then they are adjacent to each other. We have
shown that all prime ideals are prime cliques [Theorem 3.13]. Furthermore, we have shown that for each
maximal clique M there always exists a clique in M of special type OM which is a prime clique [Theorem
3.16]. We give examples of spaces for which M \ OM contains and does not contain [Example 3.17] prime
cliques and incarnating this idea we define GP-space [Definition 3.18] : A Tychonoff space X for which
each maximal clique M of Γ(C(X)), OM \M contains no prime clique. We show that P-spaces are GP-space
[Theorem 3.19]. We point out that non-realcompact first countable spaces can not be a GP-space and hence
pose an open question : what is the topological characterization of GP-spaces. Next we move to the study
of neighbourhood properties of a vertex of this graph and have shown that it is intimately related with
the topology of X [Theorem 4.1]. We have also investigated when a vertex of this graph will be simplicial
[Theorem 4.3] and conclude that if X is first countable supercompact space then all the maximal cliques
are simplicial with respect to some vertex [Theorem 4.4]. Using neighbourhood property we have shown
that how to recognize the unique maximal clique in which a prime clique is contained [Theorem 4.5]. In
the last section we have studied the inter-relationship among the graph structure of Γ(C(X)), ring structure
of C(X) and topological structure of X and get a conclusion that all the above three structures are equiv-
alent in nature for realcompact topological spaces [Corollary 5.11, Theorem 5.10, Theorem 5.8, Theorem
5.7] and assuming first countability we have generalized this result for non-realcompact spaces [Theorem
5.9]. In this connection we have shown that there are 2c-many maximal cliques in Γ(C(X)) which are never
graph isomorphic to each other if the corresponding topological space is first countable and contained a
C-embedded copy ofN.

2. Preliminaries

In this section, for convenience of the reader and also for later use, we recall some definitions and
notations concerning elementary graph theory and C(X), the ring of real valued continuous functions over
a topological space X. For undefined terms and concepts in graph theory and rings of continuous functions
the reader is referred to [24] and [20] respectively.
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By a graph G = (V,E), we mean a non-empty set V and a symmetric binary relation (possibly empty) E
on V. The set V is called the set of vertices and E is called the set of edges of G. Two element u and v in V are
said to be adjacent if (u, v) ∈ E. H = (W,F) is called a subgraph of G if H itself is a graph and φ , W ⊆ V and
F ⊆ E. If V is finite, the graph G is said to be finite, otherwise it is infinite. If all the vertices of G are pairwise
adjacent, then G is said to be complete. A complete subgraph of a graph G is called a clique. A maximal clique
is a clique which is maximal with respect to inclusion. Two graphs G = (V,E) and G′ = (V′,E′) are said to
be isomorphic if ∃ a bijection φ : V → V′ such that (u, v) ∈ E⇔ (φ(u), φ(v)) ∈ E′. A path of length k in a graph
is an alternating sequence of vertices and edges, v0, e0, v1, e1, v2, . . . , vk−1, ek−1, vk, where vi’s are distinct and
ei is the edge joining vi and vi+1. We call this a path joining v0 and vk. A cycle is a path with v0 = vk. A cycle
of length 3 is called a triangle. A graph is connected if for any pair of vertices u, v ∈ V,∃ a path joining u and
v. A graph is said to be triangulated if for any vertex u ∈ V,∃v,w ∈ V, such that (u, v,w) is a triangle. The
distance between two vertices u, v ∈ V, d(u, v) is defined as the length of the shortest path joining u and v, if
it exists. Otherwise, d(u, v) is defined as∞. The diameter of a graph is defined as diam(G) = maxu,v∈V d(u, v),
the largest distance between pairs of vertices of the graph, if it exists. Otherwise, diam(G) is defined as ∞.
The girth of a graph is the length of its shortest cycle. The neighbourhood of a vertex v of a graph G is
the induced subgraph of G consisting of all vertices adjacent to v. Notice that the way neighbourhood has
been defined above, it does not include the vertex v itself. For this reason sometimes it is called an open
neighbourhood. If one include the vertex v in the induced subgraph then it is called closed neighbourhood
of v. Through out the rest of this paper, by neighbourhood of a vertex, we mean the closed neighbourhood
unless otherwise mentioned and denote it by N[v]. A vertex v is called simplicial if N[v] is a clique.

Coming to the rings of continuous functions, let X be a completely regular Hausdorff topological space
(unless otherwise mentioned) and C(X) be the ring of all real valued continuous functions defined on X.
A subset Z of X is called a zero set of X if ∃ f ∈ C(X) such that Z = f−1(0). The collection of all zero sets in
X is denoted by Z[X]. A subfamily F of Z[X] is called a z-filter if it satisfies the following: (i) φ < F (ii) if
Z1,Z2 ∈ F then Z1 ∩ Z2 ∈ F , and (iii) if Z ⊆ Z′ for some Z′ ∈ Z[X] and Z ∈ F then Z′ ∈ F .

There is a nice correspondence between ideals and z-filters. For every ideal I of C(X), Z[I] = {Z( f ) : f ∈ I}
is a z-filter and for every z-filter F , Z−1[F ] = { f ∈ C(X) : Z( f ) ∈ F } is an ideal of C(X). An ideal I of C(X) is
called a z-ideal if Z( f ) ∈ Z[I] ⇒ f ∈ I. If a z-filter is maximal w.r.t set inclusion, then it is called z-ultrafilter.
Every z-ultrafilter has the property that if a zero set intersects every member of F , then it belongs to F .
The collection of z-ultrafilter with a hull-kernel topology gives the Stone-Čech compactification of X, called
βX, in which the space X is densely embedded. A maximal ideal M is called a real maximal ideal of C(X)
if C(X)/M is isomorphic to the field of real numbers. By υX, we mean the Hewitt real compactification of X
which can also be seen as the collection of all real maximal ideals of C(X) with the subspace topology.

We initiate the study of a special type of graph structure on C(X), with a goal to characterize some
topological properties of X and ring properties of C(X) with the help of this newly defined graph on C(X).
The idea is to treat C(X) itself as the set of vertices such that there is an edge between vertices f and 1 if
Z( f ) ∩ Z(1) , φ, where Z( f ) = {x ∈ X : f (x) = 0}. However, defining the graph in this fashion renders all
units in the ring C(X) (i.e., all functions that does not attain zero at any point in X) as isolated vertices. Thus,
we consider the set of all non-units in C(X) as the vertex set and define edges between them in the above
mentioned way.

3. Zero-Set Intersection Graph of C(X)

Definition 3.1. [Zero-Set Intersection Graph] LetN(X) be the set of all non-units in the ring (C(X),+, ·). By
zero-set intersection graph Γ(C(X)), we mean the graph whose set of vertices is N(X) and there is an edge
between distinct vertices f and 1 if Z( f ) ∩ Z(1) , φ.

For any two f , 1 ∈ N(X), f1 ∈ N(X) and both f and 1 are adjacent with f1, means that Γ(C(X)) is
connected and diam(Γ(C(X))) = 2. Also for non trivial X and f ∈ N(X), one can easily produce two different
non-zero functions 2 f and 3 f ∈ N(X) so that all three functions are adjacent to each other which makes the
graph Γ(C(X)) triangulated and as a simple consequence, girth of Γ(C(X)) is 3.
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The way we have defined the graph Γ(C(X)), one may identify any two vertex f , 1 ∈ N(X) if and only
if Z( f ) = Z(1) and gives a induced graph structure on the equivalence class which is identical with the
graph defined on the subbase Z[X] using De Groot’s ‘linked system’. Viewing the graph in this fashion it
may seem to one that the graph of N(X) is similar to the graph that studied by De Groot on topological
spaces. Later on we will see that these two graphs are completely different with respect to their behaviour
of maximal clique, though it is quite clear by the above identification that the space of maximal linked
system of the graph Γ(C(X)) is homeomorphic to λ(X,Z[X]).

3.1. Cliques in Γ(C(X))

In this subsection we study the cliques and maximal cliques in Γ(C(X)) and their relations with ideals,
prime ideals and maximal ideals of C(X). In this connection observe that for any ideal I of C(X) and any
two function f , 1 ∈ I, Z( f ) ∩ Z(1) = Z( f 2 + 12), showing that every ideal in C(X) is a clique in N(X) and
hence every maximal ideal of C(X) becomes a clique. The next theorem shows that maximal ideals of C(X)
are also maximal cliques.

Theorem 3.2. Maximal ideals Mp = { f ∈ C(X) | p ∈ clβXZ( f )}, p ∈ βX are maximal cliques in Γ(C(X)).

Proof. If not and if possible, let Mp be not a maximal clique in Γ(C(X)). Then there exists ϕ < Mp such
that Mp

∪ {ϕ} is again a clique. Again the definition of clique ensures that Z(ϕ) intersects every member of
the z-ultrafilter Z[Mp] and then the property of z-ultrafilter forces Z(ϕ) to be included in Z[Mp] and hence
ϕ ∈Mp, since Mp is a z-ideal, which is a contradiction and this concludes the proof.

Note that the converse of this theorem is not true in general, i.e., ∃ compact topological space X, such
that Γ(C(X)) contains maximal cliques which are not maximal ideals.

Example 3.3. Let X = βN with its usual topology. Let M1,2,M2,3,M1,3 be the collection of all (real valued
continuous) functions which vanish at {1, 2}, {2, 3}, {1, 3} respectively. Let M = M1,2 ∪M2,3 ∪M1,3. Then M is
a maximal clique which is not a maximal ideal.

Remark 3.4. We can classify the maximal cliques into three different categories. The first category consists
of all fixed maximal ideals and we call it ‘fixed maximal clique’. In the second category we include all free
maximal ideals and we call it ‘free maximal clique of ideal type’ and the third category consists of rest of all
the maximal cliques, i.e., all maximal cliques which are not of ideals. We call ‘maximal clique of non-ideal
type’.

It is known that a prime ideal in C(X) is contained in a unique maximal ideal. However, as seen in the
above example, there are maximal cliques which are not maximal ideals. Thus, it is natural to ask whether
prime ideals in C(X) are contained in a unique maximal clique or not. We answer this question assertively
in the next theorem.

Theorem 3.5. Every prime ideal in C(X) is contained in a unique maximal clique.

Proof. Let P be a prime ideal in C(X). Suppose P is contained in at least two distinct maximal cliques.
Since every prime ideal in C(X) is contained in some unique maximal ideal, therefore, one of the maximal
cliques should be a maximal ideal, say, Mp for some p ∈ βX. Let N be another maximal clique containing
P. Obviously for every f ∈ N, Z( f ) intersects every member of Z[P]. Hence Z[P] ∪ {Z( f )} is contained in a
unique z-ultrafilter and it should be equal to Z[Mp], where Mp is the unique maximal ideal containing P.
Then Z( f ) intersects every member of the z-ultrafilter Z[Mp] and consequently Z( f ) ∈ Z[Mp] i.e., f ∈ Mp.
This holds for every f ∈ N and it follows that N = Mp.
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3.2. Characterizing Maximal Cliques in Γ(C(X))
In this section, we characterize the structure of maximal cliques in Γ(C(X)) by showing that every

maximal clique can be expressed as union of intersection of a suitable collection of maximal ideals of C(X).

Theorem 3.6. Let M be a maximal clique in Γ(C(X)), then M always contains an ideal of C(X).

Proof. Let f ∈ M. Construct I = {1 ∈ C(X) : Z( f ) ⊆ Z(1)}. Clearly, I is an ideal of C(X). Again, f is adjacent
with all element h ∈M, i.e., Z( f )∩ Z(h) , ∅ for all h ∈M, showing that Z(1)∩ Z(h) , ∅ for each 1 ∈ I and for
all h ∈ M, means that each 1 ∈ I is adjacent with all elements of M and as a consequence of maximality of
M, I ⊆M.

Remark 3.7. Consider the set of all ideals properly contained in a maximal clique M with a partial ordering
(set inclusion). Every chain has an upper bound (union). By Zorn’s lemma, it has at least one maximal
element. Let A be the collection of all such maximal elements. Let N ∈ A and N ′ be the collection of all
maximal ideals of C(X) in which N can be extended.

Lemma 3.8.
⋃

N∈AN = M.

Proof. Clearly,
⋃

N∈AN ⊂ M. For the other direction, let f ∈ M. Consider the ideal generated by f in C(X),
〈 f 〉. As for any h ∈ 〈 f 〉,Z( f ) ⊂ Z(h) and M is a maximal clique, therefore 〈 f 〉 ⊂ M. Hence, 〈 f 〉 is contained
in some maximal element N ∈ A and in particular f ∈ N. Thus, 〈 f 〉 ⊆

⋃
N∈AN and hence the lemma.

Lemma 3.9. If N,P ∈ A, thenN ′ ∩ P′ , φ, where the symbols have their meaning as in Remark 3.7.

Proof. We first show that Z[N]∪Z[P] has finite intersection property. Let {Z( fi)}i∪{Z(1 j)} j be a finite collection
of elements in Z[N] ∪ Z[P], where i = 1, 2, ...,n and j = 1, 2, ...,m. Now,

⋂
i, j(Z( fi) ∩ Z(1 j)) = Z( f ) ∩ Z(1),

where f =
∑

i f 2
i and 1 =

∑
j 1

2
j and being to be an ideal, f ∈ N and 1 ∈ P. Again, M is a maximal clique and

N,P ⊂M, therefore Z( f )∩Z(1) , φ,∀ f ∈ N & ∀1 ∈ P. Thus, Z[N]∪Z[P] has finite intersection property and
as a result, it can be extended to a z-ultrafilter Z[M] for some maximal ideal M of C(X). Since, Z[N] ⊂ Z[M],
therefore N ⊂M. Similarly, P ⊂M. Hence, M ∈ N ′ ∩ P′, thereby proving the lemma.

Lemma 3.10.
⋂

P∈N ′ P = N, where the symbols have their meaning as in Remark 3.7.

Proof. Clearly, N ⊂
⋂

P∈N ′ P. For the other direction, let f ∈
⋂

P∈N ′ P. Now, for any P ∈ A, by Lemma 3.9,
N
′
∩ P

′ , φ. Thus there exists a maximal ideal in C(X) containing P and N and also containing f , i.e., f is
adjacent to all members of P and hence f is adjacent to all members of M (since, P is arbitrary inA). Thus,
due to maximality of M, f ∈M.

Now consider the ideal 〈N, f 〉 = N1. Since, f belongs to all maximal ideals in C(X) which contains N,
therefore N1 extends to exactly all maximal ideals belonging toN ′.

Let 1 ∈ N1. Now Lemma 3.9 shows that there exists a maximal ideal in C(X) containing N and P, for
each P ∈ A and also we have seen that N1 & N extends to the same maximal ideals in C(X), therefore there
exists a maximal ideal in C(X) containing N1 and P, for all P ∈ A. Since 1 ∈ N1, therefore 1 is adjacent to
every element of P, for all P ∈ A. Thus 1 is adjacent to every element of

⋃
P∈A P which is eventually equal

to M (by Lemma 3.8). Thus, 1 ∈M and hence N1 ⊂M.
Now, N is an ideal which is maximal in M and N1 is an ideal containing N and contained in M. Thus,

N = N1 and hence f ∈ N. Hence the lemma follows.

Theorem 3.11. Every maximal clique in Γ(C(X)) can be expressed as union of intersection of some maximal ideals
in C(X).

Proof. Let M be a maximal clique. Then, by Lemma 3.8,
⋃

N∈AN = M. Now, by Lemma 3.10, every N ∈ A
can be expressed as

⋂
P∈N ′ P. Thus,

M =
⋃
N∈A

⋂
P∈N ′

P
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Definition 3.12. A clique I in a graph G is defined to be a prime clique if for any two vertex f , 1 ∈ G \ I
which are adjacent with all elements of I, then f and 1 are adjacent to each other.

It is quite clear from the above definition that the central idea behind it is to incorporate the concept of
a clique being contained in an unique maximal clique. This concept is not new in literature, rather it is a
very familiar concept in algebra, specially, ring theory and ideal theory, viz. Gelfand ring. Next we will
investigate the structure of prime cliques.

Theorem 3.13. Every prime ideal in C(X) is a prime clique.

Proof. Let P be a prime ideal of C(X) and f , 1 ∈ N(X) \P such that f and 1 are both adjacent to each element
of P individually. We have to show that both f and 1 are adjacent. If not and if possible let f and 1 are not
adjacent to each other. Then consider the ideals I =< P, f > and I′ =< P, 1 >. Since Z( f ) ∩ Z(1) = ∅, both
I and I′ are not same. Since C(X) is a gelfand ring therefore every prime ideal in C(X) is contained in an
unique maximal ideal and therefore I and I′ is contained in a unique maximal ideal in C(X). Hence f and 1
are contained in a same ideal which shows that Z( f ) ∩ Z(1) , ∅which is a contradiction.

Theorem 3.11 gives us a specific structure of maximal clique in terms of maximal ideals. Using this
structure we now construct prime cliques for each maximal ideal. Recall, from Theorem 3.11, that for any
maximal clique M ofN(X)

OM =
⋃
N∈A

⋂
P∈N ′

P

 ,
where A is the collection of maximal ideals contained in M and for each N ∈ A, N ′ is the collection of
all maximal ideals of C(X) in which N can be extended. Keeping this structure in mind, we define OM as
follows

OM =
⋃
N∈A

 ⋂
Mp∈N ′

Op


where Op is the ideal consisting of all f ∈ C(X) such that clβXZ( f ) is a neighbourhood of p ∈ βX.

Theorem 3.14. For each maximal clique M of Γ(X), OM ⊆M and hence OM is a clique.

Proof. For each N ∈ A,
⋂

P∈N ′ P = N. Again Op
⊆ Mp for all p ∈ βX and hence

⋂
Mp∈N ′ Op

⊆ N which shows
that OM ⊆M.

Lemma 3.15. For each N ∈ A,
⋂

Mp∈N ′ Op is contained in an unique element ofA, i.e., N.

Proof. Observe that Lemma 3.10 shows that each N is a closed set in C(X) with m-topology, i.e., N̄ = {p ∈
βX | N ⊆ MP

} is closed in βX. If
⋂

Mp∈N ′ Op is contained in another element N1 ∈ A then consider N̄1 and
q ∈ N̄1 \N̄. Using complete regularity we can find out a function f ∈ C∗(X) such that N̄ ⊆ Z( f β) and f β(q) = 1.
Therefore, f < Oq though f ∈

⋂
Mp∈N ′ Op which is a contradiction.

Theorem 3.16. For every maximal clique M ofN(X), OM is a prime clique.

Proof. Let f , 1 < OM such that f and 1 are both adjacent with every element of OM. Suppose f and 1 are not
adjacent to each other. Then Z( f ) ∩ Z(1) = ∅. Now Lemma 3.15 and the property that for each N ∈ A, f
is adjacent to all elements of

⋂
Mp∈N ′ Op shows that f ∈ N and similarly, 1 ∈ N. This happens for each and

every element N ∈ A. Hence f and 1 are both contained in the same maximal clique M which contradicts
the fact that f and 1 are not adjacent.

There may be a prime clique contained in a maximal clique M of Γ(C(X)) which is not of the form OM,
in fact, disjoint from OM e.g., consider Γ(C(R)) and the maximal clique Mp for some p ∈ R. Now construct
the clique Jp = { f ∈ N(R) | Z( f ) = {p}}. Obviously, Jp

⊆ Mp and Jp is a prime clique. But Jp
∩ OMp = ∅, i.e.,

Jp is a prime clique which is contained in the complement of OMp in Mp. Also one can construct a maximal
clique M of Γ(C(X)) such that the complement M \ OM contains no prime clique. Following is an example
of such maximal clique.
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Example 3.17. Consider the topological space λ(N∗), i.e., superextension of the remainder space N∗. As-
suming continuum hypothesis, N∗ has both P-points as well as non P-points also. Let p, q ∈ N∗ be two
P-points of N∗ and r ∈ N∗ be a non P-point. Consider the maximal clique of Γ(C(N∗)) corresponding to
these three points Mpqr = (Mp

∩Mq) ∪ (Mq
∩Mr) ∪ (Mr

∩Mp). Since p and q are P-points so Mp = Op and
Mq = Oq. Therefore the complement of OMpqr in Mpqr consists of those functions which are zero either on
{p, r} or on {q, r}which shows that Mpqr \OMpqr ⊆Mr and hence Mpqr \OMpqr can not be prime.

Observing this fact and keeping it in mind we define GP-space as following.

Definition 3.18. A Tychonoff space X is called a GP-space if for each maximal clique M of Γ(C(X)), the
complement of OM in M contains no prime clique.

For an example of GP-space one can observe that every finite space is a GP-space. Following theorem
gives examples of GP-spaces other than finite spaces.

Theorem 3.19. Every realcompact P-space is a GP-space.

Proof. Let X be a realcompact P-space. Then for each p ∈ βX, Op is maximal [[20], Theorem 14.29], i.e.,
Mp = Op and therefore for each maximal clique M of Γ(C(X)), OM = M. Hence the theorem follows.

One can observe that if X is first countable and not a realcompact P-space then there will be a fixed
maximal clique Mq, q ∈ X such that Mq

\Oq is prime, because, in that case Mq
\Oq contains a prime clique

{ f ∈ Mq
| Z( f ) = {q}}. Therefore first countable non-realcompact P-spaces can not be a GP-space. This

observation shows that topological characterization of GP-spaces has some importance and we leave this
as an open question:

Problem 3.20. Find a topological characterization of GP-spaces.

In connection of the above question, one may think that almost P-spaces may be one of the characterization
of GP-spaces. We note that in [25], S.Watson constructed an example of a compact Hausdorff space without
P-points which is an almost P-space but without lacking first countability.

4. Neighbourhood Properties

In this section we investigate some properties of the graph related to the neighbourhood of a vertex and
show their connection with the ring properties of C(X) and topological properties of X.

Lemma 4.1. For any two f , 1 ∈ N(X), N[ f ] ⊆ N[1] if and only if Z( f ) ⊆ Z(1), where N[ f ] represents the closed
neighbourhood of f in Γ(C(X)).

Proof. If possible let Z( f ) * Z(1). Then there exists p ∈ Z( f ) such that p < Z(1). Since X is complete regular,
there exists h ∈ C(X) such that h(p) = 0 and h(Z(1)) = 1, meaning that h is adjacent to f but not to 1, i.e.,
h ∈ N[ f ] but h < N[1] which contradicts the fact that N[ f ] ⊆ N[1]. The other way implication is trivial.

The above lemma shows an inter-relation between graph structure of Γ(C(X)) and topological structure
of X. As an application, we get the following result which is an easy consequence of the above lemma.

Corollary 4.2. If ϕ : Γ(C(X))→ Γ(C(Y)) is a graph isomorphism then for any two f , 1 ∈ C(X), Z( f ) ⊆ Z(1) if and
only if Z(ϕ( f )) ⊆ Z(ϕ(1)).

For any f ∈ N(X), in general, N[ f ] may not be a clique. In fact, if Z( f ) can be expressed as a union of
two disjoint closed sets, then complete regularity ensures that N[ f ] contains at least two vertices which are
never adjacent to each other means that f is not a simplicial vertex. Simplicial property depends on the
topology of X also. On the next theorem we characterize simplicial vertex for first countable topological
spaces.
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Theorem 4.3. If X is first countable, then a vertex f ∈ N(X) is simplicial if and only if Z( f ) is singleton.

Proof. Suppose f ∈ N(X) is simplicial, i.e., N[ f ] is a clique. If not and if possible suppose Z( f ) is not a
singleton set. Then there exists at least two distinct points p, q ∈ Z( f ) and hence due to first countability
and complete regularity of X, there exists 1, h ∈ N(X) such that Z(1) = {p}, 1(q) = 1 and Z(h) = {q}, h(p) = 1.
Therefore, 1, h ∈ N[ f ] though 1 and h are not adjacent, which contradicts our initial assumption. The
converse part follows trivially.

One can observe from the proof of the above theorem that for first countable topological space X and
f ∈ N(X) such that Z( f ) is a singleton set, N[ f ] is a maximal clique and that maximal clique is of ‘fixed
maximal clique’ corresponding to the singleton point of Z( f ). In other way, clique corresponding to a
simplicial vertex becomes fixed maximal clique. Keeping this in mind, we investigate whether the partial
converse of this statement is true: that when every maximal clique becomes simplicial corresponding to
some vertex of N(X). We know that if X is supercompact then all the maximal cliques are centered, i.e.,
they are fixed. Hence we can conclude the following

Theorem 4.4. If X is first countable supercompact space then every maximal clique is a neighbourhood of some
simplicial vertex.

It is clear that every prime clique is contained in an unique maximal clique. But how to find that maximal
clique is not clear. In the next theorem we give a way to find out that unique maximal clique containing a
given prime clique using the neighbourhood property.

Theorem 4.5. For a given prime clique P of Γ(C(X)), M = ∩{N[ f ] | f ∈ P} is a maximal clique containing P.

Proof. P ⊆ M is trivial. First we prove that M is a clique. Let h, k ∈ M, i.e., h, k are adjacent with all the
elements of P. Since P is prime therefore there is an edge between h and k. For maximality let M ⊂ N where
N is a maximal clique containing P. Let, 1 ∈ N \M. Then 1 < N[ f ] for some f ∈ P. This contradicts that N
is a clique containing P. Hence the theorem follows.

5. Γ(C(X)) and Graph Isomorphisms

In this section, we study the inter-relationships between graph isomorphisms of Γ(C(X)), ring isomor-
phisms of C(X) and homeomorphisms of X. Finally, we show that graph isomorphisms in Γ(C(X)) is
equivalent to ring isomorphisms in C(X) as well as homeomorphism in X.

For f ∈ N(X), let us denote I f = {1 ∈ C(X) | Z( f ) ⊆ Z(1)}. One can easily check that I f is an ideal of C(X).
Corollary 4.2 shows that if ϕ : Γ(C(X))→ Γ(C(Y)) is a graph isomorphism then ϕ(I f ) = Iϕ( f ).

Lemma 5.1. Let ϕ : Γ(C(X))→ Γ(C(Y)) be a graph isomorphism and N ⊆ Γ(C(X)), then ϕ(∪NI f ) = ∪Nϕ(I f ).

Proof. Let ϕ(1) ∈ ϕ(∪NI f ) then 1 ∈ ∪NI f , i.e., 1 ∈ I f for some f ∈ N and therefore ϕ(1) ∈ ϕ(I f ), f ∈ N which
proves that ϕ(∪NI f ) ⊆ ∪Nϕ(I f ). For the other part, let ϕ(1) ∈ ϕ(∪NI f ) for some 1 ∈ ∪NI f , i.e., 1 ∈ I f ′ for some
f ′ ∈ N. Then ϕ(1) ∈ ϕ(I f ′ ) and hence ϕ(1) ∈ ∪Nϕ(I f ).

Lemma 5.2. If N ⊆ Γ(C(X)), then ∪NI f ⊆ {h ∈ Γ(C(X)) | ∩N clβXZ( f ) ⊆ clβXZ(h)}.

Proof. Let 1 ∈ ∪NI f then 1 ∈ I f for some f ∈ N. Therefore, Z( f ) ⊆ Z(1) and hence ∩NclβXZ( f ) ⊆ clβXZ( f ) ⊆
clβXZ(1) which imply that 1 ∈ {h ∈ Γ(C(X)) | ∩N clβXZ( f ) ⊆ clβXZ(h)}. Hence the lemma follows.

.

Theorem 5.3. If ϕ : Γ(C(X))→ Γ(C(Y)) is a graph isomorphism then for each p ∈ βX there exists q ∈ βY such that
ϕ(Mp) = Mq.
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Proof. Since Mp = ∪ f∈Mp I f , therefore lemma 5.1 shows that ϕ(Mp) = ∪ f∈Mp Iϕ( f ) and due to lemma 5.2,
ϕ(Mp) ⊆ {h ∈ Γ(C(Y)) | ∩Mp clβYZ(ϕ( f )) ⊆ clβYZ(h)} = M(say). Since βY is compact, ∩Mp clβYZ(ϕ( f )) , ∅ and
let it be Z. As a consequence of this fact M becomes a clique in Γ(C(Y)). Since Mp is a maximal clique in
Γ(C(X)) and φ is a graph isomorphism, therefore, ϕ(Mp) = M and also Z = {q}, a singleton set for some
q ∈ βY which is an easy consequence of the fact that βY is a completely regular space. Hence the proof is
complete.

The importance of Theorem 5.3 is that any graph isomorphism preserves the algebraic structure. More
precisely, any graph isomorphism takes a maximal clique of Γ(C(X)) to some maximal clique of Γ(C(Y)) and
here, we have already observed that Γ(C(X)) has two types of maximal cliques, first type being the maximal
ideals of C(X) and other type being those which are not maximal ideals of C(X). Therefore it may happen
that for some graph isomorphism, a maximal clique of Γ(C(X)) of the form maximal ideal is mapped to a
maximal clique which is not a maximal ideal. But incidentally, Theorem 5.3 assures that it is not the case.

Theorem 5.4. If ϕ : Γ(C(X)) → Γ(C(Y)) is a graph isomorphism then ϕ induces a homeomorphism ϕ : βX → βY
given by ϕ(Mp) = ϕ(Mp).

Proof. It is clear that bijection of ϕ is a simple consequence of graph isomorphism property of ϕ. For
continuity of ϕ, we consider a basic closed set M( f ) = {Mp : f ∈ Mp, p ∈ βX} for some f ∈ C(X). Then
ϕ(M( f )) = M(ϕ( f )), as well as ϕ−1(M(1)) = M(ϕ−1(1)), for some 1 ∈ C(Y).

Theorem 5.4 and Theorem 5.9 together show that if we consider Y = X and the space X to be first
countable, then ϕ is a homeomorphism from βX to itself which one can interpret as the maximal clique
Mp, p ∈ βX, of Γ(C(X)) will be mapped to another maximal clique Mq, q ∈ βX, of Γ(C(X)) by any graph
isomorphism ϕ if and only if there exists a homeomorphism ϕ from βX to βX that map p to q. Therefore,
mapping of one maximal clique of Γ(C(X)) into any other maximal clique of Γ(C(X)) under graph isomor-
phism is merely a direct consequence of homogeneity of βX. But βX is not homogeneous, meaning that,
we can get at least two maximal cliques Mp and Mq (p, q ∈ βX and p , q) which will never be mapped to
each other by any graph isomorphism. It is now clear that the number of different kind of maximal cliques
under this graph isomorphism sense is equivalent with the number of different equivalent classes under
the relation homeomorphism on βX. Now using the Frolik’s work [[26], 4.11] on “Type of points” on βX
we can conclude the following

Theorem 5.5. There are at least 2c many different maximal cliques in Γ(C(X)), for first countable Tychonoff space X
(in whichN is C-embedded) of the form Mp, p ∈ βX which are never graph isomorphic to each other.

Since maximal cliques of the form Mp are also maximal ideals, Theorem 5.5, also holds for maximal
ideals. Here, as a graph entity Mp and as an algebraic entity Mp, we have got the same consequence. If one
try to understand through algebraic sense that, why it is happening to maximal ideals or more precisely
which algebraic property of maximal ideals causes it not to isomorphic to other particular maximal ideals,
one get an unclear idea. Rather, the same fact has an explanation through graph theoretic point of view. It
happens due to the closed neighbourhood N[Mp] = ∪{N[ f ] | f ∈Mp

} has different graph structure than the
closed neighbourhood N[Mq], where p, q ∈ βX are two non-homogeneous points.

We have seen that a graph isomorphism preserves the maximal ideal structure in Theorem 5.3. In the
next theorem we prove that not only the maximal ideal structure, the graph isomorphism also preserves
more deeper algebraic structure of maximal ideals which is called real maximal ideals. Apparently, it shows
that deeper algebraic structure is also preserved by a graph isomorphism. This happens due to “closed
under countable intersection” property of real z-ultrafilters.

Theorem 5.6. If ϕ : Γ(C(X)) → Γ(C(Y)) is a graph isomorphism, then ϕ induces a bijective map ϕ : υX → υY
given by ϕ(Mp) = ϕ(Mp), where υX stands for the Hewitt real compactification of X.
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Proof. To prove this, it is sufficient to show that the image of a real maximal ideal under ϕ is again a real
maximal ideal. Since, real maximal ideals are maximal cliques and ϕ is a graph isomorphism, image of a
real maximal ideal under ϕ is a maximal clique. Let Mp, p ∈ υX be a real maximal ideal. Therefore, ϕ(Mp)
is a maximal clique and it is also a maximal ideal (by Theorem 5.3). Now, to show ϕ(Mp) is a real maximal
ideal it is sufficient to show that Z[ϕ(Mp)] has a countable intersection property. Let {Z(ϕ( fi))} be a countable
collection of zero sets in Z[ϕ(Mp)]. Then {Z( fi)} is a countable collection of zero sets of Z[Mp]. Now, since Mp

is a real maximal ideal, Z[Mp] is closed under countable intersection, i.e.,
⋂
∞

i=1 Z( fi) = Z( f ), for some f ∈Mp.
Then Z( f ) ⊆ Z( fi),∀i = 1, 2, . . . and due to Corollary 4.2, Z(ϕ( f )) ⊆ Z(ϕ( fi)),∀i = 1, 2, . . .Hence φ , Z(ϕ( f )) ⊆⋂
∞

i=1 Z(ϕ( fi)).Thus, Z[ϕ(Mp)] has a countable intersection property and hence, ϕ(Mp) is a real maximal ideal.
It is also to be noted that ϕ is a bijection.

Theorem 5.7. If ϕ : Γ(C(X)) → Γ(C(Y)) is a graph isomorphism, then the induced map ϕ : υX → υY given by
ϕ(Mp) = ϕ(Mp) is a homeomorphism. Hence, C(X) is isomorphic to C(Y) as rings.

Proof. At first, we show that ϕ maps basic closed sets of υX to basic closed sets of υY. Now considering υX
as a real maximal ideal space, M( f ) = {Mp : f ∈ Mp, p ∈ υX} becomes a basic closed set in υX for f ∈ C(X).
Then as a direct application of Theorem 5.6, ϕ(M( f )) = M(ϕ( f )) as well as ϕ−1(M(1)) = M(ϕ−1(1)) for some
1 ∈ C(Y) which conclude the theorem.

Since C(X) and C(Y) are isomorphic in Theorem 5.7, one of the consequences of Theorem 5.7 is that βX
and βY are homeomorphic. Again if X and Y are both realcompact topological spaces then υX = X and
υY = Y and hence we can conclude the following from Theorem 5.7.

Theorem 5.8. For realcompact topological spaces X and Y, if Γ(C(X)) and Γ(C(Y)) are graph isomorphic then X and
Y are homeomorphic.

We can get the above result for non-realcompact space X also if we assume first countability on X. For
a first countable topological space X every point is a Gδ-point but on the contrary no point of βX \ X is Gδ

in nature in βX [[20], Corollary 9.6] which leads us to conclude that the induced homeomorphism which
we get in Theorem 5.7 is reduced to a homeomorphism from X onto Y if X and Y are both first countable
topological spaces. Hence the following is an easy conclusion.

Theorem 5.9. For first countable topological spaces X and Y, if Γ(C(X)) and Γ(C(Y)) are graph isomorphic then X
and Y are homeomorphic.

Theorem 5.10. Let X and Y be two topological spaces such that C(X) and C(Y) are isomorphic as rings. Then
Γ(C(X)) and Γ(C(Y)) are graph isomorphic.

Proof. Let ϕ : C(X) → C(Y) be a ring isomorphism. Clearly, the restriction of ϕ on the set of non-units
in C(X) is also a bijection from Γ(C(X)) onto Γ(C(Y)). Without loss of generality, we denote that restricted
bijection also by ϕ, i.e., we write ϕ : Γ(C(X))→ Γ(C(Y)). The only thing left to be proved is that ϕ preserves
adjacency. Let f and 1 be adjacent in Γ(C(X)), i.e., Z( f 2 + 12) = Z( f ) ∩ Z(1) , φ. This implies that f 2 + 12

is a non-unit and as ϕ is a ring isomorphism, ϕ( f 2 + 12) is also a non-unit, i.e., Z(ϕ( f 2 + 12)) , φ. Now,
Z(ϕ( f )) ∩ Z(ϕ(1)) = Z((ϕ( f ))2 + (ϕ(1))2) = Z(ϕ( f 2 + 12)) , φ. Similarly, it can be shown that ϕ( f ) and ϕ(1)
are adjacent in Γ(C(Y)) implies that f and 1 are adjacent in Γ(C(X)). Hence, Γ(C(X)) and Γ(C(Y)) are graph
isomorphic.

Corollary 5.11. Let X and Y be two topological spaces. If X is homeomorphic to Y, then Γ(C(X)) is isomorphic to
Γ(C(Y)).

Proof. If X is homeomorphic to Y, then it is known that C(X) and C(Y) are isomorphic as ring. Thus, the
corollary follows from Theorem 5.10.
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X ∼= Y
(as toplogical spaces)

(First Countable/ Realcompact)

C(X) ∼= C(Y ) Γ(C(X)) ∼= Γ(C(Y ))
(as rings) (as graphs)

Figure 1: The Combined Picture

The inter-relationship established in the above theorems can be represented diagrammatically as in
Figure 1.

The inter relationship between graph and supercompact space shows that the space of maximal linked
system of Γ(C(X)) is homeomorphic to λ(X,Z[X]) and the space of maximal linked system of Γ(C(βX)) is
homeomorphic to λ(βX,Z[βX]). In general, λ(X,Z[X]) and λ(βX,Z[βX]) may not be topologically same,
rather, one can at once conclude that λ(X,Z[X]) can be naturally embedded into λ(βX,Z[βX]). In the follow-
ing theorem we prove a necessary condition on X for λ(X,Z[X]) to be homeomorphic with λ(βX,Z[βX]).

Theorem 5.12. If X is pseudocompact then λ(X,Z[X]) � λ(βX,Z[βX]).

Proof. Let X be a pseudocompact space. Then every function of C(X) is bounded. First we claim that there
is no f ∈ C(X) such that Z( f ) = ∅ but Z( f β) , ∅, where f β represents the extension of f to βX. If not and
if possible let there exist such an f ∈ C(X). Since Z( f ) = ∅, f is invertible in C(X) and hence ( 1

f )β = 1
f β .

But Z( f β) , ∅ implies that there exist point in βX where 1
f β is infinite and hence 1

f is unbounded which
contradicts the fact that X is pseudocompact.

The consequence of the above claim is that βX \ X contains no zero set of βX. Hence one can conclude
that all the zero set of βX are of the form Z( f β) for f ∈ C(X), i.e., all the zero sets are basic closed sets when
X is pseudocompact. Again, for X being pseudocompact, C(X) is ring isomorphic to C(βX) which comprise
with Theorem 5.7 shows that Γ(C(X)) and Γ(C(βX)) are graph isomorphic and hence their maximal clique
spaces are homeomorphic, i.e., λ(X,Z[X]) and λ(βX,Z[βX]) are homeomorphic.
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