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Abstract. The present work is devoted to extension of the trapezoidal rule in the space W(2,1)
2 . The optimal

quadrature formula is obtained by minimizing the error of the formula by coefficients at values of the first
derivative of an integrand. Using the discrete analog of the operator d2

dx2 − 1 the explicit formulas for the
coefficients of the optimal quadrature formula are obtained. Furthermore, it is proved that the obtained
quadrature formula is exact for any function of the set F = span{1, x, ex, e−x

}. Finally, in the space W(2,1)
2 the

square of the norm of the error functional of the constructed quadrature formula is calculated. It is shown
that the error of the obtained optimal quadrature formula is less than the error of the Euler-Maclaurin
quadrature formula on the space L(2)

2 .

1. Introduction

It is known, that quadrature and cubature formulas, are methods for the approximate evaluation
of definite integrals. In addition and even more important, quadrature formulas provide a basic and
important tool for the numerical solution of differential and integral equations. The theory of cubature
formulas consists mainly of three branches dealing with exact formulas, formulas based on functional-
analytic methods, and formulas based on probabilistic methods [21, 22]. In the functional-analytic methods
the error between an integral and corresponding cubature sum is considered as a linear functional on a
Banach space and it is estimated by the norm of the error functional in the conjugate Banach space. The
norm of the error functional depends on coefficients and nodes of the formula. The problem of finding
the minimum of the norm of the error functional by coefficients and by nodes is called S.M. Nikol’skii
problem, and the obtained formula is called the optimal formula in the sense of Nikol’skii (see, for instance, [10]).
Minimization of the norm of the error functional by coefficients when the nodes are fixed is called Sard’s
problem. And the obtained formula is called the optimal formula in the sense of Sard. First this problem was
studied by A. Sard [11]. Solving these problems in different spaces of differentiable functions various types
of optimal formulas of numerical integration are obtained.
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There are several methods for constructing the optimal quadrature formulas in the sense of Sard such
as the spline method, the φ−function method (see e.g. [3], [13]) and the Sobolev method. It should be
noted that the Sobolev method is based on using a discrete analog of a linear differential operator (see e.g.
[20–22]). In different spaces based on these methods, the Sard problem was studied by many authors, see,
for example, [2–8, 11, 13, 15, 20–23] and references therein.

Among these formulas the Euler-Maclaurin type quadrature formulas are very important for numerical
integration of differentiable functions and are widely used in applications. In different spaces the optimality
of the Euler-Maclaurin type quadrature and cubature formulas were studied, for instance, in works [4, 8, 9,
12, 17–19, 24].

The Euler-Maclaurin quadrature formulas can be viewed as well as an extension of the trapezoidal rule
by the inclusion of correction terms. It should be noted that in applications and in solution of practical
problems numerical integration formulas are interesting for functions with small smoothness.

The present paper is also devoted to extension of the trapezoidal rule.
We consider a quadrature formula of the form

1∫
0

ϕ(x)dx �
N∑
β=0

(C0[β]ϕ(hβ) + C1[β]ϕ′(hβ)) (1)

where C0[β] are coefficients of the trapezoidal rule, i.e.

C0[0] = h
2 ,

C0[β] = h, β = 1, 2, ...,N − 1,
C0[N] = h

2 ,
(2)

C1[β] are unknown coefficients of the formula (1) and they should be found, h = 1
N , N is a natural number.

We suppose that an integrand ϕ belongs to W(2,1)
2 (0, 1), where by W(2,1)

2 (0, 1) we denote the class of all
functions ϕ defined on [0, 1] which posses an absolutely continuous first derivative and whose second
derivative is in L2(0, 1). The class W(2,1)

2 (0, 1) under the pseudo-inner product

〈ϕ,ψ〉 =

1∫
0

(ϕ′′(x) + ϕ′(x))(ψ′′(x) + ψ′(x))dx

is a Hilbert space if we identify functions that differ by a linear combination of a constant and e−x (see, for
example, [1]). Here, in the Hilbert space W(2,1)

2 (0, 1), we consider the corresponding norm

‖ϕ|W(2,1)
2 (0, 1)‖ =

[∫ 1

0
(ϕ′′(x) + ϕ′(x))2dx

]1/2

.

The difference

(`, ϕ) =

1∫
0

ϕ(x)dx −
N∑
β=0

(C0[β]ϕ(hβ) + C1[β]ϕ′(hβ)) (3)

is called the error and

`(x) = ε[0,1](x) −
N∑
β=0

(C0[β]δ(x − hβ) − C1[β]δ′(x − hβ)), (4)

is said to be the error functional of the quadrature formula (1), where ε[0,1](x) is the indicator of the interval
[0, 1] and δ is Dirac’s delta function. The value (`, ϕ) of the error functional ` at a function ϕ is defined as
(`, ϕ) =

∫
∞

−∞
`(x)ϕ(x)dx.
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In order that the error functional (4) is defined on the space W(2,1)
2 (0, 1) it is necessary to impose the

following conditions for the functional `

(`, 1) := 1 −
N∑
β=0

C0[β] = 0, (5)

(`, e−x) :=

1∫
0

e−xdx −
N∑
β=0

(C0[β]e−hβ
− C1[β]e−hβ) = 0. (6)

The last two equations mean that the quadrature formula (1) is exact for any constant and e−x. We have
chosen the coefficients C0[β], β = 0, 1, ...,N such that the equality (5) is fulfilled. Therefore we have only
condition (6) for coefficients C1[β], β = 0, 1, ...,N.

The error functional ` of the formula (1) is a linear functional in W(2,1)∗
2 (0, 1), where W(2,1)∗

2 (0, 1) is the
conjugate space to the space W(2,1)

2 (0, 1).
By the Cauchy-Schwarz inequality we have the following

|(`, ϕ)| ≤ ‖ϕ|W(2,1)
2 (0, 1)‖ · ‖`|W(2,1)∗

2 (0, 1)‖.

Hence we conclude that the error (3) of the formula (1) is estimated by the norm∥∥∥`|W(2,1)∗
2 (0, 1)

∥∥∥ = sup∥∥∥∥ϕ|W(2,1)
2 (0,1)

∥∥∥∥=1

∣∣∣(`, ϕ)∣∣∣
of the error functional (4).

The main aim of this work is to find the minimum of the absolute value of the error (3) by coefficients
C1[β] for given C0[β] in the space W(2,1)

2 . That is the problem is to find the coefficients C1[β] that satisfy the
following equality∥∥∥ ˚̀|W(2,1)∗

2

∥∥∥ = inf
C1[β]

∥∥∥`|W(2,1)∗
2

∥∥∥ . (7)

The coefficients C1[β] which satisfy the last equation are called optimal and are denoted as C̊1[β].
Thus, to obtain the optimal quadrature formula of the form (1) in the sense of Sard in the space W(2,1)

2 (0, 1),
we need to solve the following problems.

Problem 1. Find the norm of the error functional (4) of the quadrature formula (1) in the space W(2,1)∗
2 .

Problem 2. Find the coefficients C̊1[β] that satisfy equality (7).

Here we solve Problems 1 and 2 by Sobolev’s method using the discrete analog of the differential
operator d2

dx2 − 1.
The paper is organized as follows: in Section 2 using the extremal function of the error functional ` the

norm of this functional is calculated, i.e. Problem 1 is solved; Section 3 is devoted to solution of Problem
2. Here the system of linear equations for the coefficients C1[β] of the optimal quadrature formulas (1)
is obtained in the space W(2,1)

2 (0, 1). In Subsection 3.1 using the discrete analog of the operator d2

dx2 − 1
the explicit formulas for the coefficients C1[β] of optimal quadrature formula of the form (1) are obtained.
Furthermore, it is proved that the obtained quadrature formula of the form (1) is exact for any function of
the set F = span{1, x, ex, e−x

}. Finally, in Subsection 3.2 in the space W(2,1)
2 the square of the norm of the error

functional of the constructed quadrature formula is calculated. It is shown that the error of the obtained
optimal quadrature formula is less than the error of the Euler-Maclaurin quadrature formula on the space
L(2)

2 .
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2. The norm of the error functional (4)

In this section we study Problem 1. To calculate the norm of the error functional (4) in the space
W(2,1)∗

2 (0, 1) we use the extremal function for this functional (see, [21, 22]) which satisfies the equality(
`, ψ`

)
=

∥∥∥`|W(2,1)∗
2

∥∥∥ · ∥∥∥ψ`|W(2,1)
2

∥∥∥ .
We note that in [16] for a linear functional ` defined on the Hilbert space W(m,m−1)

2 the extremal function
was found and it was shown that the extremal function ψ` is the solution of the boundary value problem

ψ(2m)
` (x) − ψ(2m−2)

` (x) = (−1)m`(x), (8)(
ψ(m+s)
` (x) − ψ(m+s−2)

` (x)
)
|
x=1
x=0 = 0, s = 0, 1, ...,m − 1, (9)(

ψ(m)
` (x) + ψ(m−1)

` (x)
)
|
x=1
x=0 = 0. (10)

That is for the extremal function ψ` the following was proved.

Theorem 2.1 (Theorem 2.1 of [16]). The solution of the boundary value problem (8)-(10) is the extremal function
ψ` of the error functional ` and has the following form

ψ`(x) = (−1)m`(x) ∗ Gm(x) + Pm−2(x) + de−x,

where

Gm(x) =
sgnx

2

 ex
− e−x

2
−

m−1∑
k=1

x2k−1

(2k − 1)!

 (11)

is the solution of the eqution G(2m)
m (x)−G(2m−2)

m (x) = δ(x), d is any real number and Pm−2(x) is a polynomial of degree
m − 2.

Furthermore, there were shown that ‖`|W(m,m−1)
2 ‖ = ‖ψ`|W

(m,m−1)∗
2 ‖ and(

`, ψ`
)

=
∥∥∥`|W(m,m−1)∗

2

∥∥∥2
. (12)

From Theorem 2.1, in the case m = 2, we get the extremal function ψ` for the error functional (4) and it
has the form

ψ`(x) = `(x) ∗ G2(x) + p0 + de−x, (13)

where

G2(x) =
sgnx

2

(
ex
− e−x

2
− x

)
, (14)

d and p0 are any real numbers.
Then, from (12), in the case m = 2, using (4) and (13), taking into account equations (5) and (6), we get

‖`‖2 = (`, ψ`) =
N∑
β=0

N∑
γ=0

(
C0[β]C0[γ]G2(hβ − hγ) − C1[β]C1[γ]G′′2 (hβ − hγ)

)
+

+2
N∑
β=0

C1[β]
( 1∫

0
G′2(x − hβ)dx +

N∑
γ=0

C0[γ]G′2(hβ − hγ)
)
−

−2
N∑
β=0

C0[β]
1∫

0
G2(x − hβ)dx +

1∫
0

1∫
0

G2(x − y)dxdy,

(15)



A.R. Hayotov, R.G. Rasulov / Filomat 34:11 (2020), 3835–3844 3839

where G2(x) is defined by (14), G′2(x) and G′′2 (x) are derivatives of G2(x), i.e.

G′2(x) =
sgnx

2

(
ex + e−x

2
− 1

)
and G′′2 (x) =

sgnx
2

(
ex
− e−x

2

)
. (16)

It is easy to see from (11) and (16) that

G1(x) = G′′2 (x). (17)

Thus Problem 1 is solved.
In the next section we study Problem 2.

3. The minimization of the norm (15)

Now we consider the minimization problem of the expression (15) by the coefficients C1[β] under the
condition (6). For this we use the Lagrange method of conditional extremum.

Consider the Lagrange function

Ψ(C1[0],C1[1], ...,C1[N], d) = ‖`‖2 + 2d(`, e−x).

Taking partial derivatives from the function Ψ by C1[β], β = 0, 1, ...,N then equating them to 0 and using
the condition (6), we get the following system of N + 2 linear equations with N + 2 unknowns

N∑
γ=0

C1[γ]G′′2 (hβ − hγ) + de−hβ = F(hβ), β = 0, 1, ...,N, (18)

N∑
γ=0

C1[γ]e−hγ = 1, (19)

where

F(hβ) =

∫ 1

0
G′2(x − hβ)dx +

N∑
γ=0

C0[γ]G′2(hβ − hγ), (20)

1 = e−1
− 1 +

N∑
γ=0

C0[γ]e−hγ. (21)

Here C0[γ], γ = 0, 1, ...,N are defined by (2), C1[β], β = 0, 1, ...,N and d are unknowns.
The system (18)-(19) has a unique solution for any fixed natural number N and this solution gives the

minimum to the expression (15). Here we omit the proof of the existence and uniqueness of the solution of
this system. These statements can be proved similarly as the proof of the existence and uniqueness of the
solution of the discrete Wiener-Hopf type system for the optimal coefficients of quadrature formulas with

the form
∫ 1

0 f (x)dx �
∑N
β=0 C[β] f [β] in the space L(m)

2 (0, 1) (see [20–22]).

3.1. The coefficients of the optimal quadrature formula (1)

In this subsection we solve the system (18)-(19) and find the explicit forms for optimal coefficients C1[β],
β = 0, 1, ...,N.

Here we use the concept of discrete argument functions and operations on them. The theory of discrete
argument functions is given in [21, 22]. We give some definitions about functions of discrete argument.

Suppose that ϕ and ψ are real-valued functions of real variable x and are defined in real line R.

A function ϕ(hβ) is called a function of discrete argument if it is defined on some set of integer values of β.
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The inner product of two discrete functions ϕ(hβ) and ψ(hβ) is defined as the following number

[
ϕ(hβ), ψ(hβ)

]
=

∞∑
β=−∞

ϕ(hβ) · ψ(hβ),

if the series on the right hand side of the last equality converges absolutely.

The convolution of two discrete argument functions ϕ(hβ) and ψ(hβ) is the inner product

ϕ(hβ) ∗ ψ(hβ) =
[
ϕ(hγ), ψ(hβ − hγ)

]
=

∞∑
γ=−∞

ϕ(hγ) · ψ(hβ − hγ).

Furthermore, for finding the coefficients C1[β] of the optimal quadrature formula (1) we need the discrete
analog of the differential operator d2

dx2 − 1. It should be noted that in the work [14] the discrete analog of the
differential operator d2m

dx2m −
d2m−2

dx2m−2 was constructed. In particular, when m = 1 from the result of the work [14]
we get the following

Theorem 3.1. The discrete analog D1(hβ) of the differential operator d2

dx2 − 1 satisfying the equation

D1(hβ) ∗ G1(hβ) = δd(hβ)

has the form

D1(hβ) =
1

1 − e2h


0, |β| ≥ 2,

−2eh, |β| = 1,

2(1 + e2h), β = 0,

(22)

where G1(hβ) =
sgn(hβ)

2

(
ehβ
−e−hβ

2

)
and δd(hβ) =

{
1, β = 0,
0, β , 0.

Furthermore, it is easy to check that

D1(hβ) ∗ ehβ = 0 and D1(hβ) ∗ e−hβ = 0. (23)

Now we turn to get the solution of the system (18)–(19) using (22).
Suppose C1[β] = 0 when β < 0 and β > N. Then we rewrite the system (18)–(19) in the following

convolution form

C1[β] ∗ G′′2 (hβ) + de−hβ = F(hβ), β = 0, 1, ...,N, (24)
N∑
γ=0

C1[γ]e−hγ = 1. (25)

Here, calculating the right hand sides of equalities (20) and (21), for F(hβ) and 1we get

F(hβ) =

(
ehβ

8
(e−1 + 1) −

e−hβ

8
(e + 1)

) (
h(eh + 1)

eh − 1
− 2

)
, (26)

1 =
1
2

(1 − e−1)
(

h(eh + 1)
eh − 1

− 2
)
. (27)

Taking into account (16) and (17), using Theorem 3.1 we get

D1(hβ) ∗ G′′2 (hβ) = δd(hβ).
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Denoting by

u(hβ) = C1[β] ∗ G′′2 (hβ) + de−hβ (28)

the left hand side of the equation (24) we get

C1[β] = D1(hβ) ∗ u(hβ). (29)

Indeed, if the function u(hβ) is defined at all integer values of β, then taking into account Theorem 3.1 and
using properties (23) of the function D1(hβ), we have

D1(hβ) ∗ u(hβ) = D1(hβ) ∗ (G′′2 (hβ) ∗ C1[β]) + D1(hβ) ∗ (de−hβ)
= C1[β] ∗ (D1(hβ) ∗ G′′2 (hβ))
= C1[β] ∗ δd(hβ)
= C1[β].

Thus, if we find the function u(hβ) for all integer values of β then the optimal coefficients C1[β] will be found
from the equality (29).

The following is true.

Theorem 3.2. The coefficients of the optimal quadrature formula of the form (1) in the sense of Sard in the space
W(2,1)

2 (0, 1) have the following form

C̊1[0] =
h(eh + 1)
2(eh − 1)

− 1,

C̊1[β] = 0, β = 1, 2, ...,N − 1, (30)

C̊1[N] = 1 −
h(eh + 1)
2(eh − 1)

.

Proof. From equality (24) taking into account (28) we get that

u(hβ) = F(hβ) for β = 0, 1, ...,N.

Now we find the function u(hβ) for β < 0 and β > N.
Let β ≤ 0 then from (28), using the form (16) of the function G′′2 (x) and equality (25), we have

u(hβ) = −
1
4

ehβ1 + e−hβ 1
4

N∑
γ=0

C1[γ]ehγ + de−hβ.

Similarly, for β ≥ N we obtain

u(hβ) =
1
4

ehβ1 − e−hβ 1
4

N∑
γ=0

C1[γ]ehγ + de−hβ.

Then, keeping in mind the last two equalities and denoting by

D =
1
4

N∑
γ=0

C1[γ]ehγ,
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for u(hβ) we get the following

u(hβ) =


−

1
4 ehβ1 + (d + D)e−hβ, β ≤ 0,

F(hβ), 0 ≤ β ≤ N,
1
4 ehβ1 + (d −D)e−hβ, β ≥ N.

(31)

Here, in the equality (31), d and D are unknowns. These unknowns can be found from the conditions of
consistency of values of the function u(hβ) at the points β = 0 and β = N. Therefore from (31) when β = 0
and β = N we obtain the system of linear equations for d and D. Then, using (26) and (27), after some
calculations, we have

d = 0,

D = 1
8

(
h(eh+1)

eh−1 − 2
)

(1 − e).
(32)

Finally, from (29) for β = 0, 1, ...,N, using (22) and (31) and taking into account (32), by directly calculations
we get (30). Theorem 3.2 is proved. �

Remark 1. Using (2) and (30), one can get that (`, x) = 0 and (`, ex) = 0. These equalities mean that the
optimal quadrature formula of the form (1) with the coefficients (2) and (30) is also exact for functions x
and ex. Therefore, keeping in mind equalities (5) and (6), we conclude that the optimal quadrature formula
of the form (1) with coefficients (2) and (30) is exact for any linear combinations of functions 1, x, ex and
e−x, i.e. it is exact for elements of the set F = span{1, x, ex, e−x

}.

3.2. The norm of the error functional ˚̀ of the optimal quadrature formula (1)

In this subsection we study the order of convergence of the optimal quadrature formula of the form (1)
with coefficients (2) and (30), i.e. we calculate the square of the norm (15) of the error functional for the
optimal quadrature formula (1).

The following holds

Theorem 3.3. Square of the norm of the error functional (4) for the optimal quadrature formula (1) with coefficients
(2) and (30) on the space W(2,1)

2 (0, 1) has the form

∥∥∥ ˚̀|W(2,1)∗
2 (0, 1)

∥∥∥2
= −

∞∑
n=4

Bnhn

n!

=
1

720
h4
−

1
30240

h6 + O(h8), (33)

where Bn are Bernoulli numbers.

Proof. We rewrite the expression (15) as follows

‖ ˚̀‖2 = −

N∑
β=0

C̊1[β]

 N∑
γ=0

C̊1[γ]G′′2 (hβ − hγ) − F(hβ)

 +

N∑
β=0

C̊1[β]F(hβ)

+

N∑
β=0

N∑
γ=0

C0[β]C0[γ]G2(hβ − hγ) − 2
N∑
β=0

C0[β]

1∫
0

G2(x − hβ)dx +

1∫
0

1∫
0

G2(x − y)dxdy,

where F(hβ) is defined by (20).
Hence, taking into account (32), we have

‖ ˚̀‖2 = A1 + A2 − 2A3 + A4, (34)
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here

A1 =
N∑
β=0

C̊1[β] F(hβ), A2 =
N∑
β=0

N∑
γ=0

C0[β]C0[γ]G2(hβ − hγ),

A3 =
N∑
β=0

C0[β]
1∫

0
G2(x − hβ)dx, A4 =

1∫
0

1∫
0

G2(x − y)dxdy.

Now we need the following sums which are obtained by using (2) and (30)

N∑
β=0

C0[β] = 1,
N∑
β=0

C0[β](hβ) = 1
2 ,

N∑
β=0

C0[β](hβ)2 = h2

6 + 1
3 ,

N∑
β=0

C̊1[β]e−hβ = 1
2 (1 − e−1)

(
h(eh+1)

eh−1 − 2
)
,

N∑
β=0

C̊1[β]ehβ = 1
2 (1 − e)

(
h(eh+1)

eh−1 − 2
)
.

(35)

Taking into account (26) and (14), using (35) for A1, A2, A3 and A4 we get

A1 = 1−e2

8e

(
h(eh+1)

eh−1 − 2
)2
, A2 =

h2(eh+1)2(e2
−1)

8e(eh−1)2 −
h2+2

12 −
h(eh+1)
2(eh−1) ,

A3 =
h(eh+1)(e2

−1)
4e(eh−1) , A4 = e2

−1
2e −

7
6 .

Further, putting the last equalities to (34) and after some simplifications we have

‖ ˚̀‖2 = 1 −
1
2

h +
1

12
h2
−

h
eh − 1

.

Hence, using well known formula x
ex−1 =

∞∑
n=0

Bn
n! xn, |x| < 2π, we get (33).

Theorem 3.3 is proved. �

Remark 2. It should be noted that optimality of the classical Euler-Maclaurin was proved and the error
of this quadrature formula was calculated in L(m)

2 , where L(m)
2 is the space of functions which are square

integrable with m-th generalized derivative (see, for instance, [4, 12, 17]). In particular, when m = 2 from
Corollary 5.1 of the work [17] we get optimality of the Euler-Maclaurin formula∫ 1

0
ϕ(x)dx � h

(1
2
ϕ(0) + ϕ(h) + ϕ(2h) + ... + ϕ(h(N − 1)) +

1
2
ϕ(1)

)
+

h2

12
(ϕ′(0) − ϕ′(1)) (36)

in the space L(2)
2 (0, 1). Furthermore for the square of the norm of the error functional the following is valid

‖ ˚̀|L(2)∗
2 (0, 1)‖2 =

h4

720
. (37)

Comparison of equalities (33) and (37) shows that the error of the optimal quadrature formula of the form
(1) on the space W(2,1)

2 (0, 1) is less than the error of the Euler-Maclaurin quadrature formula (36) on the space
L(2)

2 (0, 1).
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