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Abstract. Let X be an infinite complex Banach space and consider two bounded linear operators A,B ∈
L(X). Let LA ∈ L(L(X)) and RB ∈ L(L(X)) be the left and the right multiplication operators, respectively. The
generalized derivation δA,B ∈ L(L(X)) is defined by δA,B(X) = (LA − RB)(X) = AX − XB. In this paper we
give some sufficient conditions for δA,B to satisfy SVEP, and we prove that δA,B − λI has finite ascent for all
complex λ, for general choices of the operators A and B, without using the range kernel orthogonality. This
information is applied to prove some necessary and sufficient conditions for the range of δA,B − λI to be
closed. In [18, Propostion 2.9] Duggal et al. proved that, if asc(δA,B − λ) ≤ 1, for all complex λ, and if either
(i) A∗ and B have SVEP or (ii) δ∗A,B has SVEP, then δA,B −λ has closed range for all complex λ if and only if A
and B are algebraic operators, we prove using the spectral theory that, if asc(δA,B − λ) ≤ 1, for all complex
λ, then δA,B − λ has closed range, for all complex λ if and only if A and B are algebraic operators, without
the additional conditions (i) or (ii).

1. Introduction and basic definitions

The single valued extension property (SVEP) dates back to the early days of local spectral theory,
appeared first in the work of Dunford [20], [21]. As a witness by the more recent accounts in [1] and [30],
SVEP has now developed into one of the major tools in the local spectral theory and Fredholm theory for
operators on Banach spaces. In what follows, let X(resp.,H) shall denote an infinite dimensional complex
Banach space (resp., Hilbert space) and L(X) will denote the algebra of all bounded linear maps defined
on and with values in X. Given T ∈ L(X), ker(T), R(T) and σp(T) will stand for the null space, the range
and the point spectrum of T respectively. Thanks to the work of Finch [25] we have actually the following
equivalent localized version of SVEP which is much easier to work with.

Definition 1.1. An operator T ∈ L(X) is said to have the single valued extension property at λ0 ∈ C (abbreviated
SVEP at λ0), if for every open disc D centered at λ0, the only analytic function f : D → X which satisfies the
equation (T − λI) f (λ) = 0 for all λ ∈ D is the function f ≡ 0. An operator T ∈ L(X) is said to have SVEP if T has
SVEP at every λ ∈ C.

Evidently, every operator T, as well as its dual T∗, has SVEP at every point in ∂σ(T), where ∂σ(T) is the
boundary of the spectrum σ(T), in particular at every isolated point of σ(T). Recall that T ∈ L(X) is said to
be bounded below, if ker(T) = {0} and R(T) is closed. Denote the approximate point spectrum of T by

σa(T) = {λ ∈ C : T − λI is not bounded below}.
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Let

σs(T) = {λ ∈ C : T − λI is not surjective},

denote the surjectivity spectrum of T. In addition, X∗ will denote the dual space of X, and if T ∈ L(X), then
T∗ ∈ L(X∗) will stand for the adjoint map of T. Clearly, σa(T∗) = σs(T) and σa(T) ∪ σs(T) = σ(T), the spectrum
of T. Recall that the ascent asc(T) of an operator T, is defined by asc(T) = inf{n ∈ N : ker(Tn) = ker(Tn+1)}
and the descent dsc(T) = inf{n ∈ N : R(Tn) = R(Tn+1)}, with inf ∅ = ∞. It is well known that if asc(T) and
dsc(T) are both finite, then they are equal.

Definition 1.2. T ∈ L(X) is said to be

1. Left Drazin invertible if and only if asc(T) < ∞ and R(T)asc(T)+1 is closed.
2. Drazin invertible if and only if it has finite ascent and descent.

The left Drazin and the Drazin spectrum are defined respectively by

σld(T) = {λ ∈ C : T − λI is not left Drazin invertible}.

σD(T) = {λ ∈ C : T − λI is not Drazin invertible}.

We denote by Πa(T) = {λ ∈ σa(T) : T − λI is left Drazin invertible} the set of left poles of T, and by
Π(T) = {λ ∈ C : asc(T−λI) = dsc(T−λI) < ∞} the set of poles of the resolvent. In the sequel we shall denote
by accS and isoS, the set of accumulation points and the set of isolated points of S ⊂ C, respectively.

Definition 1.3. An operator T ∈ L(X) is said to be

1. Polaroid if isoσ(T) ⊆ Π(T).
2. Left polaroid if isoσa(T) ⊆ Πa(T).

It is easily seen that, if T ∈ L(X) is polaroid, then Π(T) = E(T), where E(T) is the set of eigenvalues of T
which are isolated in the spectrum of T.
It is well known that SVEP is not stable under sums and products of commuting operators. Thus in general
SVEP for A and B does not guarantee SVEP for the operators LA + RB and LARB. A natural question
arises under which conditions on A and B, the single-valued extension property holds for the generalized
derivation operator δA,B?

In [30] Laursen and Neumann proved that if A,B ∈ L(X) and A,B∗ satisfy property (β), then δA,B has
SVEP (we refer the reader to [30], for the definitions of property (β)). In section 2, we prove that if A ∈ L(X)
has the SVEP (resp., A is quasinilpotent) and B is algebraic (resp., B∗ has SVEP), then SVEP holds for δA,B,
and we prove also that if A,B ∈ L(X), such that the operators exp(A) and exp(−B) have spectrum without
interior points, then SVEP holds for δA,B.

The following implications hold for a general bounded linear operator T on a Banach space X, in
particular

ker(T) ⊥ R(T)⇒ ker(T) ∩ R(T) = {0} ⇒ asc(T) ≤ 1,

where ker(T) ⊥ R(T) denote that the kernel of T is orthogonal to the range of T in the sense of G. Birkhoff.
So the range kernel orthogonality of an operator is related to its ascent. The range-kernel orthogonality of
δA,B in the sense of G. Birkhoff, was studied by numerous mathematicians, see [10, 22] and the references
therein. Anderson [8], Anderson and Foias [9] considered the generalized derivation δA,B to prove that if A
and B are normal Hilbert space operators, then ker(δA,B) ⊥ R(δA,B), this implies that asc(δA,B) ≤ 1. Duggal,
Djordjevic and Kubrusly [17, Proposition 2.3] proved that if A,B ∈ L(X) such that A is a contraction and B is
right invertible by a contraction, then ker(δA,B) ⊥ R(δA,B), this implies that asc(δA,B) ≤ 1, and in [17, Corollary
2.7] the authors proved that if A,B ∈ L(H), such that A and B∗ are w-hyponormal with ker A ⊆ ker A∗ and
ker B∗ ⊆ ker B, then asc(δA,B) ≤ 1. In section 3, we prove that if A,B∗ ∈ L(H) are reduced by each of its
eigenspaces and have property H(1), then
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asc(δA,B − λI) ≤ 1, ∀λ ∈ C.

Recall that an operator T ∈ L(X), is said to have property H(1), if

∀λ ∈ C, H0(T − λI) = ker(T − λI),

where H0(T − λI) is the quasi-nilpotent part of T − λI defined by

H0(T − λI) = {x ∈ X : lim
n→∞
‖(T − λI)n(x)‖

1
n = 0}.

Several authors have studied the problem of characterizing when the the range of δA,B is norm closed
in L(X). Moreover Anderson and Foias [9, Theorem 4.2] proved that if A,B ∈ L(H) are scalar Hilbert space
operators, then δA,B−λ has closed range for every complex λ if and only if σ(A)∪σ(B) is finite. Scalar Hilbert
space operators are similar to normal operators, and normal operators are polaroid. Hence [1, Theorem
3.83], if A,B ∈ L(H) are scalar operators, then δA,B − λ has closed range, for all complex λ if and only if A
and B are algebraic operators. In [18, Propostion 2.9], the authors proved that, if asc(δA,B − λ) ≤ 1, for all
complex λ and if either (i) A∗ and B have SVEP or (ii) δ∗A,B has SVEP, then δA,B − λ has closed range for all
complex λ if and only if A and B are algebraic operators. In section 4, we prove that, if asc(δA,B − λ) ≤ 1, for
all complex λ, then δA,B−λ has closed range, for all complex λ if and only if A and B are algebraic operators,
without the additional conditions (i) or (ii).

In [17, Remark 3.3] the authors noted that if A,B ∈ L(X) such that A,B are polaroid, asc(δA,B) ≤ 1 and
δ∗A,B has SVEP at 0, the following conditions are mutually equivalent

1. 0 ∈ isoσa(δA,B),
2. δA,B is left polaroid,
3. δA,B has closed range,
4. There exist finite sequences {αi}

n
i=1 and {βi}

n
i=1, where αi ∈ isoσa(A) and βi ∈ isoσs(B) such that αi−βi = 0,

for all 1 ≤ i ≤ n,
5. L(X) = ker δA,B ⊕ R(δA,B),
6. 0 ∈ isoσ(δA,B).

In section 4, we prove that if A,B∗ ∈ L(H) are reduced by each of its eigenspaces and have property H(1),
then the conditions (1) to (6) are mutually equivalent.

2. SVEP property for δA,B

In this section we give some sufficient conditions for δA,B to satisfy property SVEP. Before giving our
results, we need the following definitions.

Definition 2.1. An operator T ∈ L(X) is said to be a Fredholm if α(T) = dim ker(T) and β(T) = codimR(T) are finite
dimensional. Let σe(T) denote the essential spectrum of T.

σe(T) = {λ ∈ C : (T − λI) is not Fredhom},

Definition 2.2. An operator T ∈ L(X) is said to be algebraic if there exists a non trivial complex polynomial h such
that h(T) = 0.

Definition 2.3. An operator T ∈ L(X) is said to be Riesz if for all λ ∈ C, λ , 0, T − λI is a Fredholm operator,
equivalently T is Riesz operator if σe(T) = {0}.

Theorem 2.4. [16, Lemma 2.8] For an operator A ∈ L(X), A(resp., A∗) has SVEP at µ if and only if LA (resp.,RA)
has SVEP at µ.
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Remark 2.5. SVEP for A and B does not guarantee SVEP for the operators A + B and AB, even when A and B
commute. Thus in general SVEP for A and B does not guarantee SVEP for the operators LA + RB and LARB.

As a consequence from the above theorem, we give some sufficient conditions for δA,B to satisfy SVEP
property

Proposition 2.6. Suppose that A ∈ L(X) has the SVEP (resp., A is algebraic) and B is algebraic (resp., B∗ has SVEP),
then SVEP holds for δA,B.

Proof. Since σ(RB) = σ(B) and σ(LA) = σ(A), we deduce that RB is also algebraic. It follows from Theorem
2.4 and [4, Theorem2.3] that SVEP holds for δA,B.

Proposition 2.7. Let A,B ∈ L(X), if A is quasinilpotent (resp., A has SVEP) and B∗ has SVEP(resp., B is quasinilpo-
tent), then δA,B has SVEP.

Proof. Suppose that A is quasinilpotent, according to [24, Corollary 3.4], we have σe(LA) = σ(A) = {0}, it
follows that LA is Riesz operator, since B∗ has SVEP it follows from [16, Lemma 2.8] that RB has SVEP, apply
[2, Theorem 0.3], we get δA,B has SVEP. Similarly if we suppose that A has SVEP and B is quasinilpotent we
get the result.

Example 2.8. Let 1 ≤ p < ∞ arbitrarily given and let A be a weighted right shift operator on the Banach space lp(N)
with weight sequence α = (αn)n∈N,

Ax =

∞∑
n=1

αnxnen+1,

where (en) is the canonical basis of lp(N), suppose that (αk.....αk+n−1)
1
n −→ 0 as n −→ ∞ uniformly in k ∈ N, it

follows from [30, Proposition 1.6.14] that A is quasinilpotent. Let B be a weighted right shift operator on the Banach
space lp(N) with weight sequence β = (βn)n∈N, such that lim infn−→∞(β1.....βn)

1
n = 0, it follows from [1, Theorem

2.88] that B∗ has SVEP. Applying Proposition 2.7, we get SVEP holds for δA,B.

Theorem 2.9. Let A, B ∈ L(X), suppose that exp(A) and exp(−B) have spectrum without interior points, then
SVEP holds for δA,B.

Proof. Since σ(Rexp(−B)) = σ(exp(−B)) and σ(Lexp(A)) = σ(exp(A)), we deduce that the operators Lexp(A) and
Rexp(−B) have spectrum without interior points and they are two commuting operators. So by [22, Theorem
1.3] Lexp(A).Rexp(−B) has the SVEP. On the other hand we have

exp(LA − RB) = exp(LA) exp(R(−B))
= Lexp(A)Rexp(−B),

consequently SVEP holds for exp(LA − RB). By [1, Theorem 2.39] this implies that δA,B has SVEP.

The following theorem was proved by B. P. Duggal, S. V. Djordjevic and C. S. Kubrusly in [18, Propostion
2.6], by using the spectral theory, we give another proof

Theorem 2.10. Let A,B ∈ L(X), then A and B are algebraic if and only if δA,B is algebric.

Proof. We prove that σ(δA,B) is a finite set of poles of the resolvent. Since A and B are algebraic, it follows
that σ(δA,B) is finitely countable and since algebraic operators are polaroid, it follows from [14, Theorem 3.6]
that δA,B is polaroid, this implies that σ(δA,B) = isoσ(δA,B) = Π(δA,B), consequently δA,B is algebraic. Suppose
now that δA,B is algebraic, then accσ(δA,B) = ∅ and σ(δA,B) = isoσ(δA,B) = Π(δA,B), it follows from [14, Remark
3.1] and the proof of [14, Theorem 3.6] that

isoσ(δA,B) = (isoσ(A) − isoσ(B))\accσ(δA,B)
= (Π(A) −Π(B))\accσ(δA,B).

Hence σ(A) = isoσ(A) = Π(A) and σ(B) = isoσ(B) = Π(B), consequently A and B are algebraic.
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Corollary 2.11. Suppose that A and B are algebraic, then δA,B and δ∗A,B have SVEP.

Remark 2.12. In the following example we show that if A is Riesz operator, then LA is not in general Riesz operators.

Example 2.13. Let A be compact non quasinilpotent operator, then A is Riesz operator. According to [24, Corollary
3.4], we have σe(LA) = σ(A) , {0}, then LA is not Riesz operator.

In the following theorem we give necessary and sufficient condition for δA,B to be Riesz operator.

Proposition 2.14. Let A, B ∈ L(X). Then δA,B is Riesz operator, if and only if σe(A − λ) ∩ σ(B) = ∅ and
σ(A − λ) ∩ σe(B) = ∅, for all λ ∈ C, λ , 0.

Proof. Suppose that δA,B is Riesz operator, then for all λ ∈ C, λ , 0, we have δA,B − λ is Fredholm, this
is equivalent to λ < σe(δA,B), since the spectral mapping theorem holds for the essential spectrum see [1,
Corollary 3.61], it follows that 0 < σe(δA−λ,B) and according to [24, Corollary 3.4], we have

σe(δA−λ,B) = (σ(A − λ) − σe(B)) ∪ (σe(A − λ) − σ(B)),

hence we obtain 0 < (σ(A − λ) − σe(B)) and 0 < (σe(A − λ) − σ(B)), this implies that σe(A − λ) ∩ σ(B) = ∅ and
σ(A − λ) ∩ σe(B) = ∅, for all λ ∈ C, λ , 0.

Before giving an example which illustrate the precedent proposition, we recall that if T ∈ L(X), the analytic
core K(T) is the set of all x ∈ X such that there exists a constant c > 0 and a sequence of elements xn ∈ X
such that x0 = x,Txn = xn−1, and ‖xn‖ ≤ cn

‖x‖ for all n ∈N, see [1] for information on K(T).

Example 2.15. Let A be quasinilpotent operator such that K(A) = {0}, it follows from [1, Theorem 6.42] that
A is Riesz operator, consequently λ < σe(A), for all λ ∈ C, λ , 0. Let B : l2(N) → l2(N) be defined by
B(x1, x2, x3, .....) = ( 1

2 x2, 1
3 x3, .....), σ(B) = σe(B) = {0}, then we have σe(A− λ)∩ σ(B) = ∅ and σ(A− λ)∩ σe(B) = ∅,

for all λ ∈ C, λ , 0. Hence δA,B is Riesz operator and σ(δA,B) = σe(δA,B) = {0}.

Remark 2.16. The class of operators satisfying the condition K(T) = {0} was introduced by Mbekhta in [33] in the
case of Hilbert space and studied in more general setting of Banach spaces, see [1]. Such condition is verified by every
weighted unilateral right shift T on lp(N) (1 ≤ p < ∞) defined by

Ten = ωnen+1,

where the weight (ωn)n∈N is a bounded sequence of positive numbers, and (en)n∈N stands for the canonical basis of
lp(N).

Proposition 2.17. Let A, B ∈ L(X). Suppose that LA and RB are Riesz operators, then δA,B is Riesz operator.

Proof. Since LA and RB are commuting operators, according to [1, Theorem 3.112], we get the result.

Proposition 2.18. Let A ∈ L(X) and B ∈ L(X) be Riesz operators, then δA,B has SVEP.

Proof. If A and B are Riesz operators, then σ(A) and σ(B) are finite or countable. Therefore by [30, Proposition
1.4.5], the operators A and B are super-decomposable, and by [30, Theorem 3.6.17], LA and RB are super-
decomposable and δA,B is decomposable. Hence δA,B has SVEP.

Now, we give some results on the stability of the single-valued extension property under perturbations by
commuting algebraic, Riesz and quasi-nilpotent operators.
Observe that for operators A, B, C and D ∈ L(X), we have

δA+C,B+D = δA,B + δC,D.

Hence perturbation of the operators A and B in δA,B by operators C and D, such that C commute with A and
D commute with B results in a perturbation of δA,B by an operator δC,D which commutes with it.
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Proposition 2.19. Let C,D ∈ L(X) be algebraic operators and let A,B ∈ L(X), such that C commute with A, D
commute with B and A,B∗ have property (β), then

SVEP holds for δA+C,B+D.

Proof. According to Theorem 2.10, δC,D is algebraic and from [30, Theorem 3.6.3] δA,B has SVEP, applying
[4, Theorem2.3], we get δA+C,B+D = δA,B + δC,D has SVEP.

Proposition 2.20. Let C,D ∈ L(X) be quasinilpotent operators and let A,B ∈ L(X), such that A,B∗ have property
(β), then

SVEP holds for δA+C,B+D.

Proposition 2.21. Let C,D ∈ L(X) such that σe(C − λ) ∩ σ(D) = ∅ and σ(C − λ) ∩ σe(D) = ∅, for all λ ∈ C, λ , 0
and let A,B ∈ L(X), such that C commute with A, D commute with B, then

δA,B has SVEP if and only if δA+C,B+D has SVEP.

Proof. According to Proposition 2.14 δC,D is Riesz operator. Since the operators δC,D and δA,B commute, it
follows from [4] that δA,B has SVEP if and only if δA+C,B+D has SVEP.

3. Finite ascent for δA,B

Let T ∈ L(H) be reduced by each of its eigenspaces. If we let M =
∨
{ker(T − µI), µ ∈ σp(T)} (where

∨
(.)

denotes the closed linear span), it follows that M reduces T. Let T1 = T|M and T2 = T|M⊥ . By [13, Proposition
4.1] we have

• T1 is normal with pure point spectrum,

• σp(T1) = σp(T),

• σ(T1) = clσp(T1) (here cl denotes the closure),

• σp(T2) = ∅.

Before giving our main result, we recall the definition of normal operators on Banach spaces

Definition 3.1. An operator A ∈ L(X) is said to be hermitian if ‖ exp(itA)‖ = 1, for all real t. An operator T on X
is said to be normal if T = A + iB, where A and B are commuting hermitian operators.

Theorem 3.2. Suppose that A,B∗ ∈ L(H) are reduced by each of its eigenspaces and have property H(1), then

asc(δA,B − λI) ≤ 1, ∀λ ∈ C.

Proof. Since A and B∗ are reduced by each of its eigenspaces, then there exists

M1 =
∨
{ker(A − βI), β ∈ σp(A)} and M2 = H 	M1

on the one hand and
N1 =

∨
{ker(B∗ − αI), α ∈ σp(B∗)} and N2 = H 	N1

on the other hand such that A and B have the representations

A =

(
A1 0
0 A2

)
onH = M1 ⊕M2,
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and

B =

(
B1 0
0 B2

)
on H = N1 ⊕N2.

Recall from [23] that σ(δA,B) = σ(A) − σ(B). We consider the following cases:
Case 1: If λ ∈ C\σ(δA,B), then ker(δA,B − λI) = {0} and hence

asc(δA,B − λI) ≤ 1.

Case 2: If λ ∈ isoσ(δA,B), then there exists finite sequences {µi}
n
i=1 and {νi}

n
i=1, where µi ∈ isoσ(A) and

νi ∈ isoσ(B) such that
λ = µi − νi, for all 1 ≤ i ≤ n.

Since the spectrum of A2 and the spectrum of B2 does not contains isolated points, then λ < σ(δAi,B j )
for all 1 ≤ i, j ≤ 2 other than i = j = 1. Consider X ∈ ker(δA,B − λI) such that X : N1 ⊕ N2 −→ M1 ⊕

M2 have the representation X = [Xkl]2
k,l=1. Hence

(δA,B − λI)(X) =

(
(δA1,B1 − λI)(X11) (δA1,B2 − λI)(X12)
(δA2,B1 − λI)(X21) (δA2,B2 − λI)(X22)

)
= 0.

Observe that δAi,B j − λI is invertible for all 1 ≤ i, j ≤ 2 other than i = j = 1. Hence X22 = X21 = X12 = 0. Since
A1 − µi and B1 − νi are normal, it follows from [9, Theorem 5.4] that (δA1,B1 − λI) ∈ L(L(N1,M1)) is normal
Banach space operator, and from [19, Theorem 3.4] that asc(δA1,B1 − λI) ≤ 1. Hence asc(δA,B − λI) ≤ 1.

Case 3: If λ ∈ accσ(δA,B), it follows from [31, Lemma 3.1] that λ ∈ (σ(A)− accσ(B))∪ (accσ(A)− σ(B)), then
there exists µ ∈ σ(A) and ν ∈ σ(B) such that λ = µ− ν ∈ (σ(A)− accσ(B)) or λ = µ− ν ∈ (accσ(A)− σ(B)). Since
A and B∗ have property H(1), then they are polaroid, hence accσ(A) = σD(A) and accσ(B) = σD(B), it is easy
to see that

σD(A) = σD(A1) ∪ σD(A2) and σD(B) = σD(B1) ∪ σD(B2),

since σp(A2) = σp(B∗2) = ∅, then σD(A2) = σ(A2) and σD(B2) = σ(B2). Hence we have

µ ∈ σD(A1) ∪ σ(A2) and ν ∈ σ(B1) ∪ σ(B2).

Or
µ ∈ σ(A1) ∪ σ(A2) and ν ∈ σD(B1) ∪ σ(B2).

Let X : N1 ⊕N2 −→M1 ⊕M2 have the representation X = [Xkl]2
k,l=1. Hence

(δA,B − λI)(X) =

(
(δA1,B1 − λI)(X11) (δA1,B2 − λI)(X12)
(δA2,B1 − λI)(X21) (δA2,B2 − λI)(X22)

)
.

We consider the following cases

• µ ∈ σ(A1) and ν ∈ σD(B1), or

• µ ∈ σ(A1) and ν ∈ σ(B2), or

• µ ∈ σ(A2) and ν ∈ σD(B1), or

• µ ∈ σ(A2) and ν ∈ σ(B2).

or

• µ ∈ σD(A1) and ν ∈ σ(B1), or

• µ ∈ σD(A1) and ν ∈ σ(B2), or

• µ ∈ σ(A2) and ν ∈ σ(B1).
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We start by studying these cases

• If µ ∈ σ(A1) and ν ∈ σD(B1). Since µ < σ(A2) and ν < σ(B2), then δAi,B j −λI is invertible for all 1 ≤ i, j ≤ 2
other than i = j = 1. Hence asc(δAi,B j − λI) = 0, for all 1 ≤ i, j ≤ 2 other than i = j = 1. Since A1 − µ and
B1 − ν are normal, it follows from [9, Theorem 5.4] that (δA1,B1 − λI) ∈ L(L(N1,M1)) is normal Banach
space operator, and from [19, Theorem 3.4] that asc(δA1,B1 − λI) ≤ 1. Hence asc(δA,B − λI) ≤ 1.

• If µ ∈ σ(A1) and ν ∈ σ(B2), let X ∈ ker(δA,B − λI), then X22 = X21 = X11 = 0 and

A1X12 = X12(B2 − λ). (1)

We argue as in the proof of [32, Theorem 2.2], we get X12 = 0, consequently X = 0.Hence asc(δA,B−λI) ≤
1.

• If µ ∈ σ(A2) and ν ∈ σD(B1), let X ∈ ker(δA,B − λI), then X11 = X22 = X12 = 0 and (A2 − λ)X21 = X21B1.
We argue as in the proof of [32, Theorem 2.2], we obtain X21 = 0, hence X = 0 and asc(δA,B − λI) ≤ 1.

• If µ ∈ σ(A2) and ν ∈ σ(B2). Since A has property H(1) it follows from [1, Theorem 3.99] that A2 has
property H(1). Hence H0(A2 − µ) = ker(A2 − µ) = {0}. Let X ∈ ker(δA,B − λI), then X21 = X12 = X11 = 0
and (A2 − µ)X22 = X22(B2 − ν), this implies that, if t ∈ H0(B2 − ν), then X22t ∈ H0(A2 − µ) = {0}. Hence
X22t = 0. Since t ∈ H0(B2 − ν), using properties of quasinilpotent part, we get (B2 − ν)(t) ∈ H0(B2 − ν),
consequently N2 = clH0(B2 − ν). So X22 = 0, hence X = 0 and asc(δA,B − λI) ≤ 1.

The cases

• µ ∈ σD(A1) and ν ∈ σ(B1), or

• µ ∈ σD(A1) and ν ∈ σ(B2), or

• µ ∈ σ(A2) and ν ∈ σ(B1),

can be proved similarly.

The class of operators having property H(1) and reduced by each of its eigenspaces is considerably large,
it contains the following class of operators. An operator T ∈ L(H) is said to be p-hyponormal, 0 < p ≤ 1, if
|T∗|2p

≤ |T|2p,where |T| = (T∗T)
1
2 . An invertible operator T ∈ L(H) is log-hyponormal if log |T∗|2 ≤ log |T|2.An

operator T ∈ L(H) is said to be w-hyponormal if (|T∗|
1
2 |T||T∗|

1
2 )

1
2 ≥ |T∗|, see [28]. It is shown in [5, 6] that the

class of w-hyponormal properly contains the class of p-hyponormal (0 < p ≤ 1), and log-hyponormal. T.
Furuta, M. Ito and T. Yamazaki [26] introduced a very interesting classA operators defined by |T2

|− |T|2 ≥ 0,
and they showed that class A is a subclass of paranormal operators (i.e., ‖Tx‖2 ≤ ‖T2x‖‖x‖, for all x ∈ H )
and contains w-hyponormal operators. An operator T ∈ L(H) is said to be class A(s, t), where s and t are
strictly positive integers, if |T∗|2t

≤ (|T∗|t|T|2s
|T∗|t)

t
t+s . Then T ∈ A( 1

2 ,
1
2 ) if an only if T is w-hyponormal and

T ∈ A(1, 1) if an only if T is classA.
I. H. Jeon and I. H. Kim [29] introduced quasi-class A operators defined by T∗(|T2

| − |T|2)T ≥ 0, as an
extension of the notion of class A operators. K. Tanahash, I. H. Jeon, I, H. Kim and A. Uchiyama [34]
introduced k-quasi-classA operators defined by T∗k(|T2

|− |T|2)Tk
≥ 0, for a positive integer k as an extension

of the notion of quasi-classA operators, for interesting properties of k-quasi-classA operators, called also
quasi-class (A, k), see [27, 34].

The following result is a straight forward application of the above theorem.

Corollary 3.3. Let A,B∗ ∈ L(H) be k-quasi-class A operators. Assume that ker A ⊆ ker A∗ and ker B∗ ⊆ ker B,
then

asc(δA,B − λI) ≤ 1, for all complex λ.
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Corollary 3.4. [17, Corollary 2.7] Let A,B∗ ∈ L(H) be w-hyponormal operators. Assume that ker A ⊆ ker A∗ and
ker B∗ ⊆ ker B, then

asc(δA,B) ≤ 1.

4. Range closure for δA,B

If we combine [12, Theorem 2.7], [11, Theorem 2.7] and [1, Theorem 3.83], we get the following Lemma

Lemma 4.1. Let T ∈ L(X). Then The following statements are equivalent

1. σld(T) = ∅,
2. σdsc(T) = ∅, where σdsc(T) = {λ ∈ C : dsc(T − λI) = ∞},
3. T is algebraic,
4. σ(T) is a finite set of poles of the resolvent.

In [18, Propostion 2.9], the authors proved that, if asc(δA,B − λ) ≤ 1, for all complex λ and if either (i)
A∗ and B have SVEP or (ii) δ∗A,B has SVEP, then δA,B − λ has closed range for all complex λ if and only if A
and B are algebraic operators. In the following result, we prove that, if asc(δA,B − λ) ≤ 1, for all complex λ,
then δA,B − λ has closed range, for all complex λ if and only if A and B are algebraic operators, without the
additional conditions (i) or (ii).

Proposition 4.2. Let A,B ∈ L(X). If asc(δA,B − λ) ≤ 1, for all complex λ, then δA,B − λ has closed range, for all
complex λ if and only if A and B are algebraic operators.

Proof. Suppose that A and B are algebraic operators, then δA,B is algebraic, form Lemma 4.1, we deduce that
σld(δA,B) = ∅, then δA,B − λ is left Drazin, for all complex λ, since asc(δA,B − λ) ≤ 1, for all complex λ, then
from [2, Lemma 1.7] δA,B −λ has closed range, for all complex λ. Conversely if asc(δA,B −λ) ≤ 1 and δA,B −λ
has closed range, for all complex λ, then δA,B − λ is left Drazin invertible, for all complex λ, consequently
σld(δA,B) = ∅. Hence from Lemma 4.1 δA,B is algebraic.

Corollary 4.3. Suppose that A,B∗ ∈ L(H) are reduced by each of its eigenspaces and have property H(1), then
δA,B − λ has closed range, for all complex λ if and only if A and B are algebraic operators.

Proof. From Theorem 3.2, we get asc(δA,B − λ) ≤ 1, for all complex λ, consequently the equivalence follows
from Proposition 4.2.

Theorem 4.4. Suppose that A,B∗ ∈ L(H) are reduced by each of its eigenspaces and have property H(1), then the
following conditions are pairwise equivalent

1. λ ∈ isoσa(δA,B),
2. δA,B is left polaroid,
3. δA,B − λI has closed range,
4. There exist finite sequences {αi}

n
i=1 and {βi}

n
i=1, where αi ∈ isoσa(A) and βi ∈ isoσs(B) such that αi − βi = λ, for

all 1 ≤ i ≤ n,
5. L(H) = ker(δA,B − λ) ⊕ R(δA,B − λ),
6. λ ∈ isoσ(δA,B).

Proof. We deduce from Theorem 3.2 that asc(δA,B − αI) ≤ 1, for all complex α.
(1)=⇒(2) Since A and B∗ have property H(1), it follows that they are polaroid, hence from [17, Proposition
3.1] δA,B is left polaroid, then for λ ∈ isoσa(δA,B), we have δA,B − λ is left Drazin invertible.
(2)⇔(3) Since asc(δA,B − αI) ≤ 1, for all complex α, then we have the equivalence.
(3)=⇒(4) Since δA,B−λ has closed range and asc(δA,B−λI) ≤ 1, it follows that δA,B−λ is left Drazin invertible,
hence from [3, Theorem 2.4] λ ∈ isoσa(δA,B), according to [30, Theorem 3.5.1] we have σa(δA,B) = σa(A)−σs(B),
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it is not difficult to conclude that isoσa(δA,B) = isoσa(A) − isoσs(B)\accσa(δA,B), hence we get (4).
(5) =⇒ (6) =⇒ (1) are evident.
The implication (4)=⇒(1) is evident. Since A and B∗ have property H(1), it follows from [1, Theorem 3.96]
that they are polaroid and have SVEP, then from the proof of [7, Proposition 3.5] we have Πa(δA,B) = Π(δA,B).
Hence (2) =⇒ (6), and (6) =⇒ (5), then the proof is complete.
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